
Lecture 8: Fast Linear Solvers
(Part 2)

1

Naive Parallel Backward Substitution Algorithm

2

After elimination, we obtain upper triangular 𝑈𝒙 = 𝒃(𝑛−1).
Assume that 𝑈 is stored by rows.

 𝑥𝑛 =
𝑏𝑛
(𝑛−1)

𝑢𝑛𝑛

 for 𝑖 = 𝑛 − 1 to 1

𝑥𝑖 =
𝑏𝑖
(𝑛−1)

− 𝑢𝑖,𝑖+1𝑥𝑖+1 − 𝑢𝑖,𝑖+2𝑥𝑖+2 − ⋯− 𝑢𝑖,𝑛𝑥𝑛

𝑢𝑖𝑖

for 𝑘 = 𝑛 to 1
 𝑥𝑘 = 𝑏𝑘
 for 𝑖 = 𝑘 + 1 to 𝑛
 𝑥𝑘 = 𝑥𝑘 − 𝑢𝑘𝑖𝑥𝑖
 end;
 𝑥𝑘 = 𝑥𝑘/𝑢𝑘𝑘
 broadcast 𝑥𝑘 to all rows
end;

Naive Parallel Forward Substitution Algorithm

3

Consider to solve lower triangular L𝒙 = 𝒃 .

 for 𝑖 = 1 to 𝑛

𝑥𝑖 =
𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1

𝑙𝑖𝑖

for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑖 − 1
 𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗

 end;
 𝑥𝑖 = 𝑏𝑖/𝑙𝑖𝑖
 broadcast 𝑥𝑖 to all rows
end;

Revised Forward Substitution Algorithm

4

// immediate-update of right hand side
for 𝑗 = 1 to 𝑛
 𝑥𝑗 = 𝑏𝑗/𝑙𝑗𝑗 // compute solution

 for 𝑖 = 𝑗 + 1 to 𝑛
 𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗 //update right hand side

 end;
end;

Parallel Forward Substitution Algorithm

• Assume a fine-grained decomposition in
which process 𝑝𝑖𝑗 stores 𝑙𝑖𝑗 and compute

𝑙𝑖𝑗𝑥𝑗 for 𝑖 = 2, … , 𝑛, 𝑗 = 1,… , 𝑖 − 1

• Assume 𝑝𝑖𝑖 stores 𝑙𝑖𝑖 and 𝑏𝑖, collects 𝑙𝑖𝑗𝑥𝑗
𝑖−1
𝑗=1

and computes 𝑥𝑖 =
𝑏𝑖− 𝑙𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1

𝑙𝑖𝑖
 for 𝑖 = 1,… , 𝑛

5

Primary Tasks and Communication

6

1D Row Block Mapping

7

P0

P1

P2

1D Row Cyclic Mapping

8

P0

P1

P2

Forward Substitution Parallel Algorithm Based on
1D Row Mapping

9

// immediate-update of right hand side
for 𝑗 = 1 to 𝑛
 for process holding 𝑗th row
 𝑥𝑗 = 𝑏𝑗/𝑙𝑗𝑗 // compute solution

 end;
 broadcast 𝑥𝑗 to all processes

 for process holding 𝑖th row 𝑖 > 𝑗
 𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗 //update right hand side

 end;
end;

References
• G. Li and T. F. Coleman. A new method for solving triangular

systems on distributed-memory message-passing
multiprocessors, SIAM J. Sci. Stat. Comput. 10:382-396, 1989

• E. E. Santos. On designing optimal parallel triangular solvers,

• Information and Computation 161:72-210, 2000

10

Gaussian Elimination and Sparse System
Consider to solve the tridiagonal system
 𝑎𝑖𝑥𝑖−1 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖+1 = 𝐹𝑖 , 𝑖 = 1,… , 𝑛
for unknowns 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛 (So 𝑥0 = 𝑥𝑛+1 = 0).
Here 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝐹𝑖 are given.

