
Lecture 10: Introduction to
OpenMP (Part 2)

1

Performance Issues I

• C/C++ stores matrices in row-major fashion.
• Loop interchanges may increase cache locality

2

{
 …
 #pragma omp parallel for
 for(i=0;i< N; i++)
 {
 for(j=0;j< M; j++)
 {
 A[i][j] =B[i][j] + C[i][j];
 }
 }
}

• Parallelize outer-most loop

Performance Issues II

3

{
 …
 for(i=0;i< N; i++)
 {
 #pragma omp parallel for
 for(j=0;j< M; j++)
 {
 A[i][j] =B[i][j] + C[i][j];
 }
 }
}

• Move synchronization points outwards. The inner loop is
parallelized.

• In each iteration step of the outer loop, a parallel region is
created. This causes parallelization overhead.

Performance Issues III

4

{
 …

 #pragma omp parallel for if(M > 800)
 for(j=0;j< M; j++)
 {
 aa[j] =alpha*bb[j] + cc[j];
 }
}

• Avoid parallel overhead at low iteration counts

C++: Random Access Iterators Loops

• Parallelization of random access iterator loops is supported

5

void iterator_example(){
 std::vector vec(23);
 std::vector::iterator it;

 #pragma omp parallel for default(none) shared(vec)
 for(it=vec.begin(); it< vec.end(); it++)
 {
 // do work with it //
 }
}

Conditional Compilation

• Keep sequential and parallel programs as a single source
code

6

#if def _OPENMP
#include “omp.h”
#endif

Main()
{
 #ifdef _OPENMP
 omp_set_num_threads(3);
#endif
 for(i=0;i< N; i++)
 {
 #pragma omp parallel for
 for(j=0;j< M; j++)
 {
 A[i][j] =B[i][j] + C[i][j];
 }
 }
}

Be Careful with Data Dependences

• Whenever a statement in a program reads or writes a memory
location and another statement reads or writes the same
memory location, and at least one of the two statements
writes the location, then there is a data dependence on that
memory location between the two statements. The loop may
not be executed in parallel.

7

for(i=1;i< N; i++)
{
 a[i] = a[i] + a[i-1];
}

a[i] is written in loop iteration i and read in loop iteration i+1.
This loop can not be executed in parallel. The results may not
be correct.

Classification of Data Dependences

• A data dependence is called loop-carried if the two
statements involved in the dependence occur in
different iterations of the loop.

• Let the statement executed earlier in the sequential
execution be loop S1 and let the later statement be
S2.
– Flow dependence: the memory location is written in S1

and read in S2. S1 executes before S2 to produce the value
that is consumed in S2.

– Anti-dependence: The memory location is read in S1 and
written in S2.

– Output dependence: The memory location is written in
both statements S1 and S2.

8

• Anti-dependence

9

for(i=0;i< N-1; i++)
{
 x = b[i] + c[i];
 a[i] = a[i+1] + x;
}

• Parallel version with dependence removed
#pragma omp parallel for shared (a, a2)
for(i=0; i < N-1; i++)
 a2[i] = a[i+1];
#pragma omp parallel for shared (a, a2) lastprivate(x)
for(i=0;i< N-1; i++)
{
 x = b[i] + c[i];
 a[i] = a2[i] + x;
}

Poor performance, it requires
m-1 fork/join steps.

10

for(i=1;i< m; i++)
 for(j=0;j<n;j++)
{
 a[i][j] = 2.0*a[i-1][j];
}

for(i=1;i< m; i++)
 #pragma omp parallel for
 for(j=0;j<n;j++)
{
 a[i][j] = 2.0*a[i-1][j];
}

#pragma omp parallel for private (i)
for(j=0;j< n; j++)
 for(i=1;i<m;i++)
{
 a[i][j] = 2.0*a[i-1][j];
}

Invert loop to yield
better performance.

• Flow dependence is in general difficult to be
removed.

11

X = 0.0;
for(i=0;i< N; i++)
{
 X = X + a[i];
}

X = 0.0;
#pragma omp parallel for reduction(+:x)
for(i=0;i< N-1; i++)
{
 x = x + a[i];
}

• Elimination of induction variables.

