
Lecture 10: Introduction to
OpenMP (Part 1)

1

What is OpenMP
Open specifications for Multi Processing
Long version: Open specifications for MultiProcessing via
collaborative work between interested parties from the hardware
and software industry, government and academia.
• An Application Program Interface (API) that is used to explicitly

direct multi-threaded, shared memory parallelism.
• API components:

– Compiler directives
– Runtime library routines
– Environment variables

• Portability
– API is specified for C/C++ and Fortran
– Implementations on almost all platforms including Unix/Linux and

Windows

• Standardization
– Jointly defined and endorsed by major computer hardware and

software vendors
– Possibility to become ANSI standard 2

Brief History of OpenMP

• In 1991, Parallel Computing Forum (PCF) group
invented a set of directives for specifying loop
parallelism in Fortran programs.

• X3H5, an ANSI subcommittee developed an ANSI
standard based on PCF.

• In 1997, the first version of OpenMP for Fortran was
defined by OpenMP Architecture Review Board.

• Binding for C/C++ was introduced later.
• Version 3.1 is available since 2011.

3

4

Thread

• A process is an instance of a computer program that
is being executed. It contains the program code and
its current activity.

• A thread of execution is the smallest unit of
processing that can be scheduled by an operating
system.

• Differences between threads and processes:
– A thread is contained inside a process. Multiple threads

can exist within the same process and share resources
such as memory. The threads of a process share the
latter’s instructions (code) and its context (values that
its variables reference at any given moment).

– Different processes do not share these resources.
http://en.wikipedia.org/wiki/Process_(computing)

 5

http://en.wikipedia.org/wiki/Process_(computing)

Process

• A process contains all the information needed to execute
the program
– Process ID
– Program code
– Data on run time stack
– Global data
– Data on heap
Each process has its own address space.

• In multitasking, processes are given time slices in a
round robin fashion.
– If computer resources are assigned to another process, the

status of the present process has to be saved, in order that
the execution of the suspended process can be resumed at a
later time.

6

Threads

• Thread model is an extension of the process model.
• Each process consists of multiple independent

instruction streams (or threads) that are assigned
computer resources by some scheduling procedure.

• Threads of a process share the address space of this
process.
– Global variables and all dynamically allocated data objects

are accessible by all threads of a process

• Each thread has its own run time stack, register,
program counter.

• Threads can communicate by reading/writing
variables in the common address space.

7

OpenMP Programming Model

• Shared memory, thread-based parallelism
– OpenMP is based on the existence of multiple threads in

the shared memory programming paradigm.

– A shared memory process consists of multiple threads.

• Explicit Parallelism
– Programmer has full control over parallelization. OpenMP

is not an automatic parallel programming model.

• Compiler directive based
– Most OpenMP parallelism is specified through the use of

compiler directives which are embedded in the source
code.

 8

OpenMP is not
– Necessarily implemented identically by all vendors

– Meant for distributed-memory parallel systems (it is designed
for shared address spaced machines)

– Guaranteed to make the most efficient use of shared memory

– Required to check for data dependencies, data conflicts, race
conditions, or deadlocks

– Required to check for code sequences

– Meant to cover compiler-generated automatic parallelization
and directives to the compiler to assist such parallelization

– Designed to guarantee that input or output to the same file is
synchronous when executed in parallel.

9

Fork-Join Parallelism
• OpenMP program begin as a single process: the master thread. The

master thread executes sequentially until the first parallel region
construct is encountered.

• When a parallel region is encountered, master thread
– Create a group of threads by FORK.
– Becomes the master of this group of threads, and is assigned the thread id 0

within the group.

• The statement in the program that are enclosed by the parallel region
construct are then executed in parallel among these threads.

• JOIN: When the threads complete executing the statement in the parallel
region construct, they synchronize and terminate, leaving only the
master thread.

10 Master thread is shown in red.

I/O
• OpenMP does not specify parallel I/O.
• It is up to the programmer to ensure that I/O is

conducted correctly within the context of a multi-
threaded program.

Memory Model
• Threads can “cache” their data and are not required

to maintain exact consistency with real memory all
of the time.

• When it is critical that all threads view a shared
variable identically, the programmer is responsible
for insuring that the variable is updated by all
threads as needed.

