Lecture 1: Single processor
performance

Why parallel computing

* Solving an n x n linear system Ax=b by using Gaussian
L. 1
elimination takes = 5713 flops.

e On Corei7 975 @ 4.0 GHz, which is capable of about
60-70 Gigaflops

n flops time
1000 3.3x108 0.006 seconds
1000000 3.3x10Y/ 57.9 days

www.top500.org 500

SUPERCOMPUTER SITES

PROJECT LISTS STATISTICS | RESOURCES NEW S

» Japan’s K Computer Tops 10
Petaflop/s to Stay Atop

K computer sPARCe4 viiix | 1OPD00 List
2 .0GHz, Tofu interconnect Fri, 2011-11-11 11:11

MUDT YH MPP, Xeon X5670
BC 2.93 GHz, NVIDIA 2050

Cray XT5-HE Opteron
6-core 2.6 GHz

Dawning TC3600 Blade,
Intel X5650, NVidia Tesla

TOP 10 Systems - 11/2011

C2050 GPU

HP ProLiant SL390s G7

Xeon BC X5670, Nvidia BERKELEY, Calif.; KNOXVILLE, Tenn.; and

I

GPU, LinuxWindows MANNHEIM, Germany (Nov. 14, 2011)—

Cray XEEB, Opteron 6136 8C Japan's "K Computer” maintained its position

2.40GHz, Custom atop the newest edition of the TOP500 List of

SGI Altix ICE the world's most powerful supercomputers,

8200BEX/8400EX, Xeon HT i i

QC 3.0/Xeon 5570/5670 tﬁanks to a full bmld—@t that makes it fqur

2 93 Ghz. Infiniband times as powerful as its nearest competitor.
Installed at the RIKEN Advanced Institute for

Cray XEB, Opteron 6172 _ _ _

12C 2.10GHz. Custom CDmpUtﬂt|0n3| Science {A|CS} in Kobe,
Japan, the K Computer it achieved an

Bull bullx super-node)))

SE010/SE030 impressive 1051 Petaflop/s on the Linpack

BladeCenter QS22/LS214 benchmark using 705,024 SPARCE4

Cluster, PowerXCell 8i 3.2 processing cores.
Ghz / Opteron DC 1.8 GHz,
Voltaire Infiniband » Read more

¢
@BOO Performance Development
1 EFlops
-B- #1
100F Flops - 858 PR o #500
o
10 PFlops .8'16 PFl -@- Sum
l-"..
1 PFlops }
._._l" NN B
100 TFlops - (SR g 4019 TF
§ ..l-' sooe of
] .-' Dun
E 10 TFlops s - Lo®
o NI B i o
T gy B8 raarT goB
& 1 TFops @ (,q ./!' : L0 oB
i o0
100 Gﬂops-"’".. n®
uﬂnn
=
10 GFlops < nnn
¢ oD
1 GFlops 1 ?"Lnun
R m%‘
100MHOp3 | S R [[N CY B N N I S S R M S T LI MR LI L] T T LR
(o S S U TR ' SO S «'s S . » SN O ¥ ST s B> S SR SO O« S .3 O
(8] o) oy o [»7] o) G O O ‘0 O e N S Y) —
[TR o B o 3 R % I o B = 2 E 2 R v R v I v N v v o e s R v Y o N)

hitp://www top500.org/

Over 17 years, 10000-fold increases.

What's in a computer

SETYLE:

HUHHN®,,

*ASSEMBLED IN
MALAYSIA

Motherboard diagram

CPU

Front-side

Graphi
raphics bus

card slot

Mearmary Slots
High-speed
graphics hus
(AGF or PCI MNorthbridge S
Express) = bus

({memeary
cortroller huk)

Internal
Bus

FCI
Bus EEE

graphics
(D cortraller controller
(aW]+]]

Cables and

ports leading
off-board

PCI Slots

Mouse

http://en.wikipedia.org/wiki/Front-side bus

http://en.wikipedia.org/wiki/Front-side_bus
http://en.wikipedia.org/wiki/Front-side_bus
http://en.wikipedia.org/wiki/Front-side_bus

von Neumann machine

Common machine

model for many
years Memory

Stored-program
concept

CPU executes a
stored program

Machine is divided
into a CPU and
main memory

Fetch Store

16-bit Intel 8086 processor

Address ALU

Memory
interface

Register

Internal Bus

EH ll|

First available in 1978

Insn.
fetch

ALU

Arithmetic Logic Unit (ALU)

ALU takes one or two operands A,B

Operation:

1. Addition, Subtraction (integer)

2. Multiplication, Division (integer)

3. And, Or, Not (logical operation)

4. Bitwise operation (shifts,
equivalent to multiplication by
power of 2)

Specialized ALUs:

* Floating Point Unit (FPU)

* Address ALU

Op

Memory read transaction (1)

Load operation: movl A, %eax

* Load content of address A into a register

* CPU places address A on the system bus, 1/0
bridge passes it onto the memory bus

register file

/| ALU

%eax /\'1_]

e,

— -

main memory

xa_fl;‘ I/Q bridge A 0
A N[A A N

bus interface \I—I/I—I\I—l/ X A

Memory read transaction (2)

Load operation: movl A, %eax

 Main memory reads A from memory bus, retrieve
word X, and places x on the bus; I/O bridge passes
it along to the system bus

register file

jﬁt main memory
] L /0 bridge % 0
| | | 1 AN

1
bus interface \1 ‘/‘ ’\ I/ X A

Memory read transaction (3)

Load operation: movl A, %eax

* CPU read word x from the bus and copies it

Into register %eax

register file

Yoeax

JIC

-

:: ALU

bus interface

I/O bridge

—>

>

main memory
0

X

A

Moore’s law

Gordon Moore’s observation in 1965: the number of
transistors per square inch on integrated circuits had doubled
every year since the integrated circuit was invented (often
inte rp reted as Computer performance doubles every two years (same cost))

Transistors
Per Die

1010
® 1965 Actual Data 16 2G =

10° = MOS Arrays A MOS Logic 1975 Actual Data 256m 212M

108 1975 Projection T s Itanium™
Pentium® 4

107 _ Pentium® lll
A Microprocessor Pentium®Il

10° Pentium®
10°
104
103
102
101

100
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

(Gordon_Moore_ISSCC_021003.pdf)

Memory

Moore’s law

* Moore’s revised observation in 1975: the pace slowed down a
bit, but data density had doubled approximately every 18
months

* Moore’s law is dead

Gordon Moore quote from 2005: “in terms of size [of transistor]
..we’re approaching the size of atoms which is a fundamental

Intel Transistors Technology
CPU (x1000)

barrier...”

1971 4004 2.3

1978 8086 31 2.0 micron

1982 80286 110 HMOS

1985 80386 280 0.8 micron CMOS
1989 80486 1200

1993 Pentium 3100 0.8 micron biCMOS

1995 Pentium Pro 5500 0.6 micron—0.25

Effect of memory latency on performance (1)

von Neumann Bottleneck: the transfer of data and instructions
between memory and the CPU

133MHz

133MH St Side et} DDR 333
U Clock - oo omwowomow
(¥ : ! X [166MHz x 2
: - : |Mersseey Closk w Deuble Data Rare)
lo : :2 ot ' ¥ 7 Data , I [" = - - - - - b |
(Core Buss Ratlo) | ' ' !
1 , 0 : : X :
2.65GHz | 533MHzZFSD | / 8 Bytes :
(CPU Core Spees) T T 7T | stomrs
’ : x _ 5 : Bus Wide 1
1
B Bytes : A -
(04 bis f 8) 1 26 1
| 2G56MB /sec |
| 1
-

I I
1 I
I I
I I
I I
I fius Wido I
1 |
i il I
1 I
i [
1 |

A2EAMB J emc

G G———————

DDR — double data rate

Effect of memory latency on performance (2)

Example. Assume a CPU operates at 1GHz (1 ns
clock) and is connected to a DRAM with a latency of
100 ns. Assume the CPU has 2 multiply/add units and
is capable of executing 4 instructions in each cycle of
1 ns. The peak CPU rating is 4GFLOPS (floating-point
operations per second).

Since the memory latency is 100 cycles, CPU must
wait 100 cycles before it can process data. Therefore,
the peak speed of computation is 10MFLOPS.

Source of slowness: CPU and memory speed

100,000 penssuissmmmzeesrnesss s o e RS B B T D O RS RS
10,000
1000
Performance

100

10

1 1 1 1 1 ! 1 J

O N oV oD oxc® 0 A DO O DN DO PPN RO L D N>H
DR X RV R R XXX DTV DD OO O

Year

From Hennessy and Patterson,"Computer Architecture:
A Quantitative Approach,” 3rd Edition, 2003, Morgan Kaufman Publishers.

© 2003 Elsevier Science (USA). All rights reserved.

Improving effective memory latency using cache

memories (1)

Put a look-up table of recently used data onto the CPU chip.

Cache memories are small, fast SRAM-based memories
managed automatically in hardware.