12

idx = N/2+1; isum = 0; pow2 = 1;
for(i=0;i< N/2; i++)
{
 a[i] = a[i] + a[idx];
 b[i] = isum;
 c[i] = pow2;
 idx++; isum += i; pow2 *=2;
}

#pragma omp parallel for shared (a,b)
for(i=0;i< N/2; i++)
{
 a[i] = a[i] + a[i+N/2];
 b[i] = i*(i-1)/2;
 c[i] = pow(2,i);
}

• Parallel version

• Remove flow dependence using loop skewing

13

for(i=1;i< N; i++)
{
 b[i] = b[i] + a[i-1];
 a[i] = a[i]+c[i];
}

• Parallel version
b[1]=b[1]+a[0];
#pragma omp parallel for shared (a,b,c)
for(i=1;i< N-1; i++)
{
 a[i] = a[i] + c[i];
 b[i+1] = b[i+1]+a[i];
}
a[N-1] = a[N-1]+c[N-1];

• A flow dependence that can in general not be
remedied is a recurrence:

14

for(i=1;i< N; i++)
{
 z[i] = z[i] + l[i]*z[i-1];
}

Recurrence: LU Factorization of Tridiagonal Matrix

15

• Tx=LUx=Lz=b, z=Ux.
• Proceed as follows:
• Lz=b, Ux=z
• Lz=b is solved by:

16

z[0] = b[0];
for(i=1;i< n; i++)
{
 z[i] = b[i] - l[i]*z[i-1];
}

• Cyclic reduction probably is the best method to solve tridiagonal systems
• Z. Liu, B. Chapman, Y. Wen and L. Huang. Analyses for the Translation of OpenMP

Codes into SPMD Style with Array Privatization. OpenMP shared memory parallel
programming: International Workshop on OpenMP

• C. Addison, Y. Ren and M. van Waveren. OpenMP Issues Arising in the
Development of Parallel BLAS and LAPACK libraries. J. Sci. Programming –
OpenMP, 11(2), 2003.

• S.F. McGinn and R.E. Shaw. Parallel Gaussian Elimination Using OpenMP and MPI

V=alpha();
W=beta();
X=gamma(v,w);
Y=delta();
printf(“%g\n”, epsilon(x,y));

17

alpha beta

gamma

epsilon

delta

Data dependence diagram

Functions alpha, beta, delta may be executed
in parallel

Worksharing sections Directive

sections directive enables specification of task parallelism
– Sections construct gives a different structured block to each thread.

#pragma omp sections [clause list]
 private (list)
 firstprivate (list)
 lastprivate (list)
 reduction (operator: list)
 nowait
{
#pragma omp section
 structured_block
#pragma omp section
 structured_block
}

18

#include “omp.h”
#define N 1000
int main(){
 int i;
 double a[N], b[N], c[N], d[N];
 for(i=0; i<N; i++){
 a[i] = i*2.0;
 b[i] = i + a[i]*22.5;
 }
 #pragma omp parallel shared(a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for(i=0; i<N;i++) c[i] = a[i]+b[i];
 #pragma omp section
 for(i=0; i<N;i++) d[i] = a[i]*b[i];
 }
 }
}

19

Two tasks are
computed

concurrently

By default, there is a barrier at the end of the
sections. Use the “nowait” clause to turn of

the barrier.

20

#include “omp.h”

#pragma omp parallel
{
#pragma omp sections
 {
 #pragma omp section
 v=alpha();
 #pragma omp section
 w=beta();
 }
#pragma omp sections
 {
 #pragma omp section
 x=gamma(v,w);
 #pragma omp section
 y=delta();
 }
 printf(“%g\n”, epsilon(x,y));
}

Synchronization I

• Threads communicate through shared variables.
Uncoordinated access of these variables can lead to
undesired effects.
– E.g. two threads update (write) a shared variable in the

same step of execution, the result is dependent on the
way this variable is accessed. This is called a race
condition.

• To prevent race condition, the access to shared
variables must be synchronized.