11

OpenMP Code Structure
#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()
{
 #pragma omp parallel
 {
 int ID = omp_get_thread_num();
 printf("Hello (%d)\n", ID);
 printf(" world (%d)\n", ID);
 }
}

12

Set # of threads for OpenMP
In csh
setenv OMP_NUM_THREAD 8

Compile: g++ -fopenmp hello.c

Run: ./a.out

See: http://wiki.crc.nd.edu/wiki/index.php/OpenMP

http://wiki.crc.nd.edu/wiki/index.php/OpenMP

OpenMP Core Syntax

#include “omp.h”
int main ()
{
 int var1, var2, var3;
 // Serial code
 . . .
 // Beginning of parallel section.
 // Fork a team of threads. Specify variable scoping
 #pragma omp parallel private(var1, var2) shared(var3)
 {
 // Parallel section executed by all threads
 . . .
 // All threads join master thread and disband
 }

 // Resume serial code . . .
}

13

OpenMP C/C++ Directive Format

OpenMP directive forms

– C/C++ use compiler directives

• Prefix: #pragma omp …

– A directive consists of a directive name followed by
clauses

Example: #pragma omp parallel default (shared) private (var1,
var2)

14

OpenMP Directive Format (2)

General Rules:

• Case sensitive

• Only one directive-name may be specified per
directive

• Each directive applies to at most one succeeding
statement, which must be a structured block.

• Long directive lines can be “continued” on
succeeding lines by escaping the newline
character with a backslash “\” at the end of a
directive line.

15

OpenMP parallel Region Directive

#pragma omp parallel [clause list]
Typical clauses in [clause list]
• Conditional parallelization

– if (scalar expression)
• Determine whether the parallel construct creates threads

• Degree of concurrency
– num_threads (integer expresson)

• number of threads to create

• Date Scoping
– private (variable list)

• Specifies variables local to each thread

– firstprivate (variable list)
• Similar to the private
• Private variables are initialized to variable value before the parallel directive

– shared (variable list)
• Specifies variables that are shared among all the threads

– default (data scoping specifier)
• Default data scoping specifier may be shared or none

16

Example:
#pragma omp parallel if (is_parallel == 1) num_threads(8) shared (var_b)
private (var_a) firstprivate (var_c) default (none)
{
/* structured block */
}

• if (is_parallel == 1) num_threads(8)

– If the value of the variable is_parallel is one, create 8 threads

• shared (var_b)
– Each thread shares a single copy of variable b

• private (var_a) firstprivate (var_c)
– Each thread gets private copies of variable var_a and var_c
– Each private copy of var_c is initialized with the value of var_c in main

thread when the parallel directive is encountered

• default (none)
– Default state of a variable is specified as none (rather than shared)
– Singals error if not all variables are specified as shared or private

 17

Number of Threads

• The number of threads in a parallel region is
determined by the following factors, in order of
precedence:
1. Evaluation of the if clause

2. Setting of the num_threads() clause

3. Use of the omp_set_num_threads() library function

4. Setting of the OMP_NUM_THREAD environment
variable

5. Implementation default – usually the number of cores
on a node

• Threads are numbered from 0 (master thread) to N-1

18

Thread Creation: Parallel Region Example

• Create threads with the parallel construct

#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()
{
 int nthreads, tid;
 #pragma omp parallel num_threads(4) private(tid)
 {
 tid = omp_get_thread_num();
 printf("Hello world from (%d)\n", tid);
 if(tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf(“number of threads = %d\n”, nthreads);
 }
 } // all threads join master thread and terminates
}

 19

Clause to request
threads

Each thread executes a
copy of the code

within the structured
block

Thread Creation: Parallel Region Example
#include <stdlib.h>

#include <stdio.h>

#include "omp.h"

int main(){

 int nthreads, A[100] , tid;

 // fork a group of threads with each thread having a private tid variable

 omp_set_num_threads(4);

 #pragma omp parallel private (tid)

 {

 tid = omp_get_thread_num();

 foo(tid, A);

 } // all threads join master thread and terminates

}

20

A single copy of A[] is shared
between all threads

SPMD vs. Work-Sharing

• A parallel construct by itself creates a “single
program multiple data” program, i.e., each thread
executes the same code.

• Work-sharing is to split up pathways through the
code between threads within a team.

– Loop construct

– Sections/section constructs

– Single construct

– …

21

Work-Sharing Construct

• Within the scope of a parallel directive, work-sharing
directives allow concurrency between iterations or
tasks

• Work-sharing constructs do not create new threads

• A work-sharing construct must be enclosed
dynamically within a parallel region in order for the
directive to execute in parallel.

• Work-sharing constructs must be encountered by all
members of a team or none at all.

