
Lecture 4: Principles of Parallel
Algorithm Design (part 3)

1

Exploratory Decomposition

• Decomposition according to a search of a state
space of solutions

• Example: the 15-puzzle problem
– Determine any sequence or a shortest sequence of

moves that transforms the initial configuration to the
final configuration.

2

A B C D

• Solution algorithm
– Subsequent configurations are generated based on current

configuration.
– Each configuration is then explored as an independent task.

3

• Difference between data-decomposition and exploratory
decomposition
– Tasks induced by data-decomposition are performed entirely and each

task performs useful computation.
– Tasks induced by exploratory can be terminated before finishing as

soon as desired solution is found.

• Work induced by exploratory decomposition and performed by
parallel formulation can be either smaller or greater than that
performed by serial algorithm

4

Speculative Decomposition

• This decomposition is used when a program may
take one of many possible computationally
significant branches depending on the output of
other computations that precede it.

5

Example: Speculative Decomposition

• Parallel discrete event simulation
– The nodes of a directed network have input buffer of jobs.

After processing the job, the node put results in the input
buffer of nodes which are connected to it by outgoing edges. A
node has to wait if the input buffer of one of its outgoing
neighbors is full. There is a finite number of input job types.

6

System
Inputs

A

B

C

D

E

F

G

G

I
System
Outputs

• Inherently sequential problem
• Can be improved by starting simulating a subpart of the network, each

assume one of several possible inputs to that stage.

Hybrid Decomposition

• Use several decomposition methods together
• Example: finding the minimum of any array of size

16 using 4 tasks.

7

3 7 2 9 11 4 5 8 7 10 6 13 1 19 3 9 Data
decomposition

2 1

1

Recursive
decomposition

Characteristics of Tasks

Key characteristics of tasks influencing choice of
mapping and performance of parallel algorithm:

1. Task generation

• Static or dynamic generation

2. Task sizes

• Amount of time required to compute it: uniform, non-uniform

3. Knowledge of task sizes

4. Size of data associated with tasks

• Data associated with the task must be available to the process
performing the task

8

Task Generation

• Static task generation
– All the tasks are known before computation

– Data or recursive decomposition often leads to static
task generation: matrix-matrix multiplication, finding
min.

• Dynamic task generation
– Actual tasks and task-dependency graph are not

explicitly available a priori

– Recursive, exploratory decomposition can generate
tasks dynamically: quicksort, puzzle game

9

Characteristics of Task Interactions

1. Static versus dynamic

2. Regular versus irregular

3. Read-only versus read-write

4. One-way versus two-way

10

Static vs. Dynamic Interactions

• Static interaction
– Tasks and associated interactions are predetermined:

task-interaction graph and times that interactions occur
are known: matrix multiplication

– Easy to program

• Dynamic interaction
– Timing of interaction or sets of tasks to interact with can

not be determined prior to the execution: puzzle game

– Difficult to program using massage-passing; Shared-
memory space programming may be simple

11

Regular vs. Irregular Interactions

• Regular interactions

– Interaction has a spatial structure that can be
exploited for efficient implementation: ring, mesh

– Example: 1D heat eqn. Image dithering

• Irregular Interactions

– Interactions has no well-defined structure

– Example: Sparse matrix-vector multiplication

12

Static regular interaction for image dithering

13

14

Read-Only vs. Read-Write Interactions

• Read-only interactions

– Tasks only require read-only interactions

– Example: matrix multiplication

• Read-write interactions

– Multiple tasks need to read and write on some
shared data

15

One-Way vs. Two-Way Interactions

• One-way interactions

– One of a pair of communicating tasks initiates the
interaction and completes it with interrupting the
other one.

– Example: read-only can be formulated as one-way

• Two-way interactions

– Both tasks involve in interaction

– Example: read-write can be formulated as two-way

16

