
Lecture 7: Advanced MPI –
Communicators and Process

Topologies (Part 1)

1

MPI Communicators

• Communicators provides a separate
communication space. It is possible to treat a
subset of processes as a communication
universe.

• MPI_COMM_WORD

• Two types of communicators:
– Intra-communicator : a collection of processes that

can send messages to each other and engage in
collective communication operations.

– Inter-communicator: are used for sending
messages between processes belonging to disjoint
intra-communicators.

2

Intra-Communicator

• A intra-communicator is composed of:
– A group: is an ordered collection of processes. If a

group consists of p processes, each process in the
group is assigned a unique rank, which is a non-
negative integer in the range 0, 1, …, p-1.

– A context: a system-defined object that uniquely
identifies a communicator. Two distinct
communicators have different contexts, even if they
have identical underlying groups.

– Attributes: topology

Remark: A minimal intra-communicator has at least
group and context.

3

Working with Groups, Contexts and Communicators
Assume that there are 𝑝 processes under MPI_COMM_WORLD, where 𝑞2 = 𝑝.

• Create new communicator with a group of processes with ranks 0, 1, …, 𝑞 − 1.

4

MPI_Group group_world;
MPI_Group first_row_group;
MPI_Comm first_row_comm;
int *process_rank;

// make a list of processes in the new communicator
process_rank = (int*) malloc(q*sizeof(int));
for(int I = 0; I < q; I++)
 process_rank[I] = I;

//get the group under MPI_COMM_WORLD
MPI_Comm_group(MPI_COMM_WORLD, group_world);

// create the new group
MPI_Group_incl(group_world, q, process_ranks, &first_row_group);

// create the new communicator
MPI_Comm_create(MPI_COMM_WORLD, first_row_group, &first_row_comm);

Code 1

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group);
Obtain the group associated with the comm.

– comm: communicator

– group: group in communicator (handle)

int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group
*newgroup);

Produces a group by reordering an existing group and taking only listed
members

– n: number of elements in array ranks

– ranks: ranks of processes in group to appear in newgroup

– newgroup: new group constructed

int MPI_Comm_create(MPI_Comm comm, MPI_Group group,
MPI_Comm *newcomm);

Creates a new communicator

– This is a collective operation.

All the processes in comm must

call this function.
5

// continue on Code 1
double x = 10.0;

// broadcast x to processes in first_row_comm
MPI_Bast(x, 1, MPI_DOUBLE, 0,
first_row_comm);

MPI_Comm_split() to form communicators

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm);

– Creates new communicators based on colors and keys. This function
partitions the group associated with comm into disjoint subgroups,
one for each value of color. Each subgroup contains all processes of
the same color. Within each subgroup, the processes are ranked in
the order defined by the value of the argument key, with ties broken
according to their rank in the old group.

– comm: old communicator

– color: control of subset assignment (nonnegative integer). Processes
with the same color are in the same new communicator

– key: control of rank assignment

– newcomm: new communicator

– This is a collective call. Each process can provide its own color and
key. 6

Example. Split processes with odd and even ranks into 2 communicators

7

#include "mpi.h"
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 int myid, numprocs;
 int color, broad_val, new_id, new_nodes;
 MPI_Comm New_Comm;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 color = myid%2;
 MPI_Comm_split(MPI_COMM_WORLD, color, myid, &New_Comm);
 MPI_Comm_rank(New_Comm, &new_id);
 MPI_Comm_size(New_Comm, &new_nodes);

 if(new_id == 0) broad_val = color;
 MPI_Bcast(&broad_val, 1, MPI_INT, 0, New_Comm);
 cout<<"Old_proc["<< myid <<"] has new rank " << new_id <<"received value "<< broad_val <<endl;
 MPI_Finalize();
}

See another sample
“sample_grid_split_comm.cpp” for splitting
process grid.

Virtual Topologies

• It is possible to associate additional information (beyond
group and context) with a communicator.

• Topology is one of the attributes for communicator.

• In MPI, a topology is a mechanism for associating
different addressing schemes with the processes
belonging to a group.

• MPI topology is a virtual topology: there is no simple
relation between the process structure and actual
underlying physical structure of the parallel system.

• Two main topology types: Cartesian (or grid) and graphs.
Graphs are the more general case.

8

Associating Square Grid Structure with MPI_COMM_WORLD

Given:
– Number of grid dimensions

– The size of each dimension: number of rows 𝑞 and
number of columns 𝑞

– Periodicity of each dimension (whether wraparound).
This specifies whether the first entry in each row or
columns is “adjacent: to the last entry in that row or
column, respectively.