• Two directives to be studied
– Do/for: concurrent loop iterations

– sections: concurrent tasks 22

Work-Sharing Do/for Directive

Do/for

• Shares iterations of a loop across the group

• Represents a “data parallelism”.

for directive partitions parallel iterations across
threads

Do is the analogous directive in Fortran

Usage:
#pragma omp for [clause list]

 /* for loop */

• Implicit barrier at end of for loop

23

Example Using for

24

#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()
{
 int nthreads, tid;

 omp_set_num_threads(3);
 #pragma omp parallel private(tid)
 {
 int i;
 tid = omp_get_thread_num();
 printf("Hello world from (%d)\n", tid);
 #pragma omp for
 for(i = 0; i <=4; i++)
 {
 printf(“Iteration %d by %d\n”, i, tid);
 }
 } // all threads join master thread and terminates
}

Another Example Using for

25

• Sequential code to add two vectors
for(i=0;i<N;i++) {c[i] = b[i] + a[i];}

• OpenMP implementation 1 (not desired)
#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id*N/Nthrds;
 iend = (id+1)*N/Nthrds;
 if(id == Nthrds-1) iend = N;
 for(I = istart; i<iend; i++) {c[i] = b[i]+a[i];}
}

• A worksharing for construct to add vectors
#pragma omp parallel
{
 #pragma omp for
 {
 for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
 }
}

or

#pragma omp parallel for
{
 for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
}

26

Execution for loop in parallel

C/C++ for Directive Syntax

#pragma omp for [clause list]

 schedule (type [,chunk])

 ordered

 private (variable list)

 firstprivate (variable list)

 shared (variable list)

 reduction (operator: variable list)

 collapse (n)

 nowait

/* for_loop */

27

Reduction

• How to combine values into a single accumulation
variable (avg)?

28

• Serial code
{
 double avg = 0.0, A[MAX];
 int i;
 …
 for(i =0; i<MAX; i++) {avg += a[i];}
 avg /= MAX;
}

Reduction Clause

• Reduction (operator: variable list): specifies how
to combine local copies of a variable in different
threads into a single copy at the master when
threads exit. Variables in variable list are
implicitly private to threads.
– Operators: +, *, -, &, |, ^, &&, and ||

– Usage
#pragma omp parallel reduction(+: sums) num_threads(4)

{

 /* compute local sums in each thread

}

 /* sums here contains sum of all local instances of sum */

 29

Reduction in OpenMP for

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized

depending on operator (e.g. 0 for “+”)
– Compiler finds standard reduction expressions containing

operator and uses it to update the local copy.
– Local copies are reduced into a single value and combined

with the original global value when returns to the master
thread.

30

{
 double avg = 0.0, A[MAX];
 int i;
 …
 #pragma omp parallel for reduction (+:avg)
 for(i =0; i<MAX; i++) {avg += a[i];}
 avg /= MAX;
}

Reduction Operators/Initial-Values

Operator Initial Value

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0

31

C/C++:

Monte Carlo to estimate PI

32

#include <stdlib.h>

#include <stdio.h>

#include "omp.h"

int main(int argc, char *argv[])

{

 long int i, count; // count points inside unit circle

 long int samples; // number of samples

 double pi;

 unsigned short xi[3] = {1, 5, 177}; // random number seed

 double x, y;

 samples = atoi(argv[1]);

 count = 0;

 for(i = 0; i < samples; i++)

 {

 x = erand48(xi);

 y = erand48(xi);

 if(x*x + y*y <= 1.0) count++;

 }

 pi = 4.0*count/samples;

 printf("Estimate of pi: %7.5f\n", pi);

}

OpenMP version of Monte Carlo to Estimate PI

33

#include <stdio.h>

#include <stdlib.h>

#include “omp.h”

main(int argc, char *argv[])

{

 int i, count; /* points inside the unit quarter circle */

 unsigned short xi[3]; /* random number seed */

 int samples; /* samples Number of points to generate */

 double x,y; /* Coordinates of points */

 double pi; /* Estimate of pi */

 samples = atoi(argv[1]);

 #pragma omp parallel

 {

 xi[0] = 1; /* These statements set up the random seed */

 xi[1] = 1;

 xi[2] = omp_get_thread_num();

 count = 0;

 printf("I am thread %d\n", xi[2]);

 #pragma omp for firstprivate(xi) private(x,y) reduction(+:count)

 for (i = 0; i < samples; i++)

 {

 x = erand48(xi);

 y = erand48(xi);

 if (x*x + y*y <= 1.0) count++;

 }

 }

 pi = 4.0 * (double)count / (double)samples;

 printf("Count = %d, Samples = %d, Estimate of pi: %7.5f\n", count, samples, pi);

}

• A local copy of “count”
for each thread

• All local copies of “count”
added together and
stored in master thread

• Each thread needs
different random number
seeds.

