Lecture 6: Parallel Matrix
Algorithms (part 2)

void create_mixed_xfer_arrays(

int id,

int p, This function creates the count and

int n, displacement arrays by scatter and

int **count, gather functions, when the number

int **disp) of elements send/received to/from
{ other processes varies

int i

*count = my_malloc(id, p*sizeof(int));
*disp = my_malloc(id, p*sizeof(int));
(*count)[0] = BLOCK_SIZE(O,p,n);
(*disp)[0] = O;

for(i=1;i<p;i++)

{
(*disp)[i] = (*disp)[i-1] + (*count)[i-1];
(*count)[i] = BLOCK_SIZE(i,p,n);

}

void replicate_block_vector(
void *ablock, /* block-distributed vector */ replicate_block vector()
int n,
void *arep, // replicated vector vector from a block
MPI|_Datatype dtype,

distribution to a
MPI_Comm comm) _ o
{ replicated distribution

is used to transform a

int *cnt; // elements contributed by each process

int *disp; // displacement in concatenated array
int id;
int P;

MPI_Comm_size(comm, &p);
MPI_Comm_rank(comm, &id);

create_mixed_xfer_arrays(id, p, n, &cnt, &disp);
MPI_Allgatherv(ablock, cnt[id], dtype, arep, cnt, disp, dtype, comm);
free(cnt);

free(disp);

Column-wise Block-Striped Decomposition

Summary of algorithm for computing ¢ = Ab

 Column-wise 1D block partition is used to distribute matrix.

e LetA =J[ay,a,,..,a,],b=1[by by, .., b, andc =
[cq,Cpp s)T

* Assume each task i has column a;, b; and ¢; (Assume a fine-
grained decomposition for convenience)

column-wise distribution

Py 7 0 Py Py P e Iy

1. Read in matrix stored in row-major manner and distribute by
column-wise mapping

2. Eachtaski compute b;a; to result in a vector of partial
result.

3. An all-to-all communication is used to transfer partial result:
every partial result element j on task i must be transferred
to task J.

4. At the end of computation, task i only has a single element
of the result ¢; by adding gathered partial results.

= Qg

dy0
ds 0
ds3 g
ds0

0
%0
%0
0

Do

s S e S

+—F+ =

N
18y, Dy 713893 03
+1a;, D, a3 03
+1a,, Dy H1ay 3 03
+183, 0, k1833 03
18y, D) 1,3 03

_

_

-/

O

A4
a4
A 4

b3,4

Ay 4

\ Proc 4’s init.
Proc 3’s Init. comput

Proc 2’s init. comput

Processor 1’s initial computation

Processor 0’s initial computation

After All-to-All Communication

/—\

dy0 by a; o by a,, by as,0 b a0 by
0o, b, a, b, a,, b, as, b, a,, b,
0y, b, a,,b, a,,b, as, b, ay, b,
a3 bs a3 bs a,;bs as;b; ay 3 b;
a,.b, a, . b, a,,b, bs;, b, a,,b,
| o
__
Proc3 Proc 4

Proc 2

Proc O Proc 1

Reading a Column-wise Block-Striped Matrix

read_col_striped matrix()
— Read from a file a matrix stored in row-major order and distribute it
among processes in column-wise fashion.

— Each row of matrix must be scattered among all of processes.

read_col_striped_matrix()

{

// figure out how a row of the matrix should be distributed
create_mixed_xfer_arrays(id,p, *n, &send_count, &send_disp);
// go through each row of the matrix
for(i=0;i< *m; i++)
{
if(id == (p-1)) fread(buffer,datum_size, *n, infileptr);
MPI_Scatterv(...);

int MPI_Scatterv(void *sendbuf, int *sendcnts, int *displs,
MPI_Datatype sendtype, void *recvbuf, int recvcnt, MP|_Datatype
recvtype, int root, MPI_Comm comm)

LI
7

MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a
varying count of data to be sent to each process.
sendbuf: address of send buffer

sendcnts: an integer array specifying the number of elements to send to
each processor

displs: an integer array. Entry i specifies the displacement (relative to
sendbuf from which to take the outgoing data to process i

lo /
stride[1]

sendbuf http://www.mpi-forum.org/docs/mpi-11-
html/node72.html

150

all process

http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html

Printing a Colum-wise Block-Striped Matrix

print_col_striped _matrix()
— A single process print all values

— To print a single row, the process responsible for printing must gather
together the elements of that row from entire set of processes

print_col_striped_matrix()

{

create_mixed_ xfer_arrays(id, p, n, &rec_count, &rec_disp);
// go through rows
for(i =0; i < m; i++)
{
MPI_Gatherv(al[i], BLOCK_SIZE(id,p,n), dtype, buffer,
rec_count, rec_disp, dtype, 0, comm);

* int MPIl_Gatherv(void *sendbuf, int sendcnt, MP|_Datatype
sendtype, void *recvbuf, int *recvcnts, int *displs, MP|_Datatype
recvtype, int root, MPI_Comm comm)

— Gathers into specified locations from all processes in a group.

