Lecture 10: Introduction to
OpenMP (Part 2)

Performance Issues |

* C/C++ stores matrices in row-major fashion.
* Loop interchanges may increase cache locality

{

#pragma omp parallel for
for(i=0;i< N; i++)
! for(j=0;j< M; j++)

| Ali][j] =BIil[] + Cli][il;
} }

* Parallelize outer-most loop

Performance Issues Il

Move synchronization points outwards. The inner loop is

parallelized.
In each iteration step of the outer loop, a parallel region is

created. This causes parallelization overhead.

for(i=0;i< N; i++)

{ #pragma omp parallel for
for(j=0;j< M; j++)
| Alilli] =B[ill] + ClilLil;

} }

Performance Issues |

* Avoid parallel overhead at low iteration counts

#pragma omp parallel for if(M > 800)
for(j=0;j< M; j++)
{
aa[j] =alpha*bb[j] + cclj];
}

}

C++: Random Access lterators Loops

* Parallelization of random access iterator loops is supported

void iterator_example(){
std::vector vec(23);
std::vector::iterator it;

#pragma omp parallel for default(none) shared(vec)
for(it=vec.begin(); it< vec.end(); it++)

{
// do work with it //

}

}

Conditional Compilation

* Keep sequential and parallel programs as a single source
code

#if def _OPENMP
#include “omp.h”
#endif

Main()
{
#ifdef OPENMP
omp_set_num_threads(3);
#endif
for(i=0;i< N; i++)
{
#pragma omp parallel for
for(j=0;j< M; j++)
{
Ali]lj] =B[i][j] + C[i][j];
}
}

Be Careful with Data Dependences

 Whenever a statement in a program reads or writes a memory
location and another statement reads or writes the same
memory location, and at least one of the two statements
writes the location, then there is a data dependence on that

memory location between the two statements. The loop may
not be executed in parallel.

for(i=1;i< N; i++)
{

ali] = a[i] + a[i-1];
}

ali] is written in loop iteration i and read in loop iteration i+1.

This loop can not be executed in parallel. The results may not
be correct.

Classification of Data Dependences

* A data dependence is called loop-carried if the two
statements involved in the dependence occur in
different iterations of the loop.

* Let the statement executed earlier in the sequential

execution be loop S1 and let the later statement be
S2.

— Flow dependence: the memory location is written in S1
and read in S2. S1 executes before S2 to produce the value
that is consumed in S2.

— Anti-dependence: The memory location is read in S1 and
written in S2.

— Qutput dependence: The memory location is written in
both statements S1 and S2.

* Anti-dependence

for(i=0;i< N-1; i++)

{
x = b[i] + cli];
ali] = a[i+1] + x;

}

e Parallel version with dependence removed

#pragma omp parallel for shared (a, a2)
for(i=0; i < N-1; i++)
a2[i] = a[i+1];
#pragma omp parallel for shared (a, a2) lastprivate(x)
for(i=0;i< N-1; i++)
{

x = b[i] + cli];
ali] = a2[i] + x;

}

for(i=1;i< m; i++)
for(j=0;j<n;j++)

{
ali]lj] = 2.0*a[i-11[jl;

}

for(i=1;i< m; i++)
#pragma omp parallel for | Poor performance, it requires
{ for{j=0;j<mij++) m-1 fork/join steps.

alillj) = 2.0%afi-1][j];

}

#pragma omp parallel for private (i)
for(j=0;j< n; j++)
for(i=1;i<m;i++) Invert loop to yield

o . better performance.
ali][jl = 2.0*a[i-1][j];
!

