
Lecture 1: Single processor 
performance 



Why parallel computing 

• Solving an 𝑛 × 𝑛 linear system Ax=b by using Gaussian 

elimination takes ≈ 
1

3
𝑛3 flops.  

• On Core i7 975 @ 4.0 GHz, which is capable of about 
60-70 Gigaflops 

 

𝑛                      flops                        time 

1000               3.3×108                               0.006 seconds                                        

1000000         3.3×1017                             57.9 days      



www.top500.org 



Over 17 years, 10000-fold increases.    



What’s in a computer 



Motherboard diagram 

http://en.wikipedia.org/wiki/Front-side_bus 

http://en.wikipedia.org/wiki/Front-side_bus
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von Neumann machine 

• Common machine 
model for many 
years 

• Stored-program 
concept 

• CPU executes a 
stored program 

• Machine is divided 
into a CPU and 
main memory 

Memory 

CPU 

Fetch Store 



16-bit Intel 8086 processor 
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First available in 1978 



ALU 

Arithmetic Logic Unit (ALU) 
ALU takes one or two operands  A,B 
Operation: 
1. Addition, Subtraction (integer) 
2. Multiplication, Division (integer) 
3. And, Or, Not (logical operation) 
4. Bitwise operation (shifts, 

equivalent to multiplication by 
power of 2) 

Specialized ALUs: 
• Floating Point Unit (FPU) 
• Address ALU 



Memory read transaction (1) 

• Load content of address A into a register 
• CPU places address A on the system bus, I/O 

bridge passes it onto the memory bus 

Load operation: movl A, %eax 



Memory read transaction (2) 

• Main memory reads A from memory bus, retrieve 
word x, and places x on the bus; I/O bridge passes 
it along to the system bus 

Load operation: movl A, %eax 



Memory read transaction (3) 

• CPU read word x from the bus and copies it 
into register %eax 

Load operation: movl A, %eax 



Moore’s law  
• Gordon Moore’s observation in 1965: the number of 

transistors per square inch on integrated circuits had doubled 
every year since the integrated circuit was invented (often 
interpreted as Computer performance doubles every two years (same cost)) 

(Gordon_Moore_ISSCC_021003.pdf) 



Moore’s law  
• Moore’s revised observation in 1975: the pace slowed down a 

bit, but data density had doubled approximately every 18 
months 

• Moore’s law is dead 

Gordon Moore quote from 2005: “in terms of size [of transistor] 
..we’re approaching the size of atoms which is a fundamental 
barrier...” 

Date Intel Transistors 
CPU         (x1000) 

Technology 

1971 4004                 2.3 

1978 8086                  31  2.0 micron 

1982 80286               110 HMOS 

1985 80386                280  0.8 micron CMOS 

1989 80486              1200 

1993 Pentium           3100  0.8 micron biCMOS 

1995 Pentium Pro    5500  0.6 micron – 0.25  



Effect of memory latency on performance (1) 
von Neumann Bottleneck: the transfer of data and instructions 
between memory and the CPU   



Effect of memory latency on performance (2) 

Example. Assume a CPU operates at 1GHz (1 ns 
clock) and is connected to a DRAM with a latency of 
100 ns. Assume the CPU has 2 multiply/add units and 
is capable of executing 4 instructions in each cycle of 
1 ns. The peak CPU rating is 4GFLOPS (floating-point 
operations per second).  

 

Since the memory latency is 100 cycles, CPU must 
wait 100 cycles before it can process data. Therefore, 
the peak speed of computation is 10MFLOPS.  



Source of slowness: CPU and memory speed 

From Hennessy and Patterson,"Computer Architecture: 

A Quantitative Approach,” 3rd Edition, 2003, Morgan Kaufman Publishers. 



Improving effective memory latency using cache 
memories (1) 

• Put a look-up table of recently used data onto the CPU chip. 
• Cache memories are small, fast SRAM-based memories 

managed automatically in hardware. 
• CPU look first for data in L1, then in L2,…, then in main 

memory 



Hierarchy of increasingly bigger, slower memories 



Organization of a cache memory 



Core i7 cache hierarchies 



Improving effective memory latency using cache 
memories (2) 

Example. Consider to use a 1GHz CPU with a latency of 100 
ns DRAM, and a cache of size 32KB with a latency of 1 ns to 
multiply two matrices A and B of dimensions 32 × 32.   