– MPI gives the user the option of allowing the system
to optimize the mapping of the grid of processes to
the underlying physical processors by possibly
reordering the processes in the group underlying the
communicator.

9

Creating a Cartesian Virtual Topology

10

MPI_Comm grid_comm;
int dim_sizes[2];
int wrap_around[2];
int reorder = 1;

dim_sizes[0] = 4;
dim_sizes[1] = 3;
wrap_around[0] = 1; wrap_around[1] = 0;
MPI_Cart_create(MPI_COMM_WORLD, 2, dim_sizes,
 wrap_around, reorder, &grid_comm);

• int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods, int
reorder, MPI_Comm *comm_cart);
• comm_old: input communicator
• ndims: number of dimensions of cartesian grid
• dims: integer array of size ndims specifying the number of processes in each

dimension
• periods: logical array of size ndims specifying whether the grid is periodic (true) or

not (false) in each dimension
• reorder: ranking may be reordered (true) or not (false) (logical)
• comm_cart[out]: communicator with new cartesian topology (handle)

“sample_cart.cpp”

Cartesian Mapping

• The processes in grid_comm are ranked in row-major order.
Thus it may be advantageous to change the relative ranking
of the processes in MPI_COMM_WORLD.

• For a process to determine its coordinates:
– reorder = 1: The original process ranking in MPI_COMM_WORLD may

change. It is necessary to call MPI_Comm_rank()

– The inverse to MPI_Cart_coords() is MPI_Cart_rank(grid_comm,
coordinates, &grid_rank);

11

int coordinates[2];
int my_grid_rank;

MPI_Comm_rank(grid_comm, &my_grid_rank);
MPI_Cart_coords(grid_comm, my_grid_rank, 2, coordinates);

Finding “Nearby” Neighbors
int MPI_Cart_shift(MPI_Comm comm, int direction, int displ, int
*source, int *dest);

– Returns the shifted source and destination ranks, given a shift direction and
amount.

– direction[in]: coordinate dimension of shift

– displ[in]: displacement (> 0: upwards shift, < 0: downwards shift)

– source[out]: rank of source process

– dest[out]: rank of destination process

– See sample code “sample_cart_shift_2.cpp”

12

Partitioning a Grid into Grids of Lower Dimension
int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm
*newcomm);

– creates new communicators for subgrids of up to (N-1) dimensions from an
N-dimensional Cartesian grid.

– remain_dims[in]: the ith entry of remain_dims specifies whether the ith
dimension is kept in the subgrid (true) or is dropped (false) (logical vector)

– newcomm[out]: communicator containing the subgrid that includes the
calling process

13

int free_coords[2];
MPI_Comm row_comm;

free_coords[0] = 0;
free_coords[1] = 1;
MPI_Cart_sub(grid_comm, free_coords, &row_comm);

• Create communicators for the row of the grid.
• free_coords[] specifies whether each dimension “belongs” to the new

communicator.
• Each new communicator consists of the processes obtained by fixing the row

coordinates and letting the column coordinates vary.

/* Create 2D Cartesian topology for processes */

MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, &comm2D);
MPI_Comm_rank(comm2D, &id2D);

MPI_Cart_coords(comm2D, id2D, ndim, coords2D);

/* Create 1D row subgrids */

belongs[0] = 0;

belongs[1] = 1; // this dimension belongs to subgrid

MPI_Cart_sub(comm2D, belongs, &commrow);

/* Create 1D column subgrids */

belongs[0] = 1; // this dimension belongs to subgrid

belongs[1] = 0;

MPI_Cart_sub(comm2D, belongs, &commcol);

14

0,0 (0) 0, 1 (1)

1, 0 (2) 1, 1 (3)

2, 0 (4) 2, 1 (5)

2D Cartesian Grid

0, 0 (0)
0 (0)

0, 1 (1)
1 (1)

1, 0 (2)
0 (0)

1, 1, (3)
1 (1)

2, 0 (4)
0 (0)

2, 1 (5)
1 (1)

3 row subgrids

0, 0 (0)
0 (0)

0, 1 (1)
0 (0)

1, 0 (2)
1 (1)

1, 1 (3)
1 (1)

2, 0 (4)
2 (2)

2, 1 (5)
2 (2)

2 column subgrids

MPI_Cart_Sub and MPI_Comm_split

• Both can divide a logical grid into arbitrary subgrids.

• MPI_Comm_split is more general than MPI_Cart_create.

• MPI_Comm_split creates logical grid and is referred to by its linear
rank number; MPI_Cart_sub creates cartesian grid and rank can be
referred to by cartesian coordinates.

• MPI_Cart_sub must be used with communicator associated with a
grid topology.

15