* Flow dependence is in general difficult to be
removed.
X=0.0;

for(i=0;i< N; i++)

{

X=X+ ali];

}

X=0.0;

#pragma omp parallel for reduction(+:x)
for(i=0;i< N-1; i++)

{

X =X+ ali];

}

 Elimination of induction variab

idx = N/2+1; isum = 0; pow2 = 1;
for(i=0;i< N/2; i++)
{
ali] = a[i] + a[idx];
b[i] = isum;
cli] = pow2;
idx++; isum +=i; pow2 *=2;

}

e Parallel version

#pragma omp parallel for shared (a,b)

for(i=0;i< N/2; i++)

{
ali] = a[i] + a[i+N/2];
b[i] =i*(i-1)/2;

c[il = pow(2,i);

}

es.

Remove flow dependence using loop skewing

for(i=1;i< N; i++)

{
b[i] = b[i] + a[i-1];
ali] = a[i]+c[i];

}

Parallel version

b[1]=b[1]+a[0];

#pragma omp parallel for shared (a,b,c)

for(i=1;i< N-1; i++)

{
ali] = ali] + c[i];
b[i+1] = b[i+1]+ali];

}

a[N-1] = a[N-1]+c[N-1];

* A flow dependence that can in general not be
remedied is a recurrence:

for(i=1;i< N; i++)
{

z[i] = z[i] + I[i]*z[i-1];
}

Recurrence: LU Factorization of Tridiagonal Matrix

a0 4o \
/bl d O
bg a2
by a3 3
b4 dq4 Q4
\ 1 b 2) d
(fl 1 \ (’ é{i C1 \
_ lp 1 2
- (3 {1 , 3 33
1 c
\ s 1)\ ey

T =LU

15

e Tx=LUx=Lz=b, z=Ux.
* Proceed as follows:
e Lz=b, Ux=z

e Lz=b is solved by:

z[0] = b[O];

for(i=1;i< n; i++)

{
z[i] = b[i] - I[i]*z[i-1];

}

Cyclic reduction probably is the best method to solve tridiagonal systems

Z. Liu, B. Chapman, Y. Wen and L. Huang. Analyses for the Translation of OpenMP
Codes into SPMD Style with Array Privatization. OpenMP shared memory parallel
programming: International Workshop on OpenMP

C. Addison, Y. Ren and M. van Waveren. OpenMP Issues Arising in the
Development of Parallel BLAS and LAPACK libraries.). Sci. Programming —
OpenMP, 11(2), 2003.

S.F. McGinn and R.E. Shaw. Parallel Gaussian Elimination Using OpenMP and MPI

V=alpha();

W=beta();

X=gamma(v,w);

Y=delta();

printf(“%g\n”, epsilon(x,y));

gamma

Data dependence diagram

Functions alpha, beta, delta may be executed
in parallel

17

Worksharing sections Directive

sections directive enables specification of task parallelism
— Sections construct gives a different structured block to each thread.

#pragma omp sections [clause list]
private (list)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{

#pragma omp section

structured_block

#pragma omp section

structured _block

#include “omp.h”
#define N 1000
int main(){
int i;
double a[N], b[N], c[N], d[N];
for(i=0; i<N; i++){
ali] =i*2.0;
b[i] =i+ a[i]*22.5;
}
#pragma omp parallel shared(a,b,c,d) private(i)
{

H#pragma omp sections nowait

{

#pragma omp section
for(i=0; i<N;i++) c[i] = a[i]+b[i];, <——
#pragma omp section

for(i=0; i<N:i++) d[i] = ali]*b[i; < |

Two tasks are
computed
concurrently

}
} By default, there is a barrier at the end of the
} sections. Use the “nowait” clause to turn of
the barrier.

19

#include “omp.h”

#pragma omp parallel

{
#pragma omp sections
{
H#pragma omp section
v=alpha();
H#pragma omp section
w=beta();
}
H#pragma omp sections
{

#pragma omp section
x=gamma(v,w);

#pragma omp section
y=delta();

}
printf(“%g\n”, epsilon(x,y));

20

Synchronization |

Threads communicate through shared variables.
Uncoordinated access of these variables can lead to
undesired effects.

— E.g. two threads update (write) a shared variable in the
same step of execution, the result is dependent on the
way this variable is accessed. This is called a race
condition.

