6.1 Linear Systems of Equations

To solve a system of linear equations

E₁:
$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

E₂: $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
:

$$E_n$$
: $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

for $x_1, x_2, ..., x_n$ by Gaussian elimination with backward substitution.

Matrix form:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Three elementary row operations.

- **1.**Multiply one row by a nonzero number: $(\lambda E_i) \rightarrow (E_i)$
- **2.**Interchange two rows: $(E_i) \leftrightarrow (E_i)$
- **3.**Add a multiple of one row to a different row: $(E_i + \lambda E_j) \rightarrow (E_i)$

Backward substitution

Example 1. To solve
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & -5/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ -3 \end{bmatrix}$$

Solution: From
$$-\frac{5}{2}x_3 = -3$$

 $x_3 = \frac{6}{5}$.

Then from
$$2x_2 + x_3 = 4$$

$$2x_2 + \frac{6}{5} = 4$$
$$x_2 = \frac{7}{5}.$$

Lastly from
$$x_1 + x_2 + 2x_3 = 6$$

$$x_1 + \frac{7}{5} + 2\left(\frac{6}{5}\right) = 6$$
$$x_1 = \frac{11}{5}$$

Gaussian Elimination with Backward Substitution

- 1. Write the system of linear equations as an **augmented matrix** $[A \mid b]$.
- 2.Perform elementary row operations to put the augmented matrix in the upper triangular form
- 3. Solve the echelon form using backward substitution

Example 2. Solve the system of linear equations
$$x_1 + x_2 + 2x_3 = 6$$

 $2x_1 + x_2 + x_3 = 7$

Solution:
$$\begin{bmatrix} 0 & 2 & 1 & | & 4 \\ 1 & 1 & 2 & | & 6 \\ 2 & 1 & 1 & | & 7 \end{bmatrix} \xrightarrow{(E_1) \leftrightarrow (E_2)} \begin{bmatrix} 1 & 1 & 2 & | & 6 \\ 0 & 2 & 1 & | & 4 \\ 2 & 1 & 1 & | & 7 \end{bmatrix}$$

$$(E_3 - 2 * E_1) \rightarrow (E_3) \begin{bmatrix} 1 & 1 & 2 & | & 6 \\ 0 & 2 & 1 & | & 4 \\ 0 & 2 & 1 & | & 4 \\ 0 & -1 & -3 & | & -5 \end{bmatrix} \xrightarrow{(E_3 + 0.5 * E_2) \rightarrow (E_3)} (E_3 + 0.5 * E_2) \rightarrow (E_3)$$

$$\begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & 2 & 1 & 6 \\ 0 & 0 & -\frac{5}{2} & -3 \end{bmatrix}$$

Now use backward substation to solve for values of x_1, x_2, x_3 (see **Example 1**).

Remark: Gaussian elimination is computationally expensive. The total number of multiplication and divisions is about $n^3/3$, where n is the number of unknowns.

6.2 Pivoting Strategies

Example 1. Apply Gaussian elimination to solve

*E*1: $0.003000x_1 + 59.14x_2 = 59.17$

E2: $5.291x_1 - 6.130x_2 = 46.78$

using 4-digit arithmetic with rounding (The exact solution is $x_1 = 10.00$, $x_2 = 1.000$).

Remark. In Gaussian elimination, if a pivot element $a_{kk}^{(k)}$ is small compared to an element $a_{jk}^{(k)}$ below, the multiplier $m_{jk} = \frac{a_{jk}^{(k)}}{a_{kk}^{(k)}}$ will be large, leading to large round-off errors.

To solve a system of linear equations

E₁:
$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

E₂: $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots
E_n: $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

for $x_1, x_2, ..., x_n$ by **Gaussian elimination** where $a_{kk}^{(k)}$ are numbers with small magnitude.

Ideas of Partial Pivoting.

