Lecture 8: Fast Linear Solvers
(Part 7)

Modified Gram-Schmidt Process with
Reorthogonalization

V1] — r’lt‘k

hs1 ke = |41l

If loss of orthogonalitly is detected

For j=1,....k
hump = 1y
hﬂi‘ = 'I'rjﬁ'.: + hf?np

Uk4+1 = Vk+1 — "’tmp*'j
P11k = || Vkt1]]2

VUke+1 = Vk+1/ || Vk+1][2

Test Reorthogonalization

If [|Av ||z + 81| visallz =
||Avi ||, to working
precision.

6§ =103

Householder Arnoldi

In Arnoldi algorithm, the column vectors of a matrix to be
orthonormalized are not available ahead of time.

In stead, the next vector is Av;, where v; is current basis vector.

In the Householder algorithm, an orthogonal column v; is
obtained as H; ... He;.

ALGORITHM 6.3: Householder Arnoldi

Select a nonzero vectorv:; Setz; = v
Fory=1.....m.m -+ 1 Do:
Compute the Householder unit vector w; such that
(wi)i =0.i=1.....5 — 1 and
(Pizi)i =0.i=j+1.....n,where P; — I — E'rz-_,.'rc'_:f'
hj 1 =Pz,
U4 P| F_} B P.'f:_.'
If j < m compute z; ., :—= P ... P Av,

EndDo

e = VT T R

o L

H.F. Walker: Implementation of the GMRES method using Householder
transformation. SIAM J. on Sci. Comput. 9:152-163, 1988

Givens Rotations

. . . Ir k .
minimize,,pk||fe; — Hpy"||2 involves QR
factorization.

Do QR factorizations of Hj, by Givens Rotations.

* A2 X 2 Givens rotation is a matrix of the form
G = [g CS] where ¢ = cos(0), s = sin(0) for
0 € |—m, m]. The orthogonal matrix G rotates the

vector (c, —s)T, which makes an angle of —8 with
the x-axis, through an angle 6 so that it overlaps

the x-axis.
6al 5] =]

An N X N Givens rotation G;(c, s) replacesa 2 X 2
block on the diagonal of the N X N identity matrix
with a 2 X 2 Givens rotations. G;(c, s) is with a

2 X 2 Givens rotations in rows and columns j and
Jj+ 1

* Givens rotations can be used in reducing

Hessenberg matrices to triangular form. This can
e done in O(N) floating-point operations.

 Let Hbean N X M(N = M) upper Hessenberg
matrix with rank M. We reduce H to triangular
form by first multiplying the matrix by a Givens
rotations that zeros h,, (values of h{; and
subsequent columns are changed)

* Step 1: Define G1(cy,51) by ¢; = hy1/+/h?, + h%, and
s; = —hyy/\/h?; + h%,. Replace H by G, H.

e Step 2: Define G,(c5,5,) by ¢y = hzz/\/hgz + h%, and

Sy = —h32/\/h§2 + h%,. Replace H by G,H.

* Step j: Define G;(cj,s;) by ¢; = hjj/\/hjzj + hj2+1’j and

S; = —hj+1,j/\/hj2j + h?,, ;. Replace H by G;H.

Setting Q = Gy ...G1. R = QH is upper triangular.

Let H,, = QR by Givens rotations matrices.

o k
minimize,,cpx||fe1 — Hny"|l2

R 7ok
= minimize,, . k||Q(fe1 — Hny*)|l2
= minimize,,cpr||[fQe; — Ry“||;

ALGORITHM 3.5.1. gmres(x,b, A, €, kmazx, p)
L r=b— Az, vy =r/|rll2, p=|[rll2, B=p,
k=0;g=p(1,0,...,0)7 ¢ Rkmaz+1

2. While p > €||bl|2 and k < kmazx do

(a) k=k+1
(b) vpy1 = Avg
for j=1,...k

i hjk = v v

. Vg1 = Vg1 — hykvj
(¢) hk+1k = |[vrsil2
(d) Test for loss of orthogonality and reorthogonalize if necessary.
(€) vkt1 = vrtt/[lvr+1lf2
(f) 1. If k> 1 apply Qp_1 to the kth column of H.

i v = /b3 R,

il ex = hpg/v, sp = —hii1x/v

hi i = cihi g — Sphist ks Pep1 =0

iv. g = Ggler, si)g-

(&) = 1(9)k+1l.

3. Set Tz'?j:hfg?j fDl" 1 ‘i_:%_?ik'
Set (w); = (g); for 1 <1 < k.
Solve the upper triangular system Ry* = w.

4.z, = o + Viy".

Preconditioning

Basic idea: using GMRES on a modified system such as
M~1Ax = M~1b.

The matrix M~ 1A need not to be formed explicitly.
However, Mw = v need to be solved whenever
needed.

Left preconditioning
M~ 1Ax =M1b
Right preconditioning
AM™lu =b with x =M 1u
Split preconditioning: M is factored as M = M; Mp
M7 1AMz u = M;'b with x = Mz'u

GMRES with Left Preconditioning

ALGORITHM 9.4: GMRES with Left Preconditioning

1
1

12.

