
Lecture 8: Fast Linear Solvers
(Part 7)

1

2

Modified Gram-Schmidt Process with
Reorthogonalization

Test Reorthogonalization

If 𝐴𝑣𝑘||2 + 𝛿 𝑣𝑘+1||2 =

||𝐴𝑣𝑘||2 to working
precision.
 𝛿 = 10−3

Householder Arnoldi
• In Arnoldi algorithm, the column vectors of a matrix to be

orthonormalized are not available ahead of time.

• In stead, the next vector is 𝐴𝑣𝑗, where 𝑣𝑗 is current basis vector.
• In the Householder algorithm, an orthogonal column 𝑣𝑖 is

obtained as 𝐻1…𝐻𝑖𝑒𝑖.

3

H.F. Walker: Implementation of the GMRES method using Householder
transformation. SIAM J. on Sci. Comput. 9:152-163, 1988

Givens Rotations

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 −𝐻

𝑚𝒚
𝑘||2 involves QR

factorization.

Do QR factorizations of 𝐻𝑘 by Givens Rotations.

• A 2 × 2 Givens rotation is a matrix of the form

𝐺 =
𝑐 −𝑠
𝑠 𝑐

 where 𝑐 = cos⁡(𝜃), 𝑠 = sin⁡(𝜃) for

𝜃 ∈ [−𝜋, 𝜋]. The orthogonal matrix 𝐺 rotates the
vector (𝑐, −𝑠)𝑇 ,⁡ which makes an angle of −𝜃 with
the 𝑥-axis, through an angle 𝜃 so that it overlaps
the 𝑥-axis.

𝐺𝐴
𝑐
−𝑠
=
1
0

4

An 𝑁 × 𝑁 Givens rotation 𝐺𝑗(𝑐, 𝑠) replaces a 2 × 2
block on the diagonal of the 𝑁 × 𝑁 identity matrix
with a 2 × 2 Givens rotations. 𝐺𝑗(𝑐, 𝑠) is with a
2 × 2 Givens rotations in rows and columns 𝑗 and
𝑗 + 1.

• Givens rotations can be used in reducing
Hessenberg matrices to triangular form. This can
be done in 𝑂 𝑁 floating-point operations.

• Let 𝐻 be an 𝑁 ×𝑀(𝑁 ≥ 𝑀) upper Hessenberg
matrix with rank 𝑀. We reduce 𝐻 to triangular
form by first multiplying the matrix by a Givens
rotations that zeros ℎ21 (values of ℎ11⁡and
subsequent columns are changed)

5

• Step 1: Define 𝐺1(𝑐1, 𝑠1) by 𝑐1 = ℎ11/ ℎ11
2 + ℎ21

2 and
𝑠1 = −ℎ21/ ℎ11

2 + ℎ21
2 . Replace 𝐻 by 𝐺1𝐻.

• Step 2: Define 𝐺2(𝑐2, 𝑠2) by 𝑐2 = ℎ22/ ℎ22
2 + ℎ32

2 and

𝑠2 = −ℎ32/ ℎ22
2 + ℎ32

2 . Replace 𝐻 by 𝐺2𝐻.

• …

• Step j: Define 𝐺𝑗(𝑐𝑗 , 𝑠𝑗) by 𝑐𝑗 = ℎ𝑗𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2 and

𝑠𝑗 = −ℎ𝑗+1,𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2 . Replace 𝐻 by 𝐺𝑗𝐻.

Setting 𝑄 = 𝐺𝑁…𝐺1. 𝑅 = 𝑄𝐻 is upper triangular.

6

Let 𝐻 𝑚 = 𝑄𝑅 by Givens rotations matrices.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 −𝐻

𝑚𝒚
𝑘||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝑄(𝛽𝒆1 −𝐻

𝑚𝒚
𝑘)||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝑄𝒆1 − 𝑅𝒚
𝑘||2

7

8

Preconditioning

Basic idea: using GMRES on a modified system such as
𝑀−1𝐴𝒙 = 𝑀−1𝒃.

The matrix 𝑀−1𝐴 need not to be formed explicitly.
However, 𝑀𝒘 = 𝒗 need to be solved whenever
needed.

Left preconditioning
𝑀−1𝐴𝒙 = 𝑀−1𝒃

Right preconditioning
𝐴𝑀−1𝒖 = 𝒃⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝒙 = 𝑀−1𝒖

Split preconditioning: 𝑀 is factored as 𝑀 = 𝑀𝐿𝑀𝑅
𝑀𝐿
−1𝐴𝑀𝑅

−1𝒖 = 𝑀𝐿
−1𝒃⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝒙 = 𝑀𝑅

−1𝒖

9

GMRES with Left Preconditioning

The Arnoldi process constructs an orthogonal basis for
Span{𝒓0, 𝑀

−1𝐴𝒓0, (𝑀
−1𝐴)2𝒓0, … (𝑀

−1𝐴)𝑘−1𝒓0}.