• Synchronization can be time consuming.
• The barrier directive is set to synchronize all threads.

All threads wait at the barrier until all of them have
arrived.

21

Synchronization II

• Synchronization imposes order constraints and is
used to protect access to shared data

• High level synchronization:

– critical

– atomic

– barrier

– ordered

• Low level synchronization

– flush

– locks (both simple and nested)
22

Synchronization: critical

• Mutual exclusion: only one thread at a time can enter a critical region.
{
 double res;
 #pragma omp parallel
 {
 double B;
 int i, id, nthrds;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 for(i=id; i<niters; i+=nthrds){
 B = some_work(i);
 #pragma omp critical
 consume(B,res);
 }
 }
}

23

Threads wait here: only one thread
at a time calls consume(). So this is
a piece of sequential code inside

the for loop.

24

{
 …
 #pragma omp parallel
 {
 #pragma omp for nowait shared(best_cost)
 for(i=0; i<N; i++){
 int my_cost;
 my_cost = estimate(i);
 #pragma omp critical
 {
 if(best_cost < my_cost)
 best_cost = my_cost;
 }
 }
 }
}

25

Only one thread at a time
executes if() statement. This

ensures mutual exclusion when
accessing shared data.

Without critical, this will set up
a race condition, in which the

computation exhibits
nondeterministic behavior

when performed by multiple
threads accessing a shared

variable

Synchronization: atomic

• atomic provides mutual exclusion but only applies to the
load/update of a memory location.

• This is a lightweight, special form of a critical section.
• It is applied only to the (single) assignment statement that

immediately follows it.

26

{
 …
 #pragma omp parallel
 {
 double tmp, B;
 ….
 #pragma omp atomic
 {
 X+=tmp;
 }
 }
}

Atomic only protects the update of X.

“ic” is a counter. The atomic construct ensures that no updates
are lost when multiple threads are updating a counter value.

27

• Atomic construct may only be used together with an expression
statement with one of operations: +, *, -, /, &, ^, |, <<, >>.

28

• The atomic construct does not prevent multiple threads
from executing the function bigfunc() at the same time.

Synchronization: barrier

Suppose each of the following two loops are run in parallel
over i, this may give a wrong answer.

29

for(i= 0; i<N; i++)
 a[i] = b[i] + c[i];
for(i= 0; i<N; i++)
 d[i] = a[i] + b[i];

There could be a data race in a[].

30

for(i= 0; i<N; i++)

 a[i] = b[i] + c[i];

for(i= 0; i<N; i++)

 d[i] = a[i] + b[i];

wait

barrier

To avoid race condition:
• NEED: All threads wait at the barrier point and only continue

when all threads have reached the barrier point.
Barrier syntax:
• #pragma omp barrier

Synchronization: barrier

barrier: each threads waits until all threads arrive

31

#pragma omp parallel shared (A,B,C) private (id)
{
 id=omp_get_thread_num();
 A[id] = big_calc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i=0; i<N;i++){C[i]=big_calc3(i,A);}
 #pragma omp for nowait
 for(i=0;i<N;i++) {B[i]=big_calc2(i,C);}
 A[id]=big_calc4(id);
}

Implicit barrier at
the end of for

construct

No implicit barrier
due to nowait

Implicit barrier at the end of
a parallel region

When to Use Barriers

• If data is updated asynchronously and data
integrity is at risk

• Examples:

– Between parts in the code that read and write the
same section of memory

– After one timestep/iteration in a numerical solver

• Barriers are expensive and also may not scale to a
large number of processors

32

“master” Construct

• The “master” construct defines a structured block that is only executed
by the master thread.

• The other threads skip the “master” construct. No synchronization is
implied.

• It does not have an implied barrier on entry or exit.
• The lack of a barrier may lead to problems.