= Al SOV S

— S 0 N

Compute rg = M1 (h — fl.‘;i'?(]). 3= ||'T‘[] ||3 and vy = 'T‘[]/_.-‘j
Forj=1,...,m Do:
Computew := M~ Av;
Fori=1,...,7.Do:
h.g!j L= ('H-‘.,'?J.g)
w = w — hi jv;

EndDo

Compute h;yq ; = ||w|l2 and vy = w/hjsq
EndDo
Define 1E"'rm L= ['UI veeesUm s Hm — {h-i,_j}I <1< i1 1< 3<<Im

Compute y,,, = argmin, ||3e; — Hyyll2, and xm = xo + Vi ym

If satisfied Stop. else set kg := x,, and GoTo I

The Arnoldi process constructs an orthogonal basis for
Span{ry, M~ 1Ary, (M~ 1A)%r, ...(M~1A)*"1r,}.

Sadd. Iterative Methods for Sparse Linear Systems

10

GMRES with Right Preconditioning

Right preconditioned GMRES is based on solving
AM~u = b with x = M~ tu.
e The initial residual is: b — AM~tuy, = b — Ax,.

— This means all subsequent vectors of the Krylov subspace
can be obtained without any references to the u.

* At the end of right preconditioned GMRES:
m

U, = Uy + z v;n; with uy = Mx,

=1
m
Xm — Xp —+ M_lzvmi
=1

GMRES with Right Preconditioning

ALGORITHM 9.5: GMRES with Right Precohditioning

|
C 'DHIJUHTE o = h — f]..',i’f[] . }{ = ||"!”(] ||3 candvy = iy / }f

1.

2. Forj=1,...,m Do:

3. Computew := AM v,

4. Fori=1,...,7.Do:

5. hi = (w,v;)

6. wi=w — hi jv;

7. EndDo

8. Computeh;, ;= |lw|andv; 1 =w/h;1

9. Define I-";ﬂ_ — [‘EJ] gu oy 'L‘m: . Hn-,._ = {h.j:‘_j}1 <i<ib1:1<i<m
10. EndDo
11. Computey,, = argmin,||8e; — Hyy||o. and x,, = x¢ + MV, ym.
12. If satisfied Stop. else set xgy := x,, and GoTo 1.

The Arnoldi process constructs an ortho%onal basis for
Span{ry, AM~r,, (AM =11, ... (AM~) 1r,}.

Sadd. Iterative Methods for Sparse Linear Systems. 12

Split Preconditioning

e M can be a factorization of the form M = LU.

e Then L“1AU u=L"1b, with x=U"1u.
— Need to operate on the initial residual by L™1(b —
Axo)

— Need to operate on the linear combination
U~1(V,,y,,) in forming the approximate solution

Comparison of Left and Right Preconditioning

e Spectraof M™*A, AM~ ' and L"tAU ! are
identical.

* |n principle, one should expect convergence to
be similar.

e When M is ill-conditioned, the difference could
be substantial.

Jacobi Preconditioner

lterative method for solving Ax = b takes the form:

Xp+1 = M7 INx, + M~1b where M and N split A

intoA =M — N.

e DefineG=M"N=M"1M-A)=1-M1A
and f = M~1b.

* |terative method is to solve (I — G)x = f, which
can be written as M~ 14Ax = M~ 1b.

Jacobi iterative method: Xy 11 = Gj4 X + f where
Gia=({—-D"1'A)andf=D"'b
* M = D for Jacobi method.

SOR/SSOR Preconditioner

-F | » Define:A=D—E—F
D * Gauss-Seidel: G =1 — (D —E)™ 1A
1
- * Msor =, (D — WE)

A symmetric SOR (SSOR) consists of:

(D — WE)xk+1 = |wF + (1 —w)D]|x;, + wb
2
(D —wF)xy.1 = [WE + (1 - W)D]xk+1 + wb
2
This gives

Xi+1 = GssorXk + f
Where
GSSOR = (D — WF)_l(WE + (1 — W)D)(D — WE)_l(WF —+
(1-w)D)

¢ MSSOR = (D — WE)D_l(D — WF), MSGS = (D — E)D_l(D — F),
* Note: SSOR usually is used when A is symmetric

Take symmetric GS for example:

Msgs = (D — E)D™*(D — F)

e Define:L=(D—-E)D"'=1—-ED !and
U=D-—F.

* Lisalower triangular matrix and U is a upper
triangular matrix.

* To solve M;-cw = x for w, a forward solve and a
backward solve are used:
—Solve (I —ED 1)z = x for z
—Solve (D — F)w = z forw

Incomplete LU(O) Factorization

Define: NZ(X) = {(i,j)|X; ; # 0}
Incomplete LU (ILU(O)):

e A=LU+ RwithNZ(L)UNZ(U) = NZ(A)
rij = (fOT' (l,]) (S NZ(A)
l.e. L and U have no fill-ins at the entries a;; = 0.

fori=1ton
fork=1toi—1andif(i,k) € NZ(A)
Qi = Qg /A
forj=k+1tonandif (i,k) € NZ(A)
Aij = Ajj — Ajxkj
end;
end;
end;

LU

ation for a five-point matrix.