Sadd. Iterative Methods for Sparse Linear Systems

10

GMRES with Right Preconditioning

Right preconditioned GMRES is based on solving
𝐴𝑀−1𝒖 = 𝒃⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝒙 = 𝑀−1𝒖.

• The initial residual is: 𝒃 − 𝐴𝑀−1𝒖0 = 𝒃 − 𝐴𝒙0.

– This means all subsequent vectors of the Krylov subspace
can be obtained without any references to the 𝒖.

• At the end of right preconditioned GMRES:

𝒖𝑚 = 𝒖0 + 𝒗𝑖𝜂𝑖

𝑚

𝑖=1

⁡⁡⁡𝑤𝑖𝑡ℎ⁡⁡⁡𝒖0 = 𝑀𝒙0

𝒙𝑚 = 𝒙0 +𝑀
−1 𝒗𝑖𝜂𝑖

𝑚

𝑖=1

11

GMRES with Right Preconditioning

The Arnoldi process constructs an orthogonal basis for
Span{𝒓0, 𝐴𝑀

−1𝒓0, (𝐴𝑀
−1)2𝒓0, … (𝐴𝑀

−1)𝑘−1𝒓0}.

Sadd. Iterative Methods for Sparse Linear Systems. 12

Split Preconditioning

• 𝑀 can be a factorization of the form 𝑀 = 𝐿𝑈.

• Then 𝐿−1𝐴𝑈−1𝒖 = 𝐿−1𝒃, ⁡⁡𝑤𝑖𝑡ℎ⁡⁡⁡𝒙 = 𝑈−1𝒖.

– Need to operate on the initial residual by 𝐿−1(𝒃 −
𝐴𝒙𝟎)⁡

– Need to operate on the linear combination
𝑈−1(𝑉𝑚𝒚𝑚) in forming the approximate solution

13

Comparison of Left and Right Preconditioning

• Spectra of 𝑀−1𝐴, 𝐴𝑀−1 and 𝐿−1𝐴𝑈−1⁡are
identical.

• In principle, one should expect convergence to
be similar.

• When 𝑀 is ill-conditioned, the difference could
be substantial.

14

Jacobi Preconditioner

Iterative method for solving 𝐴𝑥 = 𝑏 takes the form:
𝒙𝑘+1 = 𝑀

−1𝑁𝒙𝑘 +𝑀
−1𝒃 where 𝑀⁡𝑎𝑛𝑑⁡𝑁 split 𝐴

into 𝐴 = 𝑀 −𝑁.

• Define 𝐺 = 𝑀−1𝑁 = 𝑀−1 𝑀 − 𝐴 = 𝐼 −𝑀−1𝐴
and 𝒇 = 𝑀−1𝒃.

• Iterative method is to solve 𝐼 − 𝐺 𝒙 = 𝒇, which
can be written as 𝑀−1𝐴𝒙 = 𝑀−1𝒃.

Jacobi iterative method: 𝒙𝑘+1 = 𝐺𝐽𝐴𝒙𝑘 + 𝒇 where
𝐺𝐽𝐴 = (𝐼 − 𝐷

−1𝐴) and 𝒇 = 𝐷−1𝒃

• 𝑀 = 𝐷 for Jacobi method.
15

SOR/SSOR Preconditioner

• Define: 𝐴 = 𝐷 − 𝐸 − 𝐹
• Gauss-Seidel: 𝐺𝐺𝑆 = 𝐼 − (𝐷 − 𝐸)

−1𝐴

• 𝑀𝑆𝑂𝑅 =
1

𝑤
⁡(𝐷 − 𝑤𝐸)

16

A symmetric SOR (SSOR) consists of:
𝐷 −𝑤𝐸 𝒙

𝑘+
1
2
= 𝑤𝐹 + 1 − 𝑤 𝐷 𝒙𝑘 +𝑤𝒃

𝐷 − 𝑤𝐹 𝒙𝑘+1 = 𝑤𝐸 + 1 − 𝑤 𝐷 𝒙𝑘+12
+ 𝑤𝒃

This gives
𝒙𝑘+1 = 𝐺𝑆𝑆𝑂𝑅𝒙𝑘 + 𝒇

Where
𝐺𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐹

−1(𝑤𝐸 + 1 − 𝑤 𝐷) 𝐷 − 𝑤𝐸 −1(𝑤𝐹 +
1 − 𝑤 𝐷)

• 𝑀𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐸 𝐷

−1(𝐷 − 𝑤𝐹); 𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷
−1(𝐷 − 𝐹);

• Note: SSOR usually is used when 𝐴 is symmetric

Take symmetric GS for example:
𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷

−1 𝐷 − 𝐹

• Define: 𝐿 = 𝐷 − 𝐸 𝐷−1 = 𝐼 − 𝐸𝐷−1 and
𝑈 = 𝐷 − 𝐹.

• 𝐿 is a lower triangular matrix and 𝑈 is a upper
triangular matrix.