33

#pragma omp parallel
{
 …
 #pragma omp master
 {
 exchange_information();
 }
 #pragma omp barrier
 …
}

• Master construct to initialize the data

34

“single” Construct

• The “single” construct builds a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implicitly set at the end of the single block (the
barrier can be removed by the nowait clause)

35

#pragma omp parallel
{
 …
 #pragma omp single
 {
 exchange_information();
 }
 do_other_things();
 …
}

• Single construct to initialize a shared variable

36

Synchronization: ordered

• The “ordered” region executes in the sequential
order

37

#pragma omp parallel private (tmp)
{
 …
 #pragma omp for ordered reduction(+:res)
 for(i=0;i<N;i++)
 {
 tmp = compute(i);
 #pragma ordered
 res += consum(tmp);
 }
 do_other_things();
 …
}

Synchronization: Lock routines

• A lock implies a memory fence of all thread visible variables.
• These routines are used to guarantee that only one thread

accesses a variable at a time to avoid race conditions.
• C/C++ lock variables must have type “omp_lock_t” or

“omp_nest_lock_t”.
• All lock functions require an argument that has a pointer to

omp_lock_t or omp_nest_lock_t.
• Simple Lock routines:

– omp_init_lock(omp_lock_t*); omp_set_lock(omp_lock_t*);
omp_unset_lock(omp_lock_t*);
omp_test_lock(omp_lock_t*); omp_destroy_lock(omp_lock_t*);

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

38

http://gcc.gnu.org/onlinedocs/libgomp/index.html

General Procedure to Use Locks

1. Define the lock variables

2. Initialize the lock via a call to omp_init_lock

3. Set the lock using omp_set_lock or omp_test_lock.
The latter checks whether the lock is actually
available before attempting to set it. It is useful to
achieve asynchronous thread execution.

4. Unset a lock after the work is done via a call to
omp_unset_lock.

5. Remove the lock association via a call to
omp_destroy_lock.

39

Locking Example

• The protected region
contains the update
of a shared variable

• One thread acquires
the lock and
performs the update

• Meanwhile, other
threads perform
some other work

• When the lock is
released again, the
other threads
perform the update

40

41

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel shared(lck) private (tmp, id)
{
 id = omp_get_thread_num();
 tmp = do_some_work(id);
 omp_set_lock(&lck);
 printf(“%d %d\n”, id, tmp);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

Thread waits here
for its turn.

Release the lock so
that the next thread

gets a turn

Dissociate the given lock
variable from any locks.

Initialize a lock
associated with lock

variables “lck” for
use in subsequent

calls.

Runtime Library Routines

• Routines for modifying/checking number of threads
– omp_set_num_threads(int n);
– int omp_get_num_threads(void);
– int omp_get_thread_num(void);
– int omp_get_max_threads(void);

• Test whether in active parallel region
– int omp_in_parallel(void);

• Allow system to dynamically vary the number of threads from one
parallel construct to another
– omp_set_dynamic(int set)

• set = true: enables dynamic adjustment of team sizes
• set = false: disable dynamic adjustment

– int omp_get_dynamic(void)

• Get number of processors in the system
– int omp_num_procs(void); returns the number of processors online

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

42

http://gcc.gnu.org/onlinedocs/libgomp/index.html
http://gcc.gnu.org/onlinedocs/libgomp/index.html

Default Data Storage Attributes

• A shared variable has a single storage location in memory for the
whole duration of the parallel construct. All threads that
reference such a variable accesses the same memory. Thus,
reading/writing a shared variable provides an easy mechanism for
communicating between threads.
– In C/C++, by default, all program variables except the loop index

become shared variables in a parallel region.
– Global variables are shared among threads
– C: File scope variables, static variables, dynamically allocated

memory (by malloc(), or by new).

• A private variable has multiple storage locations, one within the
execution context of each thread.
– Not shared variables

• Stack variables in functions called from parallel regions are private.
• Automatic variables within a statement block are private.

– This holds for pointer as well. Therefore, do not assign a private
pointer the address of a private variable of another thread. The
result is not defined.

43

44

/** main file **/
#include <stdio.h>
#include <stdlib.h>

double A[100];
int main(){
 int index[50];
 #pragma omp parallel
 work(index);
 printf(“%d\n”, index[0]);
}

/** file 1 **/
#include <stdio.h>
#include <stdlib.h>

extern double A[100];
void work(int *index){
 double temp[50];
 static int count;
}

• Variables “A”, “index” and “count” are shared by all threads.
• Variable “temp” is local (or private) to each thread.

