
Lecture 3 Message-Passing
Programming Using MPI (Part 1)

1

What is MPI
Message-Passing Interface (MPI)
• Message-Passing is a communication model used on

distributed-memory architecture
• MPI is not a programming language (like C, Fortran

77), or even an extension to a language. It is a library
that compilers (like cc, f77) uses.

• MPI is a standard that specifies the message-passing
libraries supporting parallel programming in C/C++ or
Fortran.

• The communication network is opaque to users.
• http://www.mpi-forum.org

• 1989, first message-passing library called Parallel Virtual

Machine (PVM) was written at ORNL.
• 1993, version 3 of PVM was released.
• 1994, first version of MPI released by MPI Forum.
• 1997, MPI-2. 2

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

Message-passing model

This model assumes that the underlying hardware is a
collection of processors, each with its own local memory, and
an interconnection network supporting message-passing
between processors.

3

MPI Features

• Distributed-memory cluster and multi-processor
shared-memory platform support

• Support for virtual process topologies

• Fixed number of available processes during
execution

• Initial processor allocation and binding to physical
processors and interprocessor hardware
communication are left to vendor implementation

http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_
Hydra_Process_Manager

• Explicit shared-memory operation, I/O functions and
task management are not specified in the standard.

 4

MPI web sites

• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
• http://www-unix.mcs.anl.gov/mpi/tutorial/

MPI on Linux clusters:
–MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
–LAM (http://www.lam-mpi.org/)

5

Basic Needs in parallel programming

In order to do parallel programming, we need
basic functionality:

-- Start Processes

-- Send Messages

-- Receive Messages

-- Synchronize processes

6

MPI Basic Functions

• MPI_Init() – Initiate a MPI computation

• MPI_Finalize() – Terminate a computation

• MPI_Comm_size() – Determine number of
processes

• MPI_Comm_rank() – Determine a process’s ID
number

• MPI_Send() – Send a message

• MPI_Recv() – Receive a message

7

hello.c

Compiling and execution on CRC
• module load mpich2/1.4.0-gnu /* to load proper libraries and set up

 environment in CRC */
• mpicc –o hello hello.c
• mpirun -np 4 ./hello

8

MPICH

MPICH is a freely available, portable implementation of MPI.
(http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questio
ns#Q:_What_are_process_managers.3F)

MPICH2 is an all-new implementation of MPI, designed to
support research into high-performance implementations of
MPI-1 and MPI-2 functionality. In addition to the features in
MPICH, MPICH2 includes support for one-side
communication, dynamic processes, intercommunicator
collective operations, and expanded MPI-IO functionality.
Clusters consisting of both single-processor and SMP nodes
are supported.

9

http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions
http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions

Execution
• mpirun -np 4 ./hello

Process management for parallel jobs

• Job scheduler: decides what resources a parallel job consisting of
multiple processes will run on

• Process manager (mpd, hypdra (current), smpd): starts and
terminates processes and provide them with a number of services

• Parallel library: MPI

Example. If using mpd, a ring of processes called mpd's (multi-purpose
daemons), each running on its own host, has been already started. It is
likely, but not necessary, that each mpd will be running on a separate
host. One of the mpd's will be running on the “local machine”, the one
where we will run mpiexec. The default placement of MPI processes, if
one runs

mpirun -np 4 ./hello

is to start the first MPI process (rank 0) on the local machine and then
to distribute the rest around the mpd ring one at a time.

10

Program Details

#include “mpi.h”

• Function declarations for all MPI functions

int MPI_Init(int* argc_ptr, char** argv_ptr[])

• Allows the system to do any setup needed to handle
further calls to MPI library

• It must be called before any other MPI function

• It requires to pass along the command line arguments.

11

int MPI_Finalize(void)

• MPI_Finalize() is the companion to MPI_init().

• MPI_Finalize() allows the system to free up resources
that have been allocated to MPI.

• It must be the last MPI function call.

12

MPI_Comm_rank(MPI_Comm comm /* in */,
 int* result /* out */)

• Argument “comm” is called a communicator.
• When MPI has been initialized, every active process become a

member of a communicator called MPI_COMM_WORLD. A
communicator is an opaque object that provides the
environment for message passing among processes.
MPI_COMM_WORLD is the default communicator.

• MPI_COMM_WORLD is predefined within MPI and consists of
all the processes initiated when we run this program.

• Processes within a communicator are ordered. The rank of a
process is its position in the overall order.

• In a communicator with p processes, each process has a unique
rank (ID number) between 0 and p-1.

How does a process know its position in a set of processes

13

MPI_Comm_size(MPI_Comm comm /* in */,

 int* size /* out*/)

• It gives total number of processes that have been
allocated.

14

Summary

1. User issues a directive to the operating
system that has the effect of placing a copy
of the executable program on each processor.

2. Each processor begins execution of its copy
of the executable.

3. Different processes can execute different
statements by branching within the program
based on their process ranks.

15

• Results from execution
[zxu2@newcell ~/ACMS40212-S12]$ mpirun -np 4 ./hello

Hello from node 2

Hello from node 0

Hello from node 3

Hello from node 1

[zxu2@newcell ~/ACMS40212-S12]$

Issues ? :
1. The output might seems out of order. Keep in mind that the code was started

on all nodes practically simultaneously. There was no reason to expect one
node to finish before another. It’s important for us not to assume that there is
any particular order to events unless we do something explicitly.