• Let 𝑚 be the band width.

11

for 𝑘 = 1 to 𝑛 − 1 // loop over columns
 for 𝑖 = 𝑘 + 1 to min(𝑘 + 𝑚, 𝑛)
 𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖 // multipliers for 𝑘th column
 𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑘𝑏𝑘
 end;
 for j = 𝑘 + 1 to min(𝑘 + 𝑚, 𝑛)
 for 𝑖 = 𝑘 + 1 to min(𝑘 + 𝑚, 𝑛)
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗 // elimination step

 end;
 end;
end;

Parallel Cyclic Reduction for Tridiagonal System

• When 𝑚 < 𝑝, neither row-cyclic nor column-
cyclic decomposition is efficient. Because only 𝑚
processors are actively used.

• Assume that 𝑛 = 2𝑝 − 1, where 𝑝 is the number
of processors. If 𝑛 ≠ 2𝑝 − 1, then add a trivial
equation 𝑥𝑖 = 0, 𝑖 = 𝑛 + 1,… , 2𝑝 − 1.

12

• Consider the case when 𝑛 = 7 = 23 − 1.

• Key idea:

– Combine linearly equations to eliminate the odd-
numbered unknowns 𝑥1, 𝑥3, 𝑥5, … in the first stage.

• Adding a multiple of 𝑖 − 1 𝑡ℎ equation and a multiple of
𝑖 + 1 𝑡ℎ equation to 𝑖𝑡ℎ equation to eliminate 𝑥𝑖−1 and

𝑥𝑖+1 from the 𝑖𝑡ℎ equation for 𝑖 = 2,4,….

– Then renumber unknowns and repeat this process till
there is a single equation with one unknown.

– Solve backward to obtain the rest of the unknowns.

13

Remark: Cyclic Reduction is a divide-and-conquer method

• Multiply parameters 𝛼2, 𝛽2, 𝛾2 to the first three equations
respectively to get:

𝛼2𝑏1𝑥1 + 𝛼2𝑐1𝑥2 = 𝛼2𝐹1
𝛽2𝑎2𝑥1 + 𝛽2𝑏2𝑥2 + 𝛽2𝑐2𝑥3 = 𝛽2𝐹2
𝛾2𝑎3𝑥2 + 𝛾2𝑏3𝑥3 + 𝛾2𝑐3𝑥4 = 𝛾2𝐹3

To eliminate 𝑥1 and 𝑥3, add above three equations and let
 𝛽2 = 1

𝛼2𝑏1 + 𝛽2𝑎2 = 0
𝛽2𝑐2 + 𝛾2𝑏3 = 0

⇒ 𝑏 2𝑥2 + 𝑐 2𝑥4 = 𝐹 2
Where

 𝑏 2 = 𝛼2𝑐1 + 𝛽2𝑏2 + 𝛾2𝑎3
𝑐 2 = 𝛾2𝑐3

𝐹 2 = 𝛼2𝐹1 + 𝛽2𝐹2 + 𝛾2𝐹3

14

• Multiply parameters 𝛼4, 𝛽4, 𝛾4 to the third, fourth and
fifth equations respectively and add to eliminate 𝑥3 and
𝑥5:

⇒ 𝑎 4𝑥2 + 𝑏 4𝑥4 + 𝑐 4𝑥6 = 𝐹 4

Where

 𝑎 4 = 𝛼4𝑎3

𝑏 4 = 𝛼4𝑐3 + 𝛽4𝑏4 + 𝛾4𝑎5

 𝑐 4 = 𝛾4𝑐5
𝐹 4 = 𝛼4𝐹3 + 𝛽4𝐹4 + 𝛾4𝐹5

𝛼4, 𝛽4, 𝛾4 are determined by :
𝛽4 = 1

𝛼4𝑏3 + 𝛽4𝑎4 = 0
𝛽4𝑐4 + 𝛾4𝑏5 = 0

15

• Finally, multiply parameters 𝛼6, 𝛽6, 𝛾6 to the
fifth, sixth and seventh equations respectively
and add to eliminate 𝑥5 and 𝑥7:

