
Lecture 8: Fast Linear Solvers 
(Part 5) 
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Conjugate Gradient (CG) Method 

• Solve 𝐴𝒙 = 𝒃 with  𝐴 being an 𝑛 × 𝑛 symmetric 
positive definite matrix.  

• Define the quadratic function  

𝜙 𝒙 =
1

2
𝒙𝑇𝐴𝒙 − 𝒙𝑇𝒃 

Suppose 𝒙 minimizes 𝜙 𝒙 , 𝒙 is the solution to 𝐴𝒙 = 𝒃. 

• 𝛻𝜙 𝒙 =  
𝜕𝜙

𝜕𝑥1
, … ,

𝜕𝜙

𝜕𝑥𝑛
= 𝐴𝒙 − 𝒃 

• The iteration takes form 𝒙(𝑘+1) = 𝒙 𝑘 + 𝛼𝑘𝒗(𝑘) 
where 𝒗(𝑘) is the search direction and 𝛼𝑘 is the 
step size. 

• Define 𝒓 𝑘 = 𝒃 − 𝐴𝒙 𝑘  to be the residual vector.  
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• Let 𝒙 and 𝒗 ≠ 𝟎   𝜙 𝒙 + 𝛼𝒗  be fixed vectors and 𝛼 a real number 
variable.  

Define: 

 ℎ 𝛼 = 𝜙 𝒙 + 𝛼𝒗 = 𝜙 𝒙 + 2𝛼 < 𝒗, 𝐴𝒙 − 𝒃 > +𝛼2 < 𝒗, 𝐴𝒙 > 

ℎ 𝛼  has a minimum when ℎ′(𝛼) = 0. This occurs when 

𝛼 =
𝒗𝑇(𝒃 − 𝐴𝒙)

𝒗𝑻𝐴𝒗
. 

So ℎ 𝛼 = 𝜙 𝒙 −
(𝒗𝑇(𝒃−𝐴𝒙))2

𝒗𝑻𝐴𝒗
. 

Suppose 𝒙∗ is a vector that minimizes 𝜙 𝒙 . So 𝜙 𝒙 + 𝛼 𝒗 ≥ 𝜙 𝒙∗ . 
This implies 𝒗𝑇 𝒃 − 𝐴𝒙∗ = 0. Therefore 𝒃 − 𝐴𝒙∗ = 0. 
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• For any 𝒗 ≠ 𝟎, 𝜙 𝒙 + 𝛼𝒗 < 𝜙 𝒙  unless 

𝒗𝑇 𝒃 − 𝐴𝒙 = 0 with 𝛼 =
𝒗𝑇(𝒃−𝐴𝒙)

𝒗𝑻𝐴𝒗
. 

• How to choose the search direction 𝒗? 
– Method of steepest descent: 𝒗 = −𝛻𝜙 𝒙  

• Remark: Slow convergence for linear systems 

 
Algorithm. 
Let 𝒙(0) be initial guess.  
for 𝑘 = 1,2, … 
    𝒗(𝑘) = 𝒃 − 𝐴𝒙(𝑘−1) 

     𝛼𝑘 =
<𝒗 𝑘 , 𝒃−𝐴𝒙(𝑘−1) >

<𝒗(𝑘),𝐴𝒗(𝑘)>
 

     𝒙(𝑘) = 𝒙(𝑘−1) + 𝛼𝑘𝒗(𝑘) 
 end 
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Steepest descent method when 
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 is large 

• Consider to solve 𝐴𝒙 = 𝒃 with 𝐴 =
𝜆1 0
0 𝜆2

, 

𝒃 =
𝜆1

𝜆2
 and the start vector 𝒗 =

−9
−1

. 

Reduction of ||𝐴𝒙(𝑘) − 𝒃||2 < 10−4. 

– With 𝜆1 = 1, 𝜆2 = 2, it takes about 10 iterations  

– With 𝜆1 = 1, 𝜆2 = 10, it takes about 40 iterations  
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• Second approach to choose the search direction 𝒗? 

– A-orthogonal approach: use a set of nonzero direction 

vectors {𝒗 1 , … , 𝒗(𝑛)} that satisfy < 𝒗(𝑖), 𝐴𝒗(𝑗) > = 0, if 

𝑖 ≠ 𝑗. The set {𝒗 1 , … , 𝒗(𝑛)}  is called A-orthogonal.  

 

• Theorem. Let {𝒗 1 , … , 𝒗(𝑛)} be an A-orthogonal 
set of nonzero vectors associated with the 

symmetric, positive definite matrix 𝐴, and let 𝒙(0) 

be arbitrary. Define 𝛼𝑘 =
<𝒗 𝑘 , 𝒃−𝐴𝒙(𝑘−1) >

<𝒗(𝑘),𝐴𝒗(𝑘)>
 and 

𝒙 𝑘 = 𝒙 𝑘−1 + 𝛼𝑘𝒗 𝑘  for 𝑘 = 1,2 … 𝑛. Then 

𝐴𝒙 𝑛 = 𝒃 when arithmetic is exact.    
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Conjugate Gradient Method 

• The conjugate gradient method of Hestenes and 
Stiefel.  