Partial pivoting finds the smallest $p \ge k$ such that

$$\left| a_{pk}^{(k)} \right| = \max_{k \le i \le n} |a_{ik}^{(k)}|$$

and interchanges the rows $(E_k) \leftrightarrow (E_p)$. $a_{pk}^{(k)}$ is used as the pivot element.

Example 2. Apply Gaussian elimination with partial pivoting to solve

*E*1: $0.003000x_1 + 59.14x_2 = 59.17$

*E*2: $5.291x_1 - 6.130x_2 = 46.78$

using 4-digit arithmetic with rounding.

Solution:

Step 1 of partial pivoting

$$\max\left\{|a_{11}^{(1)}|,|a_{21}^{(1)}|\right\} = \{|0.003000|,|5.291|\} = 5.291 = |a_{21}^{(1)}|.$$

So perform $(E_1) \leftrightarrow (E_2)$ to make 5.291 the pivot element.

*E*1: $5.291x_1 - 6.130x_2 = 46.78$

*E*2: $0.003000x_1 + 59.14x_2 = 59.17$

$$m_{21} = \frac{a_{21}^{(1)}}{a_{11}^{(1)}} = \frac{0.003000}{5.29} = 0.0005670$$

Perform $(E_2 - m_{21}E_1) \rightarrow (E_2)$

$$5.291x_1 - 6.130x_2 = 46.78$$
$$59.14x_2 \approx 59.14$$

Backward substitution with 4-digit rounding: $x_1 = 10.00$; $x_2 = 1.000$.

Example 3. Apply Gaussian elimination with partial pivoting to solve

*E*1:
$$30.00x_1 + 591400x_2 = 591700$$

*E*2:
$$5.291x_1 - 6.130x_2 = 46.78$$

using 4-digit arithmetic with rounding.

Solution:

$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{5.291}{30.00} = 0.1764$$

Perform
$$(E_2 - m_{21}E_1) \rightarrow (E_2)$$
:

$$30.00x_1 + 591400x_2 = 591700$$
$$-104300x_2 \approx -104400$$

Using backward substitution with 4-digit arithmetic:

$$x_1 = -10.00, \qquad x_2 = 1.001.$$

Scaled Partial Pivoting

- If there are large variations in magnitude of the elements within a row, scaled partial pivoting should be used.
- Define a scale factor s_i for each row

$$s_i = \max_{1 \le j \le n} |a_{ij}|$$

• At step *i*, find *p* (the element which will be used as pivot) such that $\frac{a_{pi}}{s_p} = \max_{i \le k \le n} \frac{|a_{ki}|}{s_k} \text{ and interchange the rows } (E_i) \leftrightarrow (E_p)$

NOTE: The effect of scaling is to ensure that the largest element in each row has a relative magnitude of 1 before the comparison for row interchange is performed.

Example 3. Apply Gaussian elimination with scaled partial pivoting to solve

*E*1:
$$30.00x_1 + 591400x_2 = 591700$$

*E*2:
$$5.291x_1 - 6.130x_2 = 46.78$$

using 4-digit arithmetic with rounding.

Solution:

$$s_1 = 591400$$

 $s_2 = 6.130$

Consequently

$$\frac{|a_{11}|}{s_1} = \frac{30.00}{591400} = 0.5073 \times 10^{-4}$$
$$\frac{|a_{21}|}{s_2} = \frac{5.291}{6.130} = 0.8631$$

5.291 should be used as pivot element. So $(E_1) \leftrightarrow (E_2)$ Solve $5.291x_1 - 6.130x_2 = 46.78$ $30.00x_1 + 591400x_2 = 591700$ $x_1 = 10.00, x_2 = 1.000.$

Example 3. Use scaled partial pivoting with three-digit rounding to solve $2.11x_1 - 4.21x_2 + 0.921x_3 = 2.01$ $4.01x_1 + 10.2x_2 - 1.12x_3 = -3.09$ $1.09x_1 + 0.987x_2 + 0.832x_3 = 4.21$