Changing Data Storage Attributes

• Clauses for changing storage attributes
– “shared”, “private”, “firstprivate”

• The final value of a private inside a parallel “for” loop can
be transmitted to the shared variable outside the loop
with:
– “lastprivate”

• The default attributes can be overridden with:
– Default(private|shared|none)

• All data clauses listed here apply to the parallel construct
region and worksharing construct region except “shared”,
which only applies to parallel constructs.

45

Private Clause

• “private (variable list)” clause creates a new local copy of variables for
each thread.
– Values of these variables are not initialized on entry of the parallel region.
– Values of the data specified in the private clause can no longer be accessed

after the corresponding region terminates (values are not defined on exit of
the parallel region).

46

/*** wrong implementation ***/
int main(){
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j=0; j<1000;j++)
 tmp += j;
 printf(“%d\n”, tmp);
}

“tmp” is not initialized

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Firstprivate Clause

• firstprivate initializes each private copy with the
corresponding value from the master thread.

47

/*** still wrong implementation ***/
int main(){
 int tmp = 0;
#pragma omp parallel for firstprivate(tmp)
 for (int j=0; j<1000;j++)
 tmp += j;
 printf(“%d\n”, tmp);
}

Each thread get its own
“tmp” with an initial

value of 0.

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Lastprivate Clause

• Lastprivate clause passes the value of a private variable from the last
iteration to a global variable.
– It is supported on the work-sharing loop and sections constructs.
– It ensures that the last value of a data object listed is accessible after the

corresponding construct has completed execution.
– In case use with a work-shared loop, the object has the value from the

iteration of the loop that would be last in a “sequential” execution.

48

/*** useless implementation ***/
int main(){
 int tmp = 0;
#pragma omp parallel for firstprivate(tmp) lastprivate(tmp)
 for (int j=0; j<5;j++)
 tmp += j;
 printf(“%d\n”, tmp);
}

“tmp” is defined as its value at the “last
sequential” iteration, i.e, j = 5.

Correct Usage of Lastprivate

49

/*** correct usage of lastprivate ***/
int main(){
 int a, j;
#pragma omp parallel for private(j) lastprivate(a)
 for (j=0; j<5;j++)
 {
 a = j + 2;
 printf(“Thread %d has a value of a = %d for j = %d\n”,
 omp_get_thread_num(), a, j);
 }
 printf(“value of a after parallel = %d\n”, a);
}

Tread 0 has a value of a = 2 for j = 0
Tread 2 has a value of a = 4 for j = 2
Tread 1 has a value of a = 3 for j = 1
Tread 3 has a value of a = 5 for j = 3
Tread 4 has a value of a = 6 for j = 4
value of a after parallel = 6

Default Clause

• C/C++ only has default(shared) or default(none)

• Only Fortran supports default(private)

• Default data attribute is default(shared)
– Exception: #pragma omp task

• Default(none): no default attribute for variables
in static extent. Must list storage attribute for
each variable in static extent. Good programming
practice.

50

Lexical (static) and Dynamic Extent I

• Parallel regions enclose an arbitrary block of code,
sometimes including calls to another function.

• The lexical or static extent of a parallel region is the
block of code to which the parallel directive applies.

• The dynamic extent of a parallel region extends the
lexical extent by the code of functions that are called
(directly or indirectly) from within the parallel region.

• The dynamic extent is determined only at runtime.

51

Lexical and Dynamic Extent II

52

int main(){
#pragma omp parallel
 {
 print_thread_id();
 }
}

void print_thread_id()
{
 int id = omp_get_thread_num();
 printf(“Hello world from thread %d\n”, id);
}

Static extent

Dynamic
extent

53

54 R. Hartman-Baker. Using OpenMP

Threadprivate

• Threadprivate makes global data private to a thread
– C/C++: file scope and static variables, static class members
– Each thread gives its own set of global variables, with initial

values undefined.