ILU(O)

Figure 10.2 The ILU(0) factori

Sadd. Iterative Methods for Sparse Linear Systems.

Parallel GMRES

* J. Erhel. A parallel GMRES version for general sparse matrices.
Electronic Transactions on Numerical Analyis. 3:160-176, 1995.

* Implementation in PETSc (Portable, Extensible Toolkit for
Scientific Computation)

LEVEL OF ABSTRACTION

http://www.mcs.anl.gov/petsc/

APPLICATIONS CODES
PC KSP
{Preconditioners) (Krylov Subspace Methods)

EXTERNAL PACKAGES

.. | FGMRES| LGMRES|| DGMRES

VECTORS || INDEX SETS

GMRES Other KSP

/1N

LAPACK |PCALAPACK | BLACS

MPI

MPI Calls are encapsulated in PETSc routines

http://www.mcs.anl.gov/petsc/

Parallel Libraries

ScaLAPACK

http://www.netlib.org/scalapack/

Based on LAPACK (Linear Algebra PACKage) and BLAS
(Basic Linear Algebra Subroutines)

Parallelized by “divide and conquer” or block
distribution

Written in Fortran 90

Successor of LINPACK, which was originally written
for vector supercomputers in the 1970s

Implemented on top of MPI using MIMD, SPMD, and
used explicit message passing

http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/

PETSc (Portable, Extensible Toolkit for Scientific Computation)

http://www.mcs.anl.gov/petsc/

Suite of data structures (core: distributed vectors and
matrices) and routines for linea and non-linear solvers

User (almost) never has to call MPI himself when using
PETSc

Uses two MPI communicators: PETSC_COMM _SELF for the
library-internal communication and
PETSC_COMM_WORLD for user processes

Written in C, callable from Fortran

Has been used to solve systems with over 500 millions
unknowns

Has been shown to scale up to over 6000 processors

http://www.mcs.anl.gov/petsc/

PETSc Structure

ODE Integrators

PETSc Numerical Solvers

|
Nonlinear Solvers Time Steppers
Newton-based Methods rar . -
Other Euler Baﬁﬁ;i}ld PE’E}?D Elléue Other
Line Search | Trust Region SIePPHE
Krylov Subspace Methods
GMRES CG CGS | Bi-CG-STAB | TFQMR | Richardson | Chebychev | Other
Preconditioners
Additive Block : LU _
Schwartz Jacobi Jacobi ILU ICC (Sequential only) Others
Matrices
Compressed | Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Matrix-free Other
(ALT) (BALD) (BDIAG)
Distributed Arrays Index Sets
Indices Block Indices Stride Other

Vectors

Parallel Random Number Generator

SPRNG (The Scalable parallel random number
generators library)

http://sprng.cs.fsu.edu/

Random number sequence ©
number of processors used,

oes not depend on the
out only on the seed

a reproducible Monte Car

o simulations in parallel

SPRNG implements parallel-safe, high-quality

random number generators

C++/Fortran (used to be C/Fortran in previous

versions)

http://sprng.cs.fsu.edu/
http://sprng.cs.fsu.edu/

Parallel PDE Solver

POOMA (Parallel Object-Oriented Methods and
Applications)

* http://acts.nersc.gov/formertools/pooma/index.html

* Collection of templated C++ classes for writing
parallel PDE solvers

* Provides high-level data types (abstractions) for
fields and particles using data-parallel arrays

* Supports finite-difference simulations on structured,
unstructured, and adaptive grids. Also supports
particle simulations, hybrid particle-mesh
simulations, and Monte Carlo

* Uses mixed message-passing/thread parallelism

http://acts.nersc.gov/formertools/pooma/index.html
http://acts.nersc.gov/formertools/pooma/index.html

Many more...

e Aztec (iterative solvers for sparse linear systems)
e SuperLU (LU decomposition)

 Umfpack (unsymmetric multifrontal LU)

e EISPACK (eigen-solvers)

* Fishpack (cyclic reduction for 2nd & 4th order FD)
* PARTI (Parallel run-time system)

* Bisect (recursive orthogonal bisection)

 ROMIO (parallel distributed file 1/0)

* KINSol (solves the nonlinear algebraic systems)
https://computation.linl.gov/casc/sundials/main.html

* SciPy (Scientific Tools for Phython) http://www.scipy.org/

https://computation.llnl.gov/casc/sundials/main.html
http://www.scipy.org/

References:

— C.T. Kelley. Iterative Methods for Linear and Nonlinear
Equations.

— Yousef Sadd. Iterative methods for Sparse Linear
Systems

— G. Karypis and V. Kumar. Parallel Threshold-based ILU
Factorization. Technical Report #96-061. U. of
Minnesota, Dept. of Computer Science, 1998.

— P.-O. Persson and J. Peraire. Newton-GMRES
Preconditioning for Discontinuous Galerkin

Discretizations of the Navier-Stokes Equations. SIAM J.
on Sci. Comput. 30(6), 2008.