To prevent race condition, the access to shared
variables must be synchronized.

Synchronization can be time consuming.

The barrier directive is set to synchronize all threads.
All threads wait at the barrier until all of them have
arrived.

Synchronization |l

* Synchronization imposes order constraints and is
used to protect access to shared data

* High level synchronization:
— critical
— atomic
— barrier

— ordered

* Low level synchronization
— flush

— locks (both simple and nested)

Synchronization: critical

* Mutual exclusion: only one thread at a time can enter a critical region.

{
double res;
#pragma omp parallel I S E—
{ | =w |]
double B: [s [
int i, id, nthrds; .
id=omp_get_thread _num(); .
nthrds = omp_get _num_threads();
for(i=id; i<niters; i+=nthrds){
B = some_work(i); Threads wait here: only one thread
#pragma omp critical < at a time calls consume(). So this is
consume(B,res); a piece of sequential code inside
} the for loop.
}

sum = 0;
#pragma omp parallel shared(n,a,sum) private(TID,sumLocal)
{
TID = omp_get_thread_num() ;
sumlLocal = 0O;
#pragma omp for
for (i=0; i<m; i++)
sumLocal += alil;
#pragma omp critical (update_sum)
{

sum += sumLocal,;
printf ("TID=Jd: sumLocal=Yd sum = %d\n",TID,sumLocal,sum);
+

} /#-- End of parallel region —-*/

24

#pragma omp parallel

{

#pragma omp for nowait shared(best_cost)

for(i=0; i<N; i++){
int my_cost;
my_cost = estimate(i);

H#pragma omp critical <«

{

if(best_cost < my_cost)
best_cost = my_cost;

Only one thread at a time
executes if() statement. This
ensures mutual exclusion when
accessing shared data.
Without critical, this will set up
a race condition, in which the
computation exhibits
nondeterministic behavior
when performed by multiple
threads accessing a shared
variable

Synchronization: atomic

atomic provides mutual exclusion but only applies to the
load/update of a memory location.

This is a lightweight, special form of a critical section.

It is applied only to the (single) assignment statement that
immediately follows it.

{

#pragma omp parallel

{
double tmp, B;

Atomic only protects the update of X.
#pragma omp atomic

{

X+=tmp;
}

int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)
for (i=0; i++, i<n)
{
#pragma omp atomic
ic = ic + 1;

o: 7

ic” is a counter. The atomic construct ensures that no updates
are lost when multiple threads are updating a counter value.

27

* Atomic construct may only be used together with an expression
statement with one of operations: +, *, -, /, &, », |, <<, >>.

int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)
for (i=0; i++, i<n)
{
#pragma omp atomic
ic = ic + bigfunc();

 The atomic construct does not prevent multiple threads
from executing the function bigfunc() at the same time.

28

Synchronization: barrier

Suppose each of the following two loops are run in parallel
over i, this may give a wrong answer.

for(i= 0; i<N; i++)
ali] = bfi] + c[i];
for(i= 0; i<N; i++)
d[i] = a[i] + bli];

There could be a data race in a[].

29

for(i= 0; i<N; i++)
ali] = b[i] + cli]; wait

for(i= 0; i<N; i++) barrier
d[i] = a[i] + bli];

To avoid race condition:

 NEED: All threads wait at the barrier point and only continue

when all threads have reached the barrier point.
Barrier syntax:

* H#pragma omp barrier

Barrier Region

time

Synchronization: barrier

barrier: each threads waits until all threads arrive

#pragma omp parallel shared (A,B,C) private (id)
{

id=omp_get_thread_num();
Alid] = big_calc1(id);
#pragma omp barrier

#pragma omp for the end of for
for(i=0; i<N;i++){C[i]=big_calc3(i,A);} — | construct

#pragma omp for nowait

for(i=0;i<N;i++) {B[i]=big_calc2(i,C);}
Alid]=big_calc4(id); \ No implicit barrier

} due to nowait

\ Implicit barrier at the end of

a parallel region

Implicit barrier at

When to Use Barriers

 |f data is updated asynchronously and data
integrity is at risk
 Examples:

— Between parts in the code that read and write the
same section of memory

— After one timestep/iteration in a numerical solver

e Barriers are expensive and also may not scale to a
large number of processors

“master” Construct

The “master” construct defines a structured block that is only executed
by the master thread.

