
Lecture 11: Programming on GPUs
(Part 1)

1

Overview

• GPGPU: General purpose computation using
graphics processing units (GPUs) and graphics API

• GPU consists of multiprocessor element that run
under the shared-memory threads model. GPUs can
run hundreds or thousands of threads in parallel and
has its own DRAM.

– GPU is a dedicated, multithread, data parallel processor.

– GPU is good at

• Data-parallel processing: the same computation executed on
many data elements in parallel

• with high arithmetic intensity

2

• Performance history: GPUs are much faster than CPUs

3

AMD FireStream 9250: 1Tflops

4

nVidia GPU Architecture

• Many processors are striped together
• Small, fast shared memory

5

6

Hardware Overview

• Basic building block is a “streaming
multiprocessor” (SM) with:

– 32 cores, each with 1024 registers

– up to 48 threads per core

– 64KB of shared memory / L1 cache

– 8KB cache for constants held in device memory

• C2050: 14 SMs, 3/6 GB memory

7

GPU Computing at CRC

• http://wiki.crc.nd.edu/wiki/index.php/Developmental_Systems

• gpu