⇒ 𝑎 6𝑥4 + 𝑏 6𝑥6 = 𝐹 6

Where

𝛼6, 𝛽6, 𝛾6 are determined by :
𝛽6 = 1

𝛼6𝑏5 + 𝛽6𝑎6 = 0
𝛽6𝑐6 + 𝛾6𝑏7 = 0

16

• In stage two:

𝑏 2𝑥2 + 𝑐 2𝑥4 = 𝐹 2

𝑎 4𝑥2 + 𝑏 4𝑥4 + 𝑐 4𝑥6 = 𝐹 4

𝑎 6𝑥4 + 𝑏 6𝑥6 = 𝐹 6

– Repeat the same elimination process, which leads to
only one equation

𝛼4
∗𝑥4 = 𝐹4

∗

– Use backward substitution, 𝑥2 and 𝑥6 are solved by

𝑏 2𝑥2 + 𝑐 2𝑥4 = 𝐹 2 and 𝑎 6𝑥4 + 𝑏 6𝑥6 = 𝐹 6

– Use the original equations to solve for 𝑥1, 𝑥3, 𝑥5, 𝑥7.

17

Cyclic Reduction Algorithm

18

for(i=0; i < log2(size+1)-1;i++) // levels of reduction
{

 for(j=2𝑖+1 − 1; j <size; j=j+ 2𝑖+1) // rows that are reduced
 {
 offset = 2𝑖;
 index1 = j – offset; // index of row before the jth row
 index2 = j + offset; // index of row after the jth row
 𝛼 = A[j][index1]/A[index1][index1];
 γ = A[j][index2]/A[index2][index2];

 for(k=0; k < size; k++)
 A[j][k] -= 𝛼A[index1][k] + 𝛾A[index2][k]; // do the reduction to have only
 // jth row being active
 F[j] -= 𝛼F[index1] + 𝛾F[index2];
 }
}

Backward Substitution

19

int index = (size-1)/2;
x[index] = F[index]/A[index][index];

for(i=log2(size+1)+2;i>=0; i--)
{
 for(j=2𝑖+1 − 1; j <size; j=j+ 2𝑖+1)
 {
 offset = 2𝑖;
 index1 = j – offset;
 index2 = j + offset;

 x[index1] = F[index1];
 x[index2] = F[index2];
 for(k=0; k < size; k++)
 {
 if(k! = index1)
 x[index1] -= A[index1]*x[k];
 if(k != index2)
 x[index2] -= A[index2][k]*x[k];
 }
 x[index1] = x[index1]/A[index1][index1];
 x[index2] = x[index2]/A[index2][index2];
 }
}

Source of Parallelism
• Simultaneous reduction of equations in the system

• Simultaneous backward substitution to solve for the solution

Row Decomposition

For 𝑖 = 1, … , 𝑛 of equations
Process 𝑖 stores 𝑖𝑡ℎ equation.

Computation
 when 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑖, 2 = 0, do row reduction to yield updated 𝑖𝑡ℎ
equation

Communication
𝑖𝑡ℎ equation receive 𝑖 − 1 𝑡ℎ and 𝑖 + 1 𝑡ℎ equations for
𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑖, 2 = 0

20

Reference
• B. Buzbbe, G. Golub, and C. Nielsen.

On direct methods for solving Poisson’s equation. SIAM J. Numer.
Anal., 7:627-656, 1970

• J. Dongarra and S. Johnsson. Solving banded systems on a parallel
processor, Parallel Computing 5:219-246, 1987

• M. Hegland. On the parallel solution of tridiagonal systems by
wrap-around partitioning and incomplete LU factorization,
Numer. Math. 59:453-472, 1991

• V. Mehrmann. Divide and conquer methods for block tridiagonal
systems, Parallel Computing 19:257-280, 1993

21