The other threads skip the “master” construct. No synchronization is
implied.

It does not have an implied barrier on entry or exit.
The lack of a barrier may lead to problems.

#pragma omp parallel

{

#pragma omp master

{

exchange_information();

}

#pragma omp barrier

#pragma omp parallel shared(a,b) private(i)
{

#pragma omp master

{
a = 10;
printf("Master construct is executed by thread %d\n",
omp_get_thread_num()) ;

#pragma omp barrier
#pragma omp for
for (i=0; i<m; i++)
blil = a;
} /*-- End of parallel region --x*/
printf("After the parallel region:\n");

for (i=0; i<n; i++)
printf("blid] = ¥d\n",i,b[i]);

Master construct to initialize the data

34

“single” Construct

* The “single” construct builds a block of code that is

executed by only one thread (not necessarily the master
thread).

* A barrier is implicitly set at the end of the single block (the
barrier can be removed by the nowait clause)

#pragma omp parallel single processor

{ region
= P
#pragma omp single :
{ I I
exchange_information(); . E=]
do_other_things(); / I

Threads wait
} in the barrier

#pragma omp parallel shared(a,b) private(i)
{
#pragma omp single
{
a = 10;
printf("Single construct executed by thread %d\n",
omp_get_thread_num());
}

/* A barrier is automatically inserted here */

#pragma omp for
for (i=0; i<n; i++)
blil = a;

} /*—- End of parallel region --*/
printf ("After the parallel region:\n");

for (i=0; i<n; i++)
printf("bl%d] = Jd\n",i,b[i]);

Single construct to initialize a shared variable

36

Synchronization: ordered

 The “ordered” region executes in the sequential
order

#pragma omp parallel private (tmp)

{

#pragma omp for ordered reduction(+:res)
for(i=0;i<N;i++)
{
tmp = compute(i);
#pragma ordered
res += consum(tmp);

}
do_other_things();

Synchronization: Lock routines

A lock implies a memory fence of all thread visible variables.

These routines are used to guarantee that only one thread
accesses a variable at a time to avoid race conditions.

C/C++ lock variables must have type “omp_lock t” or
“omp_nest_lock_t”.

All lock functions require an argument that has a pointer to
omp lock toromp nest lock t.

Simple Lock routines:

— omp_init_lock(omp_lock_t*); omp_set lock(omp_lock t*);
omp_unset_lock(omp_lock t*);

omp_test_lock(omp_lock t*); omp_destroy lock(omp_ lock t*);

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

http://gcc.gnu.org/onlinedocs/libgomp/index.html

General Procedure to Use Locks

1. Define the lock variables

2. Initialize the lock via a call to omp_init_lock

3. Set the lock using omp_set lock or omp test lock.

The latter checks whether the lock is actually
available before attempting to set it. It is useful to
achieve asynchronous thread execution.

. Unset a lock after the work is done via a call to
omp_unset_lock.

. Remove the lock association via a call to
omp_destroy_lock.

Locking Example

parallel region - begin

TID=0

acquire lock
Protected
Region

release lock

i TID=1

Other Work

Other Work

acquire lock

Protected
Region

release lock

parallel region - end

* The protected region

contains the update
of a shared variable

One thread acquires
the lock and
performs the update

Meanwhile, other
threads perform
some other work

When the lock is
released again, the
other threads
perform the update

omp_lock_tIck; /
omp_init_lock(&Ick);

#pragma omp parallel shared(lck) private (tmp, id)

{
id = omp_get_thread_num();
tmp = do_some_work(iM
omp_set_lock(&Ick);

printf(“%d %d\n”, id, tmp);

Initialize a lock
associated with lock
variables “Ick” for
use in subsequent
calls.