• Different from private
– With private clause, global variables are masked.
– Threadrpivate preserves global scope within each thread.
– Parallel regions must be executed by the same number of

threads for global data to persist.

• Threadprivate variables can be initialized using copyin
clause or at time of definition.

55

If all of the conditions below hold, and if a
threadprivate object is referenced in two consecutive
(at run time) parallel regions, then threads with the
same thread number in their respective regions
reference the same copy of that variable:

– Neither parallel region is nested inside another parallel
region.

– The number of threads used to execute both parallel
regions is the same.

56

#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

int *pglobal;
#pragma omp threadprivate(pglobal)

int main(){
 …
#pragma omp parallel for private(i,j,sum,TID) shared(n,length,check)
 for (i=0; i<n;i++)
 {
 TID = omp_get_thread_num();
 if((pglobal = (int*) malloc(length[i]*sizeof(int))) != NULL) {
 for(j=sum=0; j < length[i];j++) pglobal[j] = j+1;
 sum = calculate_sum(length[i]);
 printf(“TID %d: value of sum for I = %d is %d\n”, TID,i,sum);
 free(pglobal);
 } else {
 printf(“TID %d: not enough memory : length[%d] = %d\n", TID,i,length[i]);
 }
 }
} 57

Threadprivate directive is
used to give each thread a
private copy of the global

pointer pglobal.

58

/* source of function calculate_sum() */
extern int *pglobal;

int calculate_sum(int length){
 int sum = 0;
 for (j=0; j<length;j++)
 {
 sum += pglobal[j];
 }
 return (sum);
}

• Each thread has its own copy of sum0, updated in a parallel
region that is called several times. The values for sum0
from one execution of the parallel region will be available
when it is next started. 59

Copyin Clause

• Copyin allows to copy the master thread’s
threadprivate variables to corresponding
threadprivate variables of the other threads.

60

int global[100];
#pragma omp threadprivate(global)

int main(){
 for(int i= 0; i<100; i++) global[i] = i+2; // initialize data
#pragma omp parallel copyin(global)
 {
 /// parallel region, each thread gets a copy of global, with initialized value
 }
}

Copyprivate Clause

• Copyprivate clause is supported on the single directive to broadcast values of
privates from one thread of a team to the other threads in the team.
– The typical usage is to have one thread read or initialize private data that is

subsequently used by the other threads as well.
– After the single construct has ended, but before the threads have left the associated

barrier, the values of variables specified in the associated list are copied to the other
threads.

– Do not use copyprivate in combination with the nowait clause.

61

#include “omp.h”
Void input_parameters(int, int); // fetch values of input parameters

int main(){
 int Nsize, choice;
#pragma omp parallel private(Nsize, choice)
 {
 #pragma omp single copyprivate (Nsize, choice)
 input_parameters(Nsize,choice);
 do_work(Nsize, choice);
 }
}

Flush Directive

• OpenMP supports a shared memory model.
– However, processors can have their own “local” high

speed memory, the registers and cache.
– If a thread updates shared data, the new value will first

be saved in register and then stored back to the local
cache.

– The update are thus not necessarily immediately visible
to other threads.

62

Flush Directive

The flush directive is to make a thread’s temporary
view of shared data consistent with the value in
memory.

– #pragma omp flush (list)

– Thread-visible variables are written back to memory
at this point.

– For pointers in the list, note that the pointer itself is
flushed, not the object it points to.

63

References:
– http://bisqwit.iki.fi/story/howto/openmp/
– http://openmp.org/mp-documents/omp-hands-on-

SC08.pdf
– https://computing.llnl.gov/tutorials/openMP/
– http://www.mosaic.ethz.ch/education/Lectures/hpc
– R. van der Pas. An Overview of OpenMP
– B. Chapman, G. Jost and R. van der Pas. Using OpenMP:

Portable Shared Memory Parallel Programming. The MIT
Press, Cambridge, Massachusetts, London, England

– B. Estrade, Hybrid Programming with MPI and OpenMP

64

http://bisqwit.iki.fi/story/howto/openmp/
http://bisqwit.iki.fi/story/howto/openmp/
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