— sendbuf: address of send buffer

— sendcnt: the number of elements in send buffer

— recvbuf: address of receive buffer (choice, significant only at root)

— recvcounts: integer array (of length group size) containing the number of
elements that are received from each process (significant only atroot)

— displs: integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from
process i (significant only at root)

150 150 150

100 I 100 I 100 I all process

at root

11

Distributing Partial Results

* (¢ = boai’() ~+ blai,l + bzai,Z + .-+ bnai,n

e Each process need to distribute n — 1 terms to other processes
and gather n — 1 terms from them (assume fine-grained
decomposition).

— MPI_Alltoallv() is used to do this all-to-all exchange

int MPI_Alltoallv(void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int
*rdispls, MP1_Datatype recvtype, MPl_Comm comm);

e sendbuf: starting address of send buffer (choice)

e sendcounts: integer array equal to the group size specifying
the number of elements to send to each processor

* sdispls: integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf) from which to take the
outgoing data destined for process j

* recvbuf: address of receive buffer (choice)

e recvcounts: integer array equal to the group size specifying
the maximum number of elements that can be received from
each processor

* Rdispls: integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf at which to place the
incoming data from process i

Send of MPI_Alltoallv()

Each node in parallel
community has

send buffer send displacement
send count array
array
([A dnmr N
1 B - 1 |) 5
2 0 3 0 1
2 C 5 J 5 9
3 D 3 2 3 K 3 3 3 R 2
4 E 2 5 4 L 1 6 4 S 4
5 F 5 M 5 T
6 G 6 N R y

proc O proc 1 proc 2

Process O Sends to Process O

m | m| OO

o o1 | bW DN || O

G

index —f

Proc O send buffer

this chunk
of send
buffer
goes to
receive

buffer of

send to receive
buffer of proc
with same rank
as index

proc 0

2 5

index —f

sendcount

Array sdispl Array

Process O Sends to Process 1

0 A
1
2
3
4
5 F
6 G

index —f

Proc O send buffer

send to receive
buffer of proc 1

2

index —f

sendcount

Array

sdispl Array

Process O Sends to Process 2

O A send to receive
buffer of proc 2
1 B
5 C o 2 0
3] b 1| 3 2
4 E
5
) Zer:;j;ount sdispl Array

index —f

Proc O send buffer

RE
CE

VE

Receive of MPI_Alltoallv()

proc O

~

rc

= m +h —Hh c o S

pl
210
312
115

oI N[OOI |BM~]J]W|IN]|F|[O

proc 1

~

~

310
313
216

O N|OO|JOAA | PSR W]|IDN]|PF|O

O N|]OOJOA | PA|W|IDN]|PF|O

proc 2

proc 1

proc O

~

SE

=z

()]

proc O

Parallel Run Time Analysis (Column-wise)

* Assume that the # of processes p is less than n

* Assume that we run the program on a parallel machine adopting
hypercube interconnection network (Table 4.1 lists communication
times of various communication schemes)

1. Each process is responsible for n/p columns of matrix. The complexity
of the dot production portion of the parallel algorithm is @(n?/p)

2. After all-to-all personalized communication, each processor sums the
partial vectors. There are p partial vectors, each of size n/p . The
complexity of the summation is @(n).

3. Parallel communication time for all-to-all personalized broadcast
communication:

— Each process needs to send p messages of size n/p each to all processes.
teomm = (ts + ty, (g))(p — 1). Assume p is large, then
Lcomm = ts(p - 1) + t,n.

2
* The parallel run time: T, = % +n+t,(p—1)+t,yn

2D Block Decomposition

Summary of algorithm for computing y = Ab

2D block partition is used to distribute matrix.

let A = [aij]l b = [bl' b2' Y bn]Tl and y = [yl' Y2, "')yn]T
Assume each task is responsible for computing d;; = a;;b;
(assume a fine-grained decomposition for convenience of

analysis).
Theny; = Z}f‘;(} d;;: for each row i, we add all the d;; to
produce the ith element of y.

Pl P: Py

21

. Read in matrix stored in row-major manner and
distribute by 2D block mapping. Also distribute b so
that each task has the correct portion of b.

. Each task computes a matrix-vector multiplication using
its portion of A and b.

. Tasks in each row of the task grid perform a sum-
reduction on their portion of y.

. After the sum-reduction, y is distributed by blocks
among the tasks in the first column of the task grid.

Distributing b

* |nitially, b is divided among tasks in the first
column of the task grid.
* Step 1:
— If p square
* First column/first row processes send/receive
portions of b

— If p not square
e Gather b on process 0, O
* Process 0, O broadcasts to first row processes

e Step 2: First row processes scatter b within columns

Broadcast
blocks of'b

SendRecv
blocks of' b

When p is a square number

(a)

Broadcast
blocks of b

Scatter b

Gatherb

When p is not a square number

HEEEE

L1 I1]

R R —

24

(b)

