Lecture 4: Principles of Parallel
Algorithm Design (part 1)

Constructing a Parallel Algorithm

identify portions of work that can be performed
concurrently

map concurrent portions of work onto multiple
processes running in parallel

distribute a program’s input, output, and
intermediate data

manage accesses to shared data: avoid conflicts

synchronize the processes at stages of the
parallel program execution

Task Decomposition and Dependency Graphs

Decomposition: divide a computation into smaller
parts, which can be executed concurrently

Task: programmer-defined units of computation.

Task 3 Task 2

Task-dependency graph: @ (o (9 CD
Node represent s task.

Edge represents control
dependence.

Example 1: Dense Matrix-Vector Multiplication
A

12 n

Task 1
2

HEEEEEEEEEEERe)
I I I A I I I

* Computing y[i] only use ith row of A and b — treat
computing y[i] as a task.

e Remark:
— Task size is uniform

— No dependence between tasks
— All tasks need b

e Executing the query:

Example 2: Database Query Processing

Model =“civic” AND Year = “2001” AND (Color = “green” OR

Color = “white”)
on the following database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

e Task: create sets of elements that satisfy a (or several)
criteria.

e Edge: output of one task serves as input to the next

ID# | Year
ID# | Model IDE | Color
4523 Civic o 2001 7623 | Green
6734 2001
6734 | Civic 5342 | 2001 ID# | Color 9834 | Green
4395 | Civic 3845 | 2001 3415 White 534: Green
7352 | Civie 4395 | 2001 White Green
2001 (Green)
ID# | Color
ID# | Model | Year “m"ﬁ White
732 | civic | 2001| (CMc AND 2001) [wnlnaonerun) e | Groen
White
Green
Green

4395 | Civic | 2001 6734
5342
8354

(" Civic AND 2001 AND (White OR Green)

ID# | Model | Year| Color
6734 | Civic | 2001 | White

* An alternate task-dependency graph for query

1Dni Yaar

IDd | Modal IDw | Color
5734 | Civio IR43 | 001 | Color SE34 | Green
4383 | Civie 45 | 2001 3476 | Whe 5342 | Green
7353 | Chee 43835 | 2001 6734 | White 2354 | Green
(eme) (2001)
IDE | Color
34T6 | White
(_whre OR Green | |3476 | W
O34 | Coeen
6734 | White
5342 | Green
8354 | Gresn
[2001 AND (White or Green) | | ID# | Color | Year
T6L3 | Gresn | 001
§734 | 'Whise | 2001
5342 | Green | 2001

([Chic AND 2001 AND (Whits OR Gresn) |

IDE | Modal | Year| Color
754 | Civio | 23001 | Whibe

* Different task decomposition leads to different
parallelism

Granularity of Task Decomposition

* Fine-grained decomposition: large number of
small tasks

e Coarse-grained decomposition: small number of
large tasks

Matrix-vector multiplication example
-- coarse-grain: each task computes 3 elements of y|]

A b v

01 n

f

Task 1

Task 2

Task 3

IINNNNEREENE

LLTTTPTT]

Task 4

Degree of Concurrency

* Degree of Concurrency: # of tasks that can
execute in parallel

-- maximum degree of concurrency: largest # of
concurrent tasks at any point of the execution

-- average degree of concurrency: average # of tasks
that can be executed concurrently

* Degree of Concurrency vs. Task Granularity

— |nverse relation

Critical Path of Task Graph

* Critical path: The longest directed path
between any pair of start node (node with no
incoming edge) and finish node (node with on
outgoing edges).

* Critical path length: The sum of weights of
nodes along critical path.

* Average degree of concurrency = total
amount of work / critical path length

Example: Critical Path Length

Task-dependency graphs of query processing operation

Left graph:

Critical path length =27

Average degree of concurrency = 63/27 = 2.33
Right graph:

Critical path length = 34

Average degree of concurrency = 64/34 = 1.88

11

Limits on Parallelization

* Facts bounds on parallel execution

— Maximum task granularity is finite

* Matrix-vector multiplication O(n?)

— Communication between tasks

* Speedup = sequential execution time/parallel
execution time

* Parallel efficiency = sequential execution
time/(parallel execution time x processors used)