• Main idea: Construct {𝒗 1 , 𝒗 2 … } during 

iteration so that the residual vectors  𝒓 𝑘  are 

mutually orthogonal.  
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Algorithm of CG Method 

Let 𝒙(0) be initial guess. 
Set 𝒓(0) = 𝒃 − 𝐴𝒙(0); 𝒗(1) = 𝒓(0). 
for 𝑘 = 1,2,… 

      𝛼𝑘 =
<𝒓 𝑘−1 ,𝒓 𝑘−1 >

<𝒗(𝑘),𝐴𝒗(𝑘)>
 

      𝒙(𝑘) = 𝒙(𝑘−1) + 𝛼𝑘𝒗(𝑘) 
      𝒓(𝑘) = 𝒓(𝑘−1) − 𝛼𝑘𝐴𝒗(𝑘)   // construct residual 

      𝜌𝑘 =< 𝒓 𝑘 , 𝒓 𝑘 > 
      if 𝜌𝑘 < 𝜀 exit.         //convergence test  

      𝑠𝑘 =
<𝒓 𝑘 ,𝒓 𝑘 >

<𝒓(𝑘−1),𝒓(𝑘−1)>
 

      𝒗(𝑘+1) = 𝒓(𝑘) + 𝑠𝑘𝒗(𝑘)   // construct new search direction 
end 
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Remarks 

• Constructed {𝒗 1 , 𝒗 2 … } are pair-wise A-
orthogonal. 

• Each iteration, there are one matrix-vector 
multiplication, two dot products and three scalar 
multiplications.  

• Due to round-off errors, in practice, we need more 
than 𝑛 iterations to get the solution. 

• If the matrix 𝐴 is ill-conditioned, the CG method is 
sensitive to round-off errors (CG is not good as 
Gaussian elimination with pivoting). 

•  Main usage of CG is as iterative method applied to 
bettered conditioned system. 
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CG as Krylov Subspace Method 

Theorem. 𝒙(𝑘) of the CG method minimizes the 
function   𝜙 𝒙  with respect to the subspace  

Κ𝑘 𝐴, 𝒓 0 =

𝑠𝑝𝑎𝑛{𝒓 0 , 𝐴𝒓 0 , 𝐴2𝒓 0 , … , 𝐴𝑘−1𝒓 0 }.  

I.e.  

  𝜙 𝒙(𝑘) = 𝑚𝑖𝑛𝑐𝑖
𝜙 𝒙(0) +  𝑐𝑖𝐴

𝑖𝒓 0𝑘−1
𝑖=0  

The subspace Κ𝑘 𝐴, 𝒓 0  is called Krylov subspace.  
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Error Estimate 

• Define an energy norm || ∙ ||𝐴 of vector 𝒖 with 
respect to matrix 𝐴: ||𝒖||𝐴 = (𝒖𝑇𝐴𝒖)1/2 

• Define the error 𝒆(𝑘) = 𝒙(𝑘) − 𝒙∗ where 𝒙∗ is the 
exact solution. 

• Theorem. 

||𝒙(𝑘) − 𝒙∗||𝐴 ≤ 2(
𝜅 𝐴 −1

𝜅 𝐴 +1
)𝑘||𝒙(0) − 𝒙∗||𝐴 with 

𝜅 𝐴 = 𝑐𝑜𝑛𝑑 𝐴 =
𝜆𝑚𝑎𝑥(𝐴)

𝜆𝑚𝑖𝑛(𝐴)
≥ 1. 

Remark: Convergence is fast if matrix 𝐴 is well-
conditioned.  
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Preconditioning 

Let the symmetric positive definite matrix 𝑀 be a 
preconditioner for 𝐴 and 𝐿𝐿𝑇 = 𝑀 be its Cholesky 
factorization. 𝑀−1𝐴 is  better conditioned than 𝐴. 
The preconditioned system of equations is  

𝑀−1𝐴𝒙 = 𝑀−1𝒃 
or 

𝐿−𝑇𝐿−1𝐴𝒙 = 𝐿−𝑇𝐿−1𝒃 
where  𝐿−𝑇 = (𝐿𝑇)−1. 
Multiply with 𝐿𝑇 to obtain  

𝐿−1𝐴𝐿−𝑇𝐿𝑇𝒙 = 𝐿−1𝒃 

Define: 𝐴 = 𝐿−1𝐴𝐿−𝑇; 𝒙 = 𝐿𝑇𝒙; 𝒃 = 𝐿−1𝒃 

Now apply CG to 𝐴 𝒙 = 𝒃 . 
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Preconditioned CG Method 

• Define 𝒛(𝑘) = 𝑀−1𝒓(𝑘) to be the preconditioned residual.  