2. “how does the output know where to go?” Most IO is file-based and will
depend upon a distributed file system.

16

Recap

• When running with MPI, all processes use the
same compiled binary, and hence all processes are
running the exact same code.

• Things distinguish the parallel program:

--- Each process uses its process rank to determine
what part of the algorithm instructions are meant
for it.

--- Processes communicate with each other to
accomplish the final task.

17

Point-to-Point communications

• Transfer message from one process to another
process
-- It involves an explicit “send” and “receive”, which is called “two-
sided” communication.

-- Message: data + (source + destination + communicator + ???)

-- Almost all of the MPI commands are built around point-to-point
operations.

18

Sending and Receiving Routines

• int MPI_Send(void* message /* in */,
 int count /* in */,
 MPI_Datatype datatype /* in */,
 int dest /* in */,
 int tag /* in */,
 MPI_Comm comm /* in */)

• int MPI_Recv(void* message /* out */,
 int count /* in */,
 MPI_Datatype datatype /* in */,
 int source /* in */,
 int tag /* in */,
 MPI_Comm comm /* in */,
 MPI_Status* status /* out */)

19

Message Bodies
• “void* message”: the starting location in memory where the data is to be

found

• “int count “: number of items to be sent.

• “MPI_Datatype datatype ”: the type of data to be sent.

20

MPI Datatypes
• MPI defines its own data type that

correspond to typical datatypes in C or
Fortran

• This allows to code to be portable
between systems

• Users are allowed to build their own
datatypes in MPI

MPI Datatype C Datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG Signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_FLOAT Float

MPI_DOUBLE Double

MPI_LONG_DOUBLE Long double

…

Message Envelope

What else is needed for A to send a message to B in a communicator?

Example. Process A can send both floats to be printed and floats to be
stored. How is process B to distinguish between the two different
types?

• We now know where to deliver and where to get message, number of elements

in the message and their type, and destination and source IDs.

• Additionally, we also use a message identifier “tag”.

-- It allows program to label classes of messages (e.g. one for printing data,
another for storing data, etc.)

-- A tag is an int specified by the programmer that the system adds to the
message envelope.

-- MPI guarantees that the integers 0 – 32767 can be used as tags.

21

Blocking vs. Non-Blocking Communication

Blocking: blocking send or receive routines does not
return until operation is complete.

-- blocking sends ensure that it is safe to overwrite the
sent data

-- blocking receives make sure that the data has arrived
and is ready for use

Non-blocking: Non-blocking send or receive routines
returns immediately, with no information about
completion.

-- User should test for success or failure of communication.

-- In between, the process is free to handle other tasks.

-- It is less likely to form deadlocking code

-- It is used with MPI_Wait() or MPI_Test()
22

23

Type of Communication

MPI Function

blocking send

MPI_Send

non-blocking send

MPI_Isend

blocking receive

MPI_Recv

non-blocking receive

MPI_Irecv

C Code

 #include <stdio.h>

 #include "mpi.h"

 main(int argc, char** argv)

 {

 int my_rank, numbertoreceive, numbertosend=77;

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank==0){

 MPI_Recv(&numbertoreceive, 1, MPI_INT, MPI_ANY_SOURCE,
 MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 printf("Number received is: %d\n", numbertoreceive);

 }

 else if(my_rank == 1)

 MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();

 }

Goal: Process 0 sends a number 77 to process 1.

24

 MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD)

&numbertosend

a pointer to whatever we wish to send. In this case it is simply an integer. It could be anything from
a character string to a column of an array or a structure. It is even possible to pack several different
data types in one message.

1

the number of items we wish to send. If we were sending a vector of 10 int's, we would
point to the first one in the above parameter and set this to the size of the array.

MPI_INT
 the type of object we are sending. Possible values are: MPI_CHAR, MPI_SHORT,

MPI_INT, MPI_LONG, MPI_UNSIGNED_CHAR, MPI_UNSIGNED_SHORT,
MPI_UNSIGNED, MPI_UNSIGNED_LING, MPI_FLOAT, MPI_DOUBLE,
MPI_LONG_DOUBLE, MPI_BYTE, MPI_PACKED

0

Destination of the message (the rank of the receiving process). In this case process 0.

10

Message tag. All messages have a tag attached to them that can be useful for sorting
messages. We just picked 10 at random.

MPI_COMM_WORLD

We don't really care about any subsets of PEs here. So, we just chose this "default".
 25

MPI_Recv(&numbertoreceive, 1, MPI_INT, MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD,
&status)

&numbertoreceive

A pointer to the variable that will receive the item. In our case it is simply an integer
that has has some undefined value until now.

1

Number of items to receive. Just 1 here.

MPI_INT

Datatype. Must be an int to match with what we send.

