
Lecture 8: Fast Linear Solvers 
(Part 7) 
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Modified Gram-Schmidt Process with 
Reorthogonalization 

Test Reorthogonalization 
 

If 𝐴𝑣𝑘||2 + 𝛿 𝑣𝑘+1||2 =

||𝐴𝑣𝑘||2 to working 
precision.  
 𝛿 = 10−3 



Householder Arnoldi 
• In Arnoldi algorithm, the column vectors of a matrix to be 

orthonormalized  are not available ahead of time.  

• In stead, the next vector is 𝐴𝑣𝑗, where 𝑣𝑗  is current basis vector.  
• In the Householder algorithm, an orthogonal column 𝑣𝑖  is 

obtained as 𝐻1…𝐻𝑖𝑒𝑖.  
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H.F. Walker: Implementation of the GMRES method using Householder 
transformation. SIAM J. on Sci. Comput.  9:152-163, 1988 



Givens Rotations 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 −𝐻
 
𝑚𝒚
𝑘||2 involves QR 

factorization.  

Do QR factorizations of 𝐻𝑘 by Givens Rotations.  

 

• A 2 × 2 Givens rotation is a matrix of the form 

𝐺 =
𝑐 −𝑠
𝑠 𝑐

 where 𝑐 = cos⁡(𝜃), 𝑠 = sin⁡(𝜃) for 

𝜃 ∈ [−𝜋, 𝜋]. The orthogonal matrix 𝐺 rotates the 
vector (𝑐, −𝑠)𝑇 ,⁡ which makes an angle of −𝜃 with 
the 𝑥-axis, through an angle 𝜃 so that it overlaps 
the 𝑥-axis.  

𝐺𝐴
𝑐
−𝑠
=
1
0
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An 𝑁 × 𝑁 Givens rotation 𝐺𝑗(𝑐, 𝑠) replaces a 2 × 2 
block on the diagonal of the 𝑁 × 𝑁 identity matrix 
with a 2 × 2 Givens rotations. 𝐺𝑗(𝑐, 𝑠) is with a 
2 × 2 Givens rotations in rows and columns 𝑗 and 
𝑗 + 1. 

• Givens rotations can be used in reducing 
Hessenberg matrices to triangular form. This can 
be done in 𝑂 𝑁  floating-point operations.  

• Let 𝐻 be an 𝑁 ×𝑀(𝑁 ≥ 𝑀) upper Hessenberg 
matrix with rank 𝑀. We reduce 𝐻 to triangular 
form by first multiplying the matrix by a Givens 
rotations that zeros ℎ21 (values of ℎ11⁡and 
subsequent columns are changed) 
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• Step 1: Define 𝐺1(𝑐1, 𝑠1) by 𝑐1 = ℎ11/ ℎ11
2 + ℎ21

2  and 
𝑠1 = −ℎ21/ ℎ11

2 + ℎ21
2 . Replace 𝐻 by 𝐺1𝐻. 

• Step 2: Define 𝐺2(𝑐2, 𝑠2) by 𝑐2 = ℎ22/ ℎ22
2 + ℎ32

2  and 

𝑠2 = −ℎ32/ ℎ22
2 + ℎ32

2 . Replace 𝐻 by 𝐺2𝐻. 

• … 

• Step j: Define 𝐺𝑗(𝑐𝑗 , 𝑠𝑗) by 𝑐𝑗 = ℎ𝑗𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2  and 

𝑠𝑗 = −ℎ𝑗+1,𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2 . Replace 𝐻 by 𝐺𝑗𝐻. 

 
Setting 𝑄 = 𝐺𝑁…𝐺1. 𝑅 = 𝑄𝐻 is upper triangular.  
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Let 𝐻 𝑚 = 𝑄𝑅 by Givens rotations matrices.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 −𝐻
 
𝑚𝒚
𝑘||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝑄(𝛽𝒆1 −𝐻
 
𝑚𝒚
𝑘)||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝑄𝒆1 − 𝑅𝒚
𝑘||2 
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Preconditioning 

Basic idea: using GMRES on a modified system such as 
𝑀−1𝐴𝒙 = 𝑀−1𝒃. 

The matrix 𝑀−1𝐴 need not to be formed explicitly. 
However, 𝑀𝒘 = 𝒗 need to be solved whenever 
needed.  

 

Left preconditioning  
𝑀−1𝐴𝒙 = 𝑀−1𝒃 

Right preconditioning 
𝐴𝑀−1𝒖 = 𝒃⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝒙 = 𝑀−1𝒖 

Split preconditioning: 𝑀 is factored as 𝑀 = 𝑀𝐿𝑀𝑅 
𝑀𝐿
−1𝐴𝑀𝑅

−1𝒖 = 𝑀𝐿
−1𝒃⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝒙 = 𝑀𝑅

−1𝒖 
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GMRES with Left Preconditioning 

The Arnoldi process constructs an orthogonal basis for 
Span{𝒓0, 𝑀

−1𝐴𝒓0, (𝑀
−1𝐴)2𝒓0, … (𝑀

−1𝐴)𝑘−1𝒓0}. 
  
