Lecture 8: Fast Linear Solvers
(Part 4)

Iterative Methods for Solving Linear Systems

Consider to solve Ax = b with 4 € R™™ and
b € R".

n practice, iteration terminates when residual
|b — Ax]| is as small as desired.

et B € R™™ be a non-singular matrix

Rewrite Ax = b as (B + (4 — B))x =b
—x =B Y(B — A)x + B~1b, which is a fixed-point
equation.

— One uses a iteration for the solution of the fixed-
point iteration:

xk+tD) = p=1(p — A)x(K) + B~1p, k € N, where
x@is an arbitrary initial guess.

Splitting Matrix B

Algorithmic Conditions for B
e B~! must exist.
* The sequence (x;)) convergesfor1 <i <n

as k — oo. Ideally, this convergences should be
fast.

* Efficient solution of the system Bv = g
 Efficient computation of (B — A)v

Lipschitz Continuity

Define F(x) =B Y(B—A)x+ B~ b
F(x)—F()l| =|IB71(B-A)(x—y)|| <
B~1(B — A)|||lx — yl| = 6|Ix - yl|,

X,y € R"

With & := ||B~1(B — A)||

Convergence

Theorem. Let || - || be a vector norm in R™ and
C .
HCH = SUP ecpn |:|xx|:| C € R™™ the induced

matrix norm. Assume 0 := ||B‘1(B — A) | <1,

then the sequence (x;)*) converges for all initial
values x(9 to the solution x € R™ of Ax = b. The

error is bounded by

k

— 8”,5(1) _x(O)“

|[xFtD) — x| <

Jacobi Method

Decompose matrix A = [a;;] into
A=D+L+U, LD, UeR™"

D =diag(aqq, a5, ..., Ayy) is a diagonal matrix
and

I 0 O O_ _O a’12 aln-
A I A
_anl anz O O O O i

e ChooseB=D,Dx=—-(L+U)x+b
* The Jacobi method can be written as
x*+D) = p=1(p — (L + U)xP)

Jacobi method requires nonzero diagonal entries,
which can be obtained by permuting rows and
columns.

Requires storage for both x(**1 and x(®).

components of new iterate do not depend on
each other. So they can be computed in parallel.

Define T; = =D~ '(L+ U),c; =D~ 'b

Jacobi method can be written as

Algorithm of Jacobi Method

* Choose initial vector x* € R™
Setk =1
while (k < N) do
fori=1ton

n
Xi = i(bi — Z a;;xo;)
i j=1,)#i

end for

if ||x — xo|| < TOL stop.
Sethk=k+1

fori=1ton

X0; = X;
end for

end while

Gauss-Seidel Method

* ChooseB=D+L, (D+L)x=—-U)x+b
* The Gauss-Seidel method can be written as

x+D) = (D)"1(b — Ux®) — [x(c+D) or
1 Z
(k+1) . (k+1) E (k)
Xl- — a—u (bl — aijxj — aijxj)

j<i J>i

* Gauss-Seidel requires nonzero diagonal entries

* Gauss-Seidel does not need to duplicate storage for
X, since component values of x can be overwritten
as they are computed.

* Computing xj(kH) depends on previous xj(f;rl),
j(’_{;l), ... 50 they must be computed successively.

* Gauss-Seidel converges about twice as fast as Jacobi
method.

* DefineTy =—=(D +L)™'U, ¢, =(D+L)"'b
Gauss-Seidel method can be written as
xtD =T x4 ¢,

Algorithm of Gauss-Seidel

e Choose initial vector x° € R"
Setk =1
while (k < N) do

fori =1ton
n

-1
1
x; = — (b; — 2 a;;xoj — Eaux]
aii —

j=i+1
end for
if ||x — xo|| < TOL stop.
Setk=k+1
fori=1ton
X0; = X;
end for

end while

M matrices
— Amatrix A = [a;;] € R™"*™ is a M-matrix if the following
conditions are satisfied
° aij < 0, l,] = 1,...,7’l, [:/:]
« A71 > 0 exists.
If @ matrix A is strongly diagonally dominant, then
Gauss-Seidel and Jacobi method converges.

Let A be M-matrix. Then Gauss-Seidel and Jacobi
method converges.

The spectral radius of Gauss-Seidel method is
smaller than that of Jacobi method if both methods
converges.

SOR Method

e Successive over-relaxation (SOR) method
computes next iterate as

xFHD) = (1 — w)x®) + w(x§k+1)) where xékﬂ) is

next iterate computed by Gauss-Seidel method

* w is fixed relaxation parameter.
— SOR can convergeonly if 0 < w < 2.

— w > 1 gives over-relaxation; while w < 1 gives
under-relaxation.

e Using matrix notation, SOR can be written as
(D + wL)x®*tD = [(1 — w)D — 0wU]x% + wb

Parallelization of Jacobi and Gauss-Seidel Method

Parallelization of Jacobi method is straight
forward in contrast to Gauss-Seidel method

Jacobi and Gauss-Seidel method are rarely used
in practical applications due to slow convergence

Krylov space methods are more often used

Jacobi and Gauss-Seidel method are often used
as preconditioners for Krylov space methods for
smoothers for multi-grid methods.

Parallel Jacobi Method

* Decompose the matrix A = [a;;] into sub-
matrices and use 2D block mapping.

while error > TOL

On each process , compute all own components (al-jxj(k)) of the
current iteration .
Tasks in each row of the task grid perform a sum-reduction to

compute Y} aijxj(k)
After the sum-reduction, compute b; — Zjii al-jxj(k)
tasks in the first column of the task grid and these tasks compute
(k+1)
j
(k+1)

Distribute X; on task grid

among the