Let 𝒙(0) be initial guess. 
Set 𝒓(0) = 𝒃 − 𝐴𝒙(0); Solve 𝑀𝒛(0) = 𝒓(0) for 𝒛(0) 
Set 𝒗(1) = 𝒛(0) 
for 𝑘 = 1,2, … 

      𝛼𝑘 =
<𝒛 𝑘−1 ,𝒓 𝑘−1 >

<𝒗(𝑘),𝐴𝒗(𝑘)>
 

      𝒙(𝑘) = 𝒙(𝑘−1) + 𝛼𝑘𝒗(𝑘) 

      𝒓(𝑘) = 𝒓(𝑘−1) − 𝛼𝑘𝐴𝒗(𝑘) 

      solve 𝑀𝒛(𝑘) = 𝒓(𝑘)  for 𝒛(𝑘) 

      𝜌𝑘 =< 𝒓 𝑘 , 𝒓 𝑘 > 
      if 𝜌𝑘 < 𝜀 exit.         //convergence test  

      𝑠𝑘 =
<𝒛 𝑘 ,𝒓 𝑘 >

<𝒛(𝑘−1),𝒓(𝑘−1)>
 

      𝒗(𝑘+1) = 𝒓(𝑘) + 𝑠𝑘𝒗(𝑘) 
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Incomplete Cholesky Factorization 

• Assume 𝐴 is symmetric and positive definite. 𝐴 is sparse.  
• Factor 𝐴 = 𝐿𝐿𝑇 + 𝑅,     𝑅 ≠ 𝟎. 𝐿 has similar sparse structure as 

𝐴. 
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for 𝑘 = 1, … , 𝑛 
    𝑙𝑘𝑘 = 𝑎𝑘𝑘 
    for 𝑖 = 𝑘 + 1, … , 𝑛 

         𝑙𝑖𝑘 =
𝑎𝑖𝑘

𝑙𝑘𝑘
 

         for 𝑗 = 𝑘 + 1, … , 𝑛 
             if 𝑎𝑖𝑗 = 0 then 

                  𝑙𝑖𝑗 = 0 

              else 
                  𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑙𝑘𝑗 

              endif 
          endfor 
    endfor 
endfor  



In diagonal or Jacobi preconditioning 
𝑀 = 𝑑𝑖𝑎𝑔(𝐴)  
• Jacobi preconditioning is cheap if it works, i.e. 

solving 𝑀𝒛(𝑘) = 𝒓(𝑘)  for 𝒛(𝑘) almost cost nothing.  
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Jacobi Preconditioning 
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Row-wise Block Striped Decomposition of a 
Symmetrically Banded Matrix 

Row decomposition 
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Parallel CG Algorithm 
• Assume a row-wise block-striped decomposition of matrix 𝐴 and  partition all vectors 

uniformly among  tasks. 
 

Let 𝒙(0) be initial guess. 
Set 𝒓(0) = 𝒃 − 𝐴𝒙(0); Solve 𝑀𝒛(0) = 𝒓(0) for 𝒛(0) 
Set 𝒗(1) = 𝒛(0) 
for 𝑘 = 1,2, … 
      𝒈 = 𝐴𝒗(𝑘)                            // parallel matrix-vector multiplication 

      𝑧𝑟 =< 𝒛 𝑘−1 , 𝒓 𝑘−1 >      // parallel  dot product  by MPI_Allreduce 

       𝛼𝑘 =
𝑧𝑟

<𝒗(𝑘),𝒈>
                       // parallel  dot product  by MPI_Allreduce 

      𝒙(𝑘) = 𝒙(𝑘−1) + 𝛼𝑘𝒗(𝑘)         //  
      𝒓(𝑘) = 𝒓(𝑘−1) − 𝛼𝑘𝒈              //   

      solve 𝑀𝒛(𝑘) = 𝒓(𝑘)  for 𝒛(𝑘)   // Solve matrix system, can involve additional complexity 

      𝜌𝑘 =< 𝒓 𝑘 , 𝒓 𝑘 >                  // MPI_Allreduce 
      if 𝜌𝑘 < 𝜀 exit.                    //convergence test  

     𝑧𝑟_𝑛 =< 𝒛 𝑘 , 𝒓 𝑘 >            // parallel dot product 

      𝑠𝑘 =
𝑧𝑟_𝑛

𝑧𝑟
                        

      𝒗(𝑘+1) = 𝒓(𝑘) + 𝑠𝑘𝒗(𝑘) 
end 
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