CPU look first for data in L1, then in L2,..., then in main
memory

CF'U chip
reglster fI|E

= |_>ALU

cache <:|
cache\‘mjs ﬁ : . system bus memcIry bus
_ /O main
L2 cache bus interface bridge < : > memory

Hierarchy of increasingly bigger, slower memories

Registers 1 kB, 1 cycle

L1 (;an:he 10 kB, 10 cycles

L2 (E:ache 1 MB, 100 cycles
DRN;’-'\M 1 GB, 1000 cycles

Virtual Memory

(hard drive) 1 TB, 1 M cycles

Organization of a cache memory

Each memory 1 valid bit 1 tag bits B = 2b bytes
address is m bits per line per line per cache block
.’_}‘_‘l — - o ™
Cache is an arra ,)
of S = 25 sets Y rf ‘U’ﬂlld tag 0 1 eees |B-1
0 X E lines
| set 0: e per set
Each set cr::ntlams valic‘ tag 0| 11| oo |B-1
one or more lines (E))
Each line holds a valid| tag 0| 1| eee |B-1
block of data (size B)
—) set 1: T
S =2 setsy valid | tag 0|1 | «oe (B
Cache size: ualid| tag 0| 1 sees (B
C=SxExB . - -
data bytes set 5-1: .
| valid tag 01| see |B~1
\

larger,
slower,
cheaper

Size:
E:

Access:

Core i7 cache hierarchies

L1 Data
§‘ 4 cycles
"5 J2KB
8.way assoc L2 Unified L3 Unified
. 11 cycles 3040 cycles | i Main
L1 Instruction 256KB 8MB Memory
S-way assoc 16-way assoc
4 cycles
JZKB
8-way assoc
Core
| Corel
Processor chip
32KB 256KB SMB
8-way 8-way 16-way
4 cycles 11 cycles 30-40 cycles

Improving effective memory latency using cache
memories (2)

Example. Consider to use a 1GHz CPU with a latency of 100
ns DRAM, and a cache of size 32KB with a latency of 1 ns to
multiply two matrices A and B of dimensions 32 x 32.

Fetching A and B into cache corresponds to fetching 2K

words, taking 200 us. Multiplying A and B takes 2n3
operations = 64K operations, which can be performed in 16K

cycles (or 16 us) at 4 instructions per cycle.
The total time for computing = 200 + 16 ps.
Peak computing rate = 64K/216 pus = 303 MFLOPS.

Cache performance measurements (1)

* Miss rate
-- Fraction of memory references not found in cache

* Hit time
-- Time to deliver a line in the cache to the processor,
including time to determine whether the line is in

the cache

* Missing penalty
-- Additional time required because of a miss

Cache performance measurements (2)

* Big difference between a hit and a miss

Example. Assume that cache hit time is 1 cycle,
and miss penalty is 100 cycles. A 99% hit rate is

twice as good as 97% rate.

-- Average access time
1. 97% hit rate: 0.97* 1 + 0.03*(1+100) = 4 cycles

2. 99% hit rate: 0.99*1 + 0.01*(1+100) = 2 cycles

Writing cache-friendly code (1)

* Principle of locality:

-- programs tend to reuse/use data items recently used or
nearby those recently used

-- Temporal locality: Recently referenced items are likely to be
referenced in the near future

-- Spatial locality: ltems with nearby addresses tend to be
referenced close together in time

sum = 0;

for (1 = 0; i < n; i++)
sum += af[i];

return sum;

Data
-- Reference array elements in
succession: spatial locality
-- Reference “sum” in each iteration:
temporal locality

Instructions
-- Reference instructions in
sequence: Spatial locality
-- Cycle through loop repeatedly:
Temporal locality

How caches take advantage of temporal
locality

 The first time the CPU reads from an address in
main memory, a copy of that data is also stored
in the cache.

-- The next time that same address is read, the
copy of the data in the cache is used instead of
accessing the slower DRAM

e Commonly accessed data is stored in the faster
cache memory

How caches take advantage of spatial
locality

* When the CPU reads location i from main
memory, a copy of that data is placed in the

cache.

* Instead of just copying the contents of location
i, we can copy several values into the cache at
once, such as the four words from locations i

through i+3.

— |f the CPU does need to read from locations
i+1, i+2 or i+3, it can access that data from

the cache.

Writing cache-friendly code (2)

In C/C++ language, array is stored in row-major order

In memory

{

int 1, j, sum = 0;
for (i = 0; 1 < M; i++)
for (J = 0; 3 < N;

sum += a[i][3]:
return sum

int sumarrayrows (int a[M] [N])

j++)

int sumarraycols(int a[M] [N])

{

int 1, j, sum = 0;
for (3 = 0; 7 < N; J++)
for (1 = 0; 1 < M;

sum += a[i] [3]:
return sum

Assume that there is a cache with size of 4-byte

words, 4-words cache blocks.