Fetching A and B into cache corresponds to fetching 2K 
words, taking 200 μs. Multiplying A and B takes 2n3 
operations = 64K operations, which can be performed in 16K 
cycles (or 16 μs) at 4 instructions per cycle.  

The total time for computing = 200 + 16 μs. 

Peak computing rate = 64K/216 μs = 303 MFLOPS.   



Cache performance measurements (1) 

• Miss rate 

-- Fraction of memory references not found in cache 

• Hit time 

-- Time to deliver a line in the cache to the processor, 
including time to determine whether the line is in 
the cache 

• Missing penalty 

-- Additional time required because of a miss 



Cache performance measurements (2) 

• Big difference between a hit and a miss 

Example. Assume that cache hit time is 1 cycle, 
and miss penalty is 100 cycles. A 99% hit rate is 
twice as good as 97% rate.  

-- Average access time 

1. 97% hit rate: 0.97* 1 + 0.03*(1+100) = 4 cycles 

2. 99% hit rate: 0.99*1 + 0.01*(1+100) = 2 cycles 



Writing cache-friendly code (1) 
• Principle of locality: 

-- programs tend to reuse/use data items recently used or 
nearby those recently used 
-- Temporal locality:  Recently referenced items are likely to be 
referenced in the near future 
-- Spatial locality: Items with nearby addresses tend to be 
referenced close together in time 

Data 
-- Reference array elements in 
succession: spatial locality 
-- Reference “sum” in each iteration:  
temporal locality  

Instructions 
--  Reference instructions in 
sequence: Spatial locality 
-- Cycle through loop repeatedly: 
Temporal locality 



How caches take advantage of temporal 
locality 

• The first time the CPU reads from an address in 
main memory, a copy of that data is also stored 
in the cache. 

-- The next time that same address is read, the 
copy of  the data in the cache is used instead of 
accessing the slower DRAM 

• Commonly accessed data is stored in the faster 
cache memory 



How caches take advantage of spatial 
locality 

• When the CPU reads location i from main 
memory, a copy of that data is placed in the 
cache.  

• Instead of just copying the contents of location 
i,  we can copy several values into the cache at 
once, such as the four words from locations i 
through i+3.  

– If the CPU does need to read from locations 
i+1, i+2 or i+3, it can access that data from 
the cache.   



Writing cache-friendly code (2) 

In C/C++ language, array is stored in row-major order 
in memory 

Assume  that there is a cache with size of 4-byte 
words, 4-words cache blocks. 
Left code has miss  rate = ¼  = 25% 
Right code has miss rate = 100%  



Rearranging loops to improve locality 
Miss rate analysis for matrix-matrix multiplication 
• Assume a single matrix row does not fit in L1, each cache block 

holds 4 elements, and compiler stores local variables in 
registers. 
 





• Scan A and C with stride of n 
• 1 more memory operation 





Trade-off: one  memory operation – fewer misses 





Matrix-matrix multiplication performance 

From EECS213 Northwestern University 



Sequential Operation 

Double x[100], y[100], z[100]; 

 for (i = 0; i < 100; i++) 

      z[i] = x[i] + y[i];  

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 



Solution: Pipelining 
Divide a computation into stages that can support concurrency.  

Double x[100], y[100], z[100]; 

 for (i = 0; i < 100; i++) 

      z[i] = x[i] + y[i]; 

 
Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

time 

Another improvement: Vector processor pipeline.  
Example: Cray 90 



Software pipelining 

Loop unrolling:  

for (i = 0; i < 100; i++) 

      do_a(i);   

for (i = 0; i < 50; i+=2) 
{ 
      do_a(i);  
      do_a(i+1);  
} 

for (i = 0; i < 100; i++) 

{ 

      do_a(i);  

      do_b(i);  

} 

for (i = 0; i < 50; i+=2) 

{ 

      do_a(i); do_a(i+1);  

      do_b(i); do_b(i+1);  

} 