• To solve 𝑀𝑆𝐺𝑆𝒘 = 𝒙 for 𝒘, a forward solve and a
backward solve are used:

– Solve 𝐼 − 𝐸𝐷−1 𝒛 = 𝒙 for 𝒛

– Solve 𝐷 − 𝐹 𝒘 = 𝒛 for 𝒘

17

Incomplete LU(0) Factorization

Define: 𝑁𝑍 𝑋 = {(𝑖, 𝑗)|𝑋𝑖,𝑗 ≠ 0}

Incomplete LU (ILU(0)):

• 𝐴 = 𝐿𝑈 + 𝑅 with 𝑁𝑍 𝐿 ∪ 𝑁𝑍 𝑈 = 𝑁𝑍(𝐴)
𝑟𝑖𝑗 = 0⁡⁡⁡𝑓𝑜𝑟⁡(𝑖, 𝑗) ∈ 𝑁𝑍(𝐴)

I.e. 𝐿 and 𝑈 have no fill-ins at the entries 𝑎𝑖𝑗 = 0.

18

for 𝑖 = 1 to 𝑛
 for 𝑘 = 1 to 𝑖 − 1 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴)
 𝑎𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑗

 for j = 𝑘 + 1 to 𝑛 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴)
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗

 end;
 end;
end;

ILU(0)

19 Sadd. Iterative Methods for Sparse Linear Systems.

Parallel GMRES

• J. Erhel. A parallel GMRES version for general sparse matrices.
Electronic Transactions on Numerical Analyis. 3:160-176, 1995.

• Implementation in PETSc (Portable, Extensible Toolkit for
Scientific Computation)
– http://www.mcs.anl.gov/petsc/

20

http://www.mcs.anl.gov/petsc/

Parallel Libraries

ScaLAPACK

• http://www.netlib.org/scalapack/

• Based on LAPACK (Linear Algebra PACKage) and BLAS
(Basic Linear Algebra Subroutines)

• Parallelized by “divide and conquer” or block
distribution

• Written in Fortran 90

• Successor of LINPACK, which was originally written
for vector supercomputers in the 1970s

• Implemented on top of MPI using MIMD, SPMD, and
used explicit message passing

21

http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/

PETSc (Portable, Extensible Toolkit for Scientific Computation)

• http://www.mcs.anl.gov/petsc/

• Suite of data structures (core: distributed vectors and
matrices) and routines for linea and non-linear solvers

• User (almost) never has to call MPI himself when using
PETSc

• Uses two MPI communicators: PETSC_COMM_SELF for the
library-internal communication and
PETSC_COMM_WORLD for user processes

• Written in C, callable from Fortran

• Has been used to solve systems with over 500 millions
unknowns

• Has been shown to scale up to over 6000 processors

22

http://www.mcs.anl.gov/petsc/

PETSc Structure

23

PETSc Numerical Solvers

24

Parallel Random Number Generator

SPRNG (The Scalable parallel random number
generators library)

• http://sprng.cs.fsu.edu/

• Random number sequence does not depend on the
number of processors used, but only on the seed
a reproducible Monte Carlo simulations in parallel

• SPRNG implements parallel-safe, high-quality
random number generators

• C++/Fortran (used to be C/Fortran in previous
versions)

25

http://sprng.cs.fsu.edu/
http://sprng.cs.fsu.edu/

Parallel PDE Solver

POOMA (Parallel Object-Oriented Methods and
Applications)
• http://acts.nersc.gov/formertools/pooma/index.html

• Collection of templated C++ classes for writing
parallel PDE solvers

• Provides high-level data types (abstractions) for
fields and particles using data-parallel arrays

• Supports finite-difference simulations on structured,
unstructured, and adaptive grids. Also supports
particle simulations, hybrid particle-mesh
simulations, and Monte Carlo

• Uses mixed message-passing/thread parallelism
26

http://acts.nersc.gov/formertools/pooma/index.html
http://acts.nersc.gov/formertools/pooma/index.html

Many more…
• Aztec (iterative solvers for sparse linear systems)
• SuperLU (LU decomposition)
• Umfpack (unsymmetric multifrontal LU)
• EISPACK (eigen-solvers)
• Fishpack (cyclic reduction for 2nd & 4th order FD)
• PARTI (Parallel run-time system)
• Bisect (recursive orthogonal bisection)
• ROMIO (parallel distributed file I/O)
• KINSol (solves the nonlinear algebraic systems)

https://computation.llnl.gov/casc/sundials/main.html
• SciPy (Scientific Tools for Phython) http://www.scipy.org/
• …

27

https://computation.llnl.gov/casc/sundials/main.html
http://www.scipy.org/

References:
– C.T. Kelley. Iterative Methods for Linear and Nonlinear

Equations.

– Yousef Sadd. Iterative methods for Sparse Linear
Systems

– G. Karypis and V. Kumar. Parallel Threshold-based ILU
Factorization. Technical Report #96-061. U. of
Minnesota, Dept. of Computer Science, 1998.

– P.-O. Persson and J. Peraire. Newton-GMRES
Preconditioning for Discontinuous Galerkin
Discretizations of the Navier-Stokes Equations. SIAM J.
on Sci. Comput. 30(6), 2008.

 28