Thread waits here
for its turn.

Release the lock so

omp_unset_lock(&Ick);

}
omp_destroy_lock(&Ick); \

that the next thread
gets a turn

Dissociate the given lock
variable from any locks.

41

Runtime Library Routines

* Routines for modifying/checking number of threads
— omp_set_num_threads(int n);
— intomp_get_num_threads(void);
— intomp_get_thread_num(void);
— int omp_get_max_threads(void);
* Test whether in active parallel region
— int omp_in_parallel(void);
 Allow system to dynamically vary the number of threads from one
parallel construct to another
— omp_set_dynamic(int set)
. set = true: enables dynamic adjustment of team sizes
. set = false: disable dynamic adjustment

— intomp_get _dynamic(void)
* Get number of processors in the system
— int omp_num_procs(void); returns the number of processors online

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

http://gcc.gnu.org/onlinedocs/libgomp/index.html
http://gcc.gnu.org/onlinedocs/libgomp/index.html

Default Data Storage Attributes

* Ashared variable has a single storage location in memory for the
whole duration of the parallel construct. All threads that
reference such a variable accesses the same memory. Thus,
reading/writing a shared variable provides an easy mechanism for
communicating between threads.

— In C/C++, by default, all program variables except the loop index
become shared variables in a parallel region.

— Global variables are shared among threads

— C: File scope variables, static variables, dynamically allocated
memory (by malloc(), or by new).

* A private variable has multiple storage locations, one within the
execution context of each thread.

— Not shared variables
» Stack variables in functions called from parallel regions are private.
e Automatic variables within a statement block are private.

— This holds for pointer as well. Therefore, do not assign a private
pointer the address of a private variable of another thread. The
result is not defined.

/** main file **/
H#include <stdio.h>
H#include <stdlib.h>

double A[100];
int main(){
int index[50];
#pragma omp parallel
work(index);
printf(“%d\n”, index[0]);
}

[** file 1 **/
#include <stdio.h>
#include <stdlib.h>

extern double A[100];
void work(int *index){
double temp[50];

static int count;

}

* Variables “A”, “index” and “count” are shared by all threads.
e Variable “temp” is local (or private) to each thread.

Changing Data Storage Attributes

* Clauses for changing storage attributes
— “shared”, “private”, “firstprivate”

* The final value of a private inside a parallel “for” loop can
be transmitted to the shared variable outside the loop
with:

— “lastprivate”
 The default attributes can be overridden with:
— Default(private |shared|none)

* All data clauses listed here apply to the parallel construct
region and worksharing construct region except “shared”,
which only applies to parallel constructs.

Private Clause

“private (variable list)” clause creates a new local copy of variables for
each thread.

— Values of these variables are not initialized on entry of the parallel region.

— Values of the data specified in the private clause can no longer be accessed

after the corresponding region terminates (values are not defined on exit of
the parallel region).

/*** wrong implementation ***/
int main(){
int tmp =0;
tpragma omp paralel for privete(smp) < “tmp i not nitialized
tmp +=j;
printf(“%d\n”, tmp);

}

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Firstprivate Clause

 firstprivate initializes each private copy with the
corresponding value from the master thread.

/*** still wrong implementation ***/
int main(){

int tmp =0;
#pragma omp parallel for firstprivate(tmp)
for (int j=0; j<1000;j++)
tmp +=j;

Each thread get its own
“tmp” with an initial
value of 0.

printf(“%d\n”, tmp);

}

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Lastprivate Clause

e Lastprivate clause passes the value of a private variable from the last
iteration to a global variable.

— It is supported on the work-sharing loop and sections constructs.

— It ensures that the last value of a data object listed is accessible after the
corresponding construct has completed execution.