MPI_ANY_SOURCE

The node to receive from. We could use 1 here since the message is coming from there, but
the "wild card" – MPI_ANY_SOURCE allows to receive a message from anywhere.

MPI_ANY_TAG

We could use a value of 10 here to filter out any other messages (there aren't any)
but, “wild card” MPI_ANY_TAG allows to receive any tag.

MPI_COMM_WORLD Just using default set of all Processes.

&status

A structure that receive the status data which includes the source and tag of the
message.

26

• MPI_ANY_SOURCE: there is no wildcard for specifying
destination.

• MPI_ANY_TAG: this wildcard can not be used by sender.
Namely, process 1 must use a tag and process 0 can receive with
either an identical tag or MPI_ANY_TAG

• Status of receive: MPI_Status type. It returns information on the
data that was actually received. MPI_Status structure contains at
least three members:

---- status.MPI_SOURCE

----status.MPI_TAG

----status.MPI_ERROR

• MPI_Send() and MPI_Recv() have integer return values.
These return values are error codes.

27

• To get size of the message received, we call

int MPI_Get_count(

 MPI_Status* status /* in */,

 MPI_Datatype datatype /* in */,

 int* count_ptr /* out */)

28

#include <stdio.h>
#include "mpi.h"
int main(int argc, char** argv)
{

 int my_rank, numbertoreceive[10], numbertosend[3]={73, 2, -16};
 int recv_count, i;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank==0){
 MPI_Recv(numbertoreceive, 3, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&status);
 printf("status.MPI_SOURCE = %d\n", status.MPI_SOURCE);
 printf("status.MPI_TAG = %d\n", status.MPI_TAG);
 printf("status.MPI_ERROR = %d\n", status.MPI_ERROR);

 MPI_Get_count(&status, MPI_INT, &recv_count);
 printf("Receive %d data\n", recv_count);
 for(i = 0; i < recv_count; i++)
 printf("recv[%d] = %d\n", i, numbertoreceive[i]);
 }
 else MPI_Send(numbertosend, 3, MPI_INT, 0, 10, MPI_COMM_WORLD);

 MPI_Finalize();
 return 0;
} 29

More to Think About

• Suppose process 1 calls MPI_Send, but process 0 fails to
call MPI_Recv to receive from process 1. What happens
to the program?

• Blocking send/receive restrictions
-- source, tag, and comm must match those of a pending
message for the message to be received.
-- Wildcards can only be used for source and tag, but not
communicator.
-- An error will be returned if the message buffer exceeds
that allowed for by the receive.
-- User must make sure that the send/receive datatypes
agree. If they do not, the results are not defined.

30

Message Buffering

• Definition of “completion” for MPI_Recv() is trivial – the data
can now be used.

• Definition of “completion” for MPI_Send() is trickier.
Completion implies that the data has been stored away such
that the program is free to overwrite the send “message”
buffer.

-- Non-local: the data can be sent directly to the receive
buffer.

-- Local (buffering): the data can be stored in a local buffer
(system provided or user provided), in which case the send
could return before the receive is initiated.

31

Write Safe Code

• A safe MPI program should not rely on system buffering
for success.

• Any system will eventually run out of buffer space as
message sizes are increased.

• User should design proper send/receive orders to avoid
deadlock

32

Safe Code

33

#include <stdio.h>
#include "mpi.h“

/* process 0 send a number to and receive a number from process 1.
 process 1 receive a number from and send a number to process 0
*/
int main(int argc, char** argv)
{
 int my_rank, numbertoreceive, numbertosend = -16;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank==0){
 MPI_Send(&numbertosend, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 20, MPI_COMM_WORLD, &status);
 }
 else if(my_rank == 1)
 {
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 MPI_Send(&numbertosend, 1, MPI_INT, 0, 20, MPI_COMM_WORLD);
 }
 MPI_Finalize();
 return 0;
}

Deadlock Code

34

#include <stdio.h>
#include "mpi.h“

/* process 0 receive a number from and send a number from process 1.
 process 1 receive a number from and send a number to process 0
*/
int main(int argc, char** argv)
{
 int my_rank, numbertoreceive, numbertosend = -16;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank==0){
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 20, MPI_COMM_WORLD, &status);
 MPI_Send(&numbertosend, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);
 }
 else if(my_rank == 1)
 {
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 MPI_Send(&numbertosend, 1, MPI_INT, 0, 20, MPI_COMM_WORLD);
 }
 MPI_Finalize();
 return 0;
}

Buffering dependent Code

35

#include <stdio.h>
#include "mpi.h“

/* process 0 receive a number from and send a number from process 1.
 process 1 receive a number from and send a number to process 0
*/
int main(int argc, char** argv)
{
 int my_rank, numbertoreceive, numbertosend = -16;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank==0){
 MPI_Send(&numbertosend, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 20, MPI_COMM_WORLD, &status);
 }
 else if(my_rank == 1)
 {
 MPI_Send(&numbertosend, 1, MPI_INT, 0, 20, MPI_COMM_WORLD);
 MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
 }
 MPI_Finalize();
 return 0;
}

Success of this code is
dependent on buffering. One
of the send must buffer and
return. Otherwise, deadlock
occurs.