Sadd. Iterative Methods for Sparse Linear Systems 
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GMRES with Right Preconditioning 

Right preconditioned GMRES is based on solving 
𝐴𝑀−1𝒖 = 𝒃⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝒙 = 𝑀−1𝒖. 

• The initial residual is: 𝒃 − 𝐴𝑀−1𝒖0 = 𝒃 − 𝐴𝒙0. 

– This means all subsequent vectors of the Krylov subspace 
can be obtained without any references to the 𝒖. 

• At the end of right preconditioned GMRES: 

𝒖𝑚 = 𝒖0 + 𝒗𝑖𝜂𝑖

𝑚

𝑖=1

⁡⁡⁡𝑤𝑖𝑡ℎ⁡⁡⁡𝒖0 = 𝑀𝒙0 

𝒙𝑚 = 𝒙0 +𝑀
−1 𝒗𝑖𝜂𝑖

𝑚

𝑖=1
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GMRES with Right Preconditioning 

The Arnoldi process constructs an orthogonal basis for 
Span{𝒓0, 𝐴𝑀

−1𝒓0, (𝐴𝑀
−1)2𝒓0, … (𝐴𝑀

−1)𝑘−1𝒓0}. 
  
Sadd. Iterative Methods for Sparse Linear Systems. 12 



Split Preconditioning 

• 𝑀 can be a factorization of the form 𝑀 = 𝐿𝑈. 

 

• Then 𝐿−1𝐴𝑈−1𝒖 = 𝐿−1𝒃, ⁡⁡𝑤𝑖𝑡ℎ⁡⁡⁡𝒙 = 𝑈−1𝒖. 

– Need to operate on the initial residual by 𝐿−1(𝒃 −
𝐴𝒙𝟎)⁡ 

– Need to operate on the linear combination 
𝑈−1(𝑉𝑚𝒚𝑚) in forming the approximate solution 
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Comparison of Left and Right Preconditioning 

• Spectra of 𝑀−1𝐴, 𝐴𝑀−1 and 𝐿−1𝐴𝑈−1⁡are 
identical. 

• In principle, one should expect convergence to 
be similar.  

• When 𝑀 is ill-conditioned, the difference could 
be substantial.  
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Jacobi Preconditioner 

Iterative method for solving 𝐴𝑥 = 𝑏 takes the form: 
𝒙𝑘+1 = 𝑀

−1𝑁𝒙𝑘 +𝑀
−1𝒃 where 𝑀⁡𝑎𝑛𝑑⁡𝑁 split 𝐴 

into 𝐴 = 𝑀 −𝑁. 

• Define 𝐺 = 𝑀−1𝑁 = 𝑀−1 𝑀 − 𝐴 = 𝐼 −𝑀−1𝐴  
and 𝒇 = 𝑀−1𝒃.  

• Iterative method is to solve 𝐼 − 𝐺 𝒙 = 𝒇, which 
can be written as 𝑀−1𝐴𝒙 = 𝑀−1𝒃.  

 

Jacobi iterative method: 𝒙𝑘+1 = 𝐺𝐽𝐴𝒙𝑘 + 𝒇 where  
𝐺𝐽𝐴 = (𝐼 − 𝐷

−1𝐴) and 𝒇 = 𝐷−1𝒃 

• 𝑀 = 𝐷 for Jacobi method.  
15 



SOR/SSOR Preconditioner 

• Define: 𝐴 = 𝐷 − 𝐸 − 𝐹 
• Gauss-Seidel: 𝐺𝐺𝑆 = 𝐼 − (𝐷 − 𝐸)

−1𝐴 

•  𝑀𝑆𝑂𝑅 =
1

𝑤
⁡(𝐷 − 𝑤𝐸) 
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A symmetric SOR (SSOR) consists of: 
𝐷 −𝑤𝐸 𝒙

𝑘+
1
2
= 𝑤𝐹 + 1 − 𝑤 𝐷 𝒙𝑘 +𝑤𝒃 

𝐷 − 𝑤𝐹 𝒙𝑘+1 = 𝑤𝐸 + 1 − 𝑤 𝐷 𝒙𝑘+12
+ 𝑤𝒃 

This gives 
𝒙𝑘+1 = 𝐺𝑆𝑆𝑂𝑅𝒙𝑘 + 𝒇  

Where 
𝐺𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐹

−1(𝑤𝐸 + 1 − 𝑤 𝐷) 𝐷 − 𝑤𝐸 −1(𝑤𝐹 +
1 − 𝑤 𝐷)    

          
• 𝑀𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐸 𝐷

−1(𝐷 − 𝑤𝐹); 𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷
−1(𝐷 − 𝐹);  

• Note: SSOR usually is used when 𝐴 is symmetric  



Take symmetric GS for example: 
𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷

−1 𝐷 − 𝐹  

• Define: 𝐿 = 𝐷 − 𝐸 𝐷−1 = 𝐼 − 𝐸𝐷−1 and 
𝑈 = 𝐷 − 𝐹. 