— In case use with a work-shared loop, the object has the value from the
iteration of the loop that would be last in a “sequential” execution.

/*** useless implementation ***/
int main(){
int tmp =0;
#pragma omp parallel for firstprivate(tmp) lastprivate(tmp)
for (int j=0; j<5;j++)
tmp +=;
printf(“%d\n”, tmp);

; T~

“tmp” is defined as its value at the “last
sequential” iteration, i.e, j = 5.

Correct Usage of Lastprivate

/*** correct usage of lastprivate ***/
int main(){
int a, j;
#pragma omp parallel for private(j) lastprivate(a)
for (j=0; j<5;j++)
{
a=j+2;
printf(“Thread %d has a value of a = %d for j = %d\n”,
omp_get_thread_num(), a, j);

}

printf(“value of a after parallel = %d\n”, a);

' Tread O has a valueofa=2forj= 0
' Tread 2 has a value of a=4 forj= 2
' Tread 1 hasavalueofa=3forj= 1
Tread 3 hasavalueofa=5forj= 3
' Tread 4 has avalueofa=6forj= 4
- value of a after parallel = 6

49

Default Clause

C/C++ only has default(shared) or default(none)
Only Fortran supports default(private)

Default data attribute is default(shared)
— Exception: #pragma omp task

Default(none): no default attribute for variables
in static extent. Must list storage attribute for
each variable in static extent. Good programming
practice.

Lexical (static) and Dynamic Extent |

Parallel regions enclose an arbitrary block of code,
sometimes including calls to another function.

The lexical or static extent of a parallel region is the
block of code to which the parallel directive applies.

The dynamic extent of a parallel region extends the
lexical extent by the code of functions that are called
(directly or indirectly) from within the parallel region.

The dynamic extent is determined only at runtime.

Lexical and Dynamic Extent Il

int main(){
#pragma omp parallel |
{ | | Staticextent
print_thread_id(); j»
}]
} | Dynamic
extent
void print_thread_id() R
{
int id = omp_get_thread _num(); — —
printf(“Hello world from thread %d\n”, id);
} _—

52

llel shared(Aglobal
fnmp parallel shared(Aglobal) Thread
(void) myfunc (&Aglobal) ; Alocal
}
void myfunc(float *Aglobal) ’//
{

int Alocal;

Thread
Alocal [|—

Aglobal
Variable Alocal is in private memory,

managed by the thread owning it, and
stored on the so-called stack / \

Thread Thread
Alocal Alocal

void caller(int *a, int n)
int i,j,m=3;
#pragma omp parallel for
for (i=0; i<n; i++) {
int k=m;
for (j=1; j<=5; j++) {
callee(&a[i], &k, 3J);

}

void callee(int *x, int *vy,

z) {
int ii;
static int ont;
ent++;
for (ii=1; ii<z; ii++) {

*®X = *y + z;

R. Hartman-Baker. Using OpenMP

{

=

n

shared
shared
private
shared
shared
private

private
shared
private
private
private

private

shared

Declared outside parallel construct
same

Parallel loop index

Sequential loop index

Declared outside parallel construct
Automatic vanable/parallel region
Passed by value

(actually a)

Passed by value

(actually k)

(actually j)

Local stack vanable in called
function

Declared static (like global)

54

Threadprivate

 Threadprivate makes global data private to a thread
— C/C++: file scope and static variables, static class members

— Each thread gives its own set of global variables, with initial
values undefined.

* Different from private
— With private clause, global variables are masked.

— Threadrpivate preserves global scope within each thread.

— Parallel regions must be executed by the same number of
threads for global data to persist.

 Threadprivate variables can be initialized using copyin
clause or at time of definition.

If all of the conditions below hold, and if a
threadprivate object is referenced in two consecutive
(at run time) parallel regions, then threads with the
same thread number in their respective regions
reference the same copy of that variable:

— Neither parallel region is nested inside another parallel
region.