Matrix-Vector Multiplication

34

#pragma omp parallel default (none) \
shared (a, b, c, m,n) private (i,j,sum)
num_threads(4)
for(i=0; i < m; i++){
 sum = 0.0;
 for(j=0; j < n; j++)
 sum += b[i][j]*c[j];
 a[i] =sum;
}

Thread 0, Thread 1, …etc…

schedule clause
• Describe how iterations of the loop are divided among the threads in the

group. The default schedule is implementation dependent.
• Usage: schedule (scheduling_class[, parameter]).

– static
Loop iterations are divided into pieces of size chunk and then statically assigned to threads.
If chunk is not specified, the iteration are evenly (if possible) divided contiguously among
the threads.

– dynamic
Loop iterations are divided into pieces of size chunk and then dynamically assigned to
threads. When a thread finishes one chunk, it is dynamically assigned another. The default
chunk size is 1.

– guided
For a chunk size of 1, the size of each chunk is proportional to the number of unassigned
iterations divided by the number of threads, decreasing to 1. For a chunk size with value
𝑘(𝑘 > 1), the size of each chunk is determined in the same way with the restriction that
the chunks do not contain fewer than 𝑘 iterations (except for the last chunk to be assigned,
which may have fewer than 𝑘 iterations). The default chunk size is 1.

– runtime
The scheduling decision is deferred until runtime by the environment variable
OMP_SCHEDULE. It is illegal to specify a chunk size for this clause

– auto
The scheduling decision is made by the compiler and/or runtime system.

35

• Static scheduling

• 16 iterations, 4 threads:

36

Static Scheduling

// static scheduling of matrix multiplication loops
#pragma omp parallel default (private) \
shared (a, b, c, dim) num_threads(4)
#pragma omp for schedule(static)
for(i=0; i < dim; i++)
{
 for(j=0; j < dim; j++)
 {
 c[i][j] = 0.0;
 for(k=0; j < dim; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
}

37

Static schedule maps iterations to threads
at compile time

Environment Variables

• OMP_SCHEDULE “schedule[, chunk_size]”
– Control how “omp for schedule (RUNTIME)” loop

iterations are scheduled.

• OMP_NUM_THREADS integer
– Set the default number of threads to use

• OMP_DYNAMIC TRUE|FALSE
– Can the program use a different number of threads in

each parallel region?

• OMP_NESTED TRUE |FALSE
– Will nested parallel regions create new teams of

threads, or will they be serialized?

38

By default, worksharing for loops end with an implicit
barrier

• nowait: If specified, threads do not synchronize at the
end of the parallel loop

• ordered: specifies that the iteration of the loop must
be executed as they would be in serial program.

• collapse: specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause. The
sequential execution of the iteration in all associated
loops determines the order of the iterations in the
collapsed iteration space.

39

Avoiding Synchronization with nowait

#pragma omp parallel shared(A,B,C) private(id)
{
 id = omp_get_thread_num();
 A[id] = big_calc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i = 0; i < N; i++) { C[i] = big_calc3(i,A); }
 #pragma omp for nowait
 for(i = 0; i < N; i++) {B[i] = big_calc2(C,i); }
 A[id] = big_calc4(id);
}

40

Barrier: each threads waits till all threads arrive.

No implicit
barrier due to
nowait. Any

thread can begin
big_calc4()

immediately
without waiting

for other threads
to finish the loop

Implicit barrier
at the end of the

parallel region

• By default: worksharing for loops end with an
implicit barrier

• nowait clause:

– Modifies a for directive

– Avoids implicit barrier at end of for

41

Loop Collapse

• Allows parallelization of perfectly nested loops without
using nested parallelism

• Compiler forms a single loop and then parallelizes this

42

{
 …
 #pragma omp parallel for collapse (2)
 for(i=0;i< N; i++)
 {
 for(j=0;j< M; j++)
 {
 foo(A,i,j);
 }
 }
}

For Directive Restrictions

For the “for loop” that follows the for directive:

• It must not have a break statement

• The loop control variable must be an integer

• The initialization expression of the “for loop” must
be an integer assignment.

• The logical expression must be one of <, ≤, >, ≥

• The increment expression must have integer
increments or decrements only.

43