Left code has miss rate = % = 25%
Right code has miss rate = 100%

i++)

Rearranging loops to improve locality

Miss rate analysis for matrix-matrix multiplication

 Assume a single matrix row does not fit in L1, each cache block
holds 4 elements, and compiler stores local variables in

registers.

/* ik */
oSS Tt YT Es s s s s I
| for (i =0;i<n; i++) !
| { | {md}
| for(j=0; j< n; j++) !
| { I
: sum = 0.0; : (L,*) m (i)
| fgw[i :D’ k< n; k++]| | [
: sum +=alil[kI*b[KI[l; |
| 1 1 = . |
il = sum; | . ;
I] I
I I
I i I
L e e e e e e e e e e - I

Per iteration

Loads Stores A misses B misses C misses Total misses
2 0 0.25 1.00 0.00 1.25

| |

| for (j=0; j < n; j++) |

1 : (* i)

L for(i=0; i< n; i++) ;

b :

| sum = 0.0; ! (i,%) | (i)
I for(k=0; k < n; k++) I

: sum += ali][k]*b[KI[j]; :

i } cfillj] = sum; i . c
. :

| |

|

Per iteration
Loads Stores A misses B misses C misses Total misses
2 0 0.25 1.00 0.00 1.25

| |
| f :
| ®
| K)
I for(k=0; k< n; k++) |
I
v :
. [
: r = blk][jl; ! (k,j)
: for(i=0; i < n; i++) :
! clilljl{+= alillk] * r; |
|
: } } : A B C
I I
I e e e e e e e e e e o |
Per iteration
loads Stores A misses B misses C misses Total misses
2 1 1.00 0.00 1.00 2.00

e Scan A and C with stride of n
* 1 more memory operation

| |
| |
| I % k
1 for(j =0; j<n;j++) :
|

D :
: r = b[k][j]; : (k,j)

HE o T - |
! for(i=0;i<n;i++) !
. clilGl]+= alilIk] *r; |
|
o : A B C
| } |
e o e o e o e e e e e e e e D _ |

Per iteration
Loads Stores A misses B misses C misses Total misses
2 1 1.00 0.00 1.00 2.00

I I
| |
| |
[{ :
: for(i=0; i<n;i++t) |
D |
: r = ali][k]; : (i.k)
! for(j = 0; j < n; j++) | .)
| 1]+~ r * bIKIL; |
o | A 3 C
|] |
e o o o e o e e e e o e e e e M 2 |
Per iteration
loads Stores A misses B misses C misses Total misses
2 1 0.00 0.25 0.25 0.50

Trade-off: one memory operation — fewer misses

| |
| |
| |
1 { :
| for(k = 0; k < n; k++) |
|
Co ! .
| r = a[i][k]; : (i.k) (i,*)
: for(j = 0; j < n; j++) : a2 k,*
. clilGl]+= r * bIKI); |
|
o : A B C
| } |
. o o o o e o e e e e e e e L o _ |
Per iteration
Loads Stores A misses B misses C misses Total misses
2 1 0.00 0.25 0.25 0.50

Matrix-matrix multiplication performance

et

60
pe—F
50
5
= 40
m
g ki
= ki
8 s ijk
2 3p)
= —=— ik
= —— ki
20 .
(131
Q
g
L
10 "&Mﬁ@\
L
s g
iy L
D I | | I I I I I | | | | I I
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Array size (n)

From EECS213 Northwestern University

Sequential Operation

Double x[100], y[100], z[100];
for (i = 0; i < 100; i++)
z[i] = x[i] + y[i];

Fetch Normalize | Storein
operands results memory

Fetch Normalize | Storein
operands results memory

Solution: Pipelining
Divide a computation into stages that can support concurrency.
Double x[100], y[100], z[100];
for (i=0;i<100; i++)
z[i] = x[i] + ylil;

Fetch Normalize | Storein

operands results memory
Fetch Normalize | Storein
operands results memory

Fetch Normalize | Storein

operands results memory
Fetch Normalize | Storein
operands results memory

time

Another improvement: Vector processor pipeline.
Example: Cray 90

Loop unrolling:
for (i=0;i<100; i++)
do_a(i);

Software pipelining

for (i=0;i<100; i++)
{

do_al(i);

do_b(i);

for (i=0;i<50;i+=2)
{
do_al(i);
do_a(i+1);
}

for (i=0;i<50;i+=2)
{
do_a(i); do_a(i+1);
do_b(i); do_b(i+1);