• 𝐿 is a lower triangular matrix and 𝑈 is a upper 
triangular matrix.  

• To solve 𝑀𝑆𝐺𝑆𝒘 = 𝒙 for 𝒘, a forward solve and a 
backward solve are used: 

– Solve 𝐼 − 𝐸𝐷−1 𝒛 = 𝒙 for 𝒛 

– Solve 𝐷 − 𝐹 𝒘 = 𝒛 for 𝒘 
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Incomplete LU(0) Factorization 

Define: 𝑁𝑍 𝑋 = {(𝑖, 𝑗)|𝑋𝑖,𝑗 ≠ 0} 

Incomplete LU (ILU(0)): 

• 𝐴 = 𝐿𝑈 + 𝑅 with 𝑁𝑍 𝐿 ∪ 𝑁𝑍 𝑈 = 𝑁𝑍(𝐴) 
𝑟𝑖𝑗 = 0⁡⁡⁡𝑓𝑜𝑟⁡(𝑖, 𝑗) ∈ 𝑁𝑍(𝐴) 

I.e. 𝐿 and 𝑈 have no fill-ins at the entries 𝑎𝑖𝑗 = 0. 

 

18 

for 𝑖 = 1 to 𝑛 
    for 𝑘 = 1 to 𝑖 − 1 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴) 
        𝑎𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑗 

        for j = 𝑘 + 1 to 𝑛 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴) 
             𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗 

        end; 
     end; 
end;  



ILU(0) 

19 Sadd. Iterative Methods for Sparse Linear Systems. 



Parallel GMRES 

• J. Erhel. A parallel GMRES version for general sparse matrices. 
Electronic Transactions on Numerical Analyis. 3:160-176, 1995.  

• Implementation in PETSc (Portable, Extensible Toolkit for 
Scientific Computation) 
– http://www.mcs.anl.gov/petsc/  
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http://www.mcs.anl.gov/petsc/


Parallel Libraries 

ScaLAPACK 

• http://www.netlib.org/scalapack/ 

• Based on LAPACK (Linear Algebra PACKage) and BLAS 
(Basic Linear Algebra Subroutines) 

• Parallelized by “divide and conquer” or block 
distribution 

• Written in Fortran 90 

• Successor of LINPACK, which was originally written 
for vector supercomputers in the 1970s 

• Implemented on top of MPI using MIMD, SPMD, and 
used explicit message passing 
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http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/


PETSc (Portable, Extensible Toolkit for Scientific Computation) 

• http://www.mcs.anl.gov/petsc/ 

• Suite of data structures (core: distributed vectors and 
matrices) and routines for linea and non-linear solvers 

• User (almost) never has to call MPI himself when using 
PETSc 

• Uses two MPI communicators: PETSC_COMM_SELF for the 
library-internal communication and 
PETSC_COMM_WORLD for user processes 

• Written in C, callable from Fortran 

• Has been used to solve systems with over 500 millions 
unknowns 

• Has been shown to scale up to over 6000 processors 
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http://www.mcs.anl.gov/petsc/


PETSc Structure 
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PETSc Numerical Solvers 
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Parallel Random Number Generator 

SPRNG (The Scalable parallel random number 
generators library) 

• http://sprng.cs.fsu.edu/ 

• Random number sequence does not depend on the 
number of processors used, but only on the seed 
a  reproducible Monte Carlo simulations in parallel 

• SPRNG implements parallel-safe, high-quality 
random number generators 

• C++/Fortran (used to be C/Fortran in previous 
versions) 
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http://sprng.cs.fsu.edu/
http://sprng.cs.fsu.edu/


Parallel PDE Solver 

POOMA (Parallel Object-Oriented Methods and 
Applications) 
• http://acts.nersc.gov/formertools/pooma/index.html 

• Collection of templated C++ classes for writing 
parallel PDE solvers 

• Provides high-level data types (abstractions) for 
fields and particles using data-parallel arrays 

• Supports finite-difference simulations on structured, 
unstructured, and adaptive grids. Also supports 
particle simulations, hybrid particle-mesh 
simulations, and Monte Carlo 

• Uses mixed message-passing/thread parallelism 
26 

http://acts.nersc.gov/formertools/pooma/index.html
http://acts.nersc.gov/formertools/pooma/index.html


Many more… 
• Aztec (iterative solvers for sparse linear systems) 
• SuperLU (LU decomposition) 
• Umfpack (unsymmetric multifrontal LU) 
• EISPACK (eigen-solvers) 
• Fishpack (cyclic reduction for 2nd & 4th order FD) 
• PARTI (Parallel run-time system) 
• Bisect (recursive orthogonal bisection) 
• ROMIO (parallel distributed file I/O) 
• KINSol (solves the nonlinear algebraic systems) 

https://computation.llnl.gov/casc/sundials/main.html 
• SciPy (Scientific Tools for Phython) http://www.scipy.org/ 
• …  
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https://computation.llnl.gov/casc/sundials/main.html
http://www.scipy.org/
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