Lecture 8: Fast Linear Solvers
(Part 1)



LU Factorization

Solve

Ei: aq1x1 +ax, + - aynx, = by
EZ: alel + azzxz + .- aann = b2

E.: a,ix1+apx, + - apnXx, = by
for xq, x5, ..., Xpy.

e Matrix form Ax = b:

ajn Az - %n]rxgp [br
a,q 5% e Uon Xo _ b2
An1 Qn2 ... Qpnld X -bn_

Direct method for solving Ax = b is by computing LU factorization
A=LU

Where L is lower triangular and U is upper triangular.



x1+xZ+ZX3:6

Solve
2X5 +x3 =4
2x1+xZ+X3=7
1 1 2|6
0 2 1|4
2 1 117 1 1 2
1 1 2

121—0131—2_’ 5 1 2 l30=—-05- 0 2 1 2

Theorem If Gaussian elimination can be performed on the linear system Ax = b without row
interchange, A can be factored into the product of lower triangular matrix L and upper
triangular matrix U as A = LU:

(1) (1) 1
a11 A1 . in) 1 0 .. 07
(2) 2 . :
u=|0 ay .. agn), L= l2:1 1




. LU decomposition: A = LU sothat Ax =Db

becomes
LUx=D>

. Solve Ly = b by forward substitution to
obtain vector y

. Solve Ux = y backward for x



Gaussian Elimination Algorithm

(n-1) stages of elimination are needed to obtain U. Assume all pivots at
every stage are not 0.

At the last stage, U overwrites A.
We assume that pivoting (row interchange) is not needed for simplicity.

fork=1ton—1 // loop over columns
fori=k+1ton
Lix = a;i/ai; // multipliers for kth column
b; = b; — Ly by,
end;

fori=k+1ton
fori=k+1ton
a;; = a;j — ligag; // elimination step
end;
end;
end;

Gaussian elimination requires about n3 /3 paired additions and
multiplications, and about n? /2 divisions.



Backward Substitution

After elimination, we obtain upper triangular Ux = b("*~ 1.

fork=n to1l
Xy = by
fori=k+1ton
Xk = X — Ui X
end;
X = Xp[Ugk
end;




Parallel Algorithm Design

* Assume a fine-grained decomposition, i.e., aj is
assigned to process P;;.

* Outer loop can not be executed in parallel; while
the inner loop can be executed in parallel.
* Communications:

— Broadcast row of A vertically below
— Broadcast [;;, horizontally to tasks to right



Fine-Grained Tasks and Communication
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Row-wise Cyclic Mapping Parallel Algorithm

* A few contiguous rows of 4 (2 or 3 or more rows) are
grouped into blocks. Distribute blocks to processes in a
wraparound manner.

* Also associate corresponding elements of b and x of
blocks to processes, respectively.
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 Multipliers need not to be broadcasted
horizontally, since any row of matrix is held
entirely in one process.

* Vertical communications are still needed to
broadcast a row of matrix to processes holding
rows below it for updating.



Row-wise Parallel Algorithm

fork=1ton—1 // loop over columns
broadcast kth row to processes holding k + 1, ..., n rows
for processes holding ith row, i > k,
lix. = a;i/ai; // multipliers for kth column
end;
for processes holding ith row, i > k
fori=k+1ton
a;j = a;; — ligag; // elimination step
end;
end;
end;




Performance Analysis

Assume each row of matrix is assigned to a process.

* The inner loop at step k involvesn — k
multiplications and subtractions for processes
holding ith rows, k < i < n.

e At step k, there are n — k divisions to compute

multiplier (a
Li

* At step k, the one-to-all broadcast times time:
te +t,(n—k)logn
* Overall complexity:
371 (n— k) + T (t; + by, (n — k)logn) =
—n(n — 1)+t nlogn +-n(n — 1)ty logn




Column-wise Cyclic Mapping Parallel Algorithm

A few contiguous columns of A (2 or 3 or more columns) are
grouped into blocks. Distribute blocks to processes in a
wraparound manner.
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e Horizontal communications are needed to
broadcast multipliers for updating.

e Vertical communications are not needed to
broadcast a row of matrix, since any column is
assigned to one process.



Column-wise Parallel Algorithm

fork=1ton—1 // loop over columns
if process holds kth column, then
fori=k+1 ton
L. = a;/ai; // multipliers for kth column
endfor;
endif;
broadcast {[;; : kK < i < n}to processes holding k, ..., n columns
for processes holds jth column, j > k
fori=k+1ton
aij = Clij — likakj // elimination step
end;
end;
end;




2D Block Cyclic Mapping Parallel Algorithm
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* With cyclic block mapping, each process holds
several submatrices assembled globally. This
improves both concurrency and load balance.

e Horizontal communications are needed to
broadcast multipliers for updating.

e Vertical communications are also needed to
broadcast a row of matrix, since any column is
assigned to one process.



2D Block Cyclic Mapping Parallel Algorithm

fork=1ton—1 // loop over columns
broadcast {a; : k < j < n}among columns of processes

if process holds kth column, then
for processes hold ith row, i > k
Lix = a;i/ai; // multipliers for kth column
endfor;
endif;
broadcast {{;;, : k < i < n} to rows of processes
for processes hold jth column, j > k
for processes hold ith row, i > k
a;; = a;j — ligay; // elimination step
end;
end;
end;




Gaussian Elimination with Partial Pivoting

* |f pivot element = 0, significant round-off errors
can occur.

* Partial pivoting finds the smallest p = k such

(k)| _ (k) :
that ‘apk = krgiagﬂaik | and interchanges the

rows (E;,) & (Ep).

* Partial pivoting is required for numerical stability
of LU factorization



Gaussian Elimination with Partial Pivoting Parallel
Algorithm

 With 1D row algorithm or 2D block algorithm,
searching pivot requires communication.

 With 1D column algorithm, searching pivot is local
operation.

* Once pivot is found, index of pivot row must be
communicated to all processes. Row interchange
communication must be called.



Pivot Searching

Use MPI_Allreduce(), operator MPI_MAXLOC and derived data
type MPI_DOUBLE_INT (struct {double, int}).

struct {
double wvalue;
int index;

} local, global;

local.value

fabs(a[j]l[i]):
local.index ]

MPI Allreduce (&local, &global, 1,
MPI_DOUBLE INT, MPI_MAXILOC,
MPI_COMM WORLD) ;