— The number of threads used to execute both parallel
regions is the same.

H#include <stdio.h>
H#include <stdlib.h>
#include "omp.h"

Threadprivate directive is

int *pglobal; used to give each thread a
#pragma omp threadprivate(pglobal) <— | private copy of the global

pointer pglobal.
int main(){

#pragma omp parallel for private(i,j,sum,TID) shared(n,length,check)
for (i=0; i<n;i++)

{
TID = omp_get_thread_num();
if((pglobal = (int*) malloc(length[i]*sizeof(int))) = NULL) {
for(j=sum=0; j < length[i];j++) pglobal[j] = j+1;
sum = calculate_sum(lengthli]);
printf(“TID %d: value of sum for | = %d is %d\n”, TID,i,sum);
free(pglobal);
} else {
printf(“TID %d: not enough memory : length[%d] = %d\n", TID,i,lengthli]);
}
}

/* source of function calculate_sum() */
extern int *pglobal;

int calculate_sum(int length){
int sum =0;
for (j=0; j<length;j++)
{
sum += pglobal[j];
}

return (sum);

58

#include <omp.h>

static int sum0=0;

#pragma omp threadprivate (sumd)
int main()

{ int sum = 0;

int 1 ;

for (. . .)
f#ipragma omp parallel

{

sumd = 0;

#pragma omp for
for (i =0; i <= 1000; i++)
sumC = sumd + .
#pragma omp critical
sum = sum + sumd ;
} /# end of parallel region #/

* Each thread has its own copy of sumO0, updated in a parallel

region that is called several times. The values for sumO
from one execution of the parallel region will be available
when it is next started.

59

Copyin Clause

* Copyin allows to copy the master thread’s
threadprivate variables to corresponding
threadprivate variables of the other threads.

int global[100];
#pragma omp threadprivate(global)

int main(){

for(int i= 0; i<100; i++) global[i] = i+2; // initialize data
#pragma omp parallel copyin(global)

{

/// parallel region, each thread gets a copy of global, with initialized value

}
}

Copyprivate Clause

* Copyprivate clause is supported on the single directive to broadcast values of
privates from one thread of a team to the other threads in the team.

— The typical usage is to have one thread read or initialize private data that is
subsequently used by the other threads as well.

— After the single construct has ended, but before the threads have left the associated

barrier, the values of variables specified in the associated list are copied to the other
threads.

— Do not use copyprivate in combination with the nowait clause.

#include “omp.h”
Void input_parameters(int, int); // fetch values of input parameters

int main(){
int Nsize, choice;
#pragma omp parallel private(Nsize, choice)
{
#pragma omp single copyprivate (Nsize, choice)
input_parameters(Nsize,choice);
do_work(Nsize, choice);
}
}

Flush Directive

* OpenMP supports a shared memory model.

— However, processors can have their own “local” high
speed memory, the registers and cache.

— |f a thread updates shared data, the new value will first
be saved in register and then stored back to the local
cache.

— The update are thus not necessarily immediately visible
to other threads.

a. Shared memory

62

Flush Directive

The flush directive is to make a thread’s temporary
view of shared data consistent with the value in
memory.
— #pragma omp flush (list)
— Thread-visible variables are written back to memory
at this point.

— For pointers in the list, note that the pointer itself is
flushed, not the object it points to.

References:
— http://bisqwit.iki.fi/story/howto/openmp/

— http://openmp.org/mp-documents/omp-hands-on-
SCO08.pdf

— https://computing.linl.gov/tutorials/openMP/
— http://www.mosaic.ethz.ch/education/Lectures/hpc
— R. van der Pas. An Overview of OpenMP

— B. Chapman, G. Jost and R. van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT
Press, Cambridge, Massachusetts, London, England

— B. Estrade, Hybrid Programming with MPIl and OpenMP

http://bisqwit.iki.fi/story/howto/openmp/
http://bisqwit.iki.fi/story/howto/openmp/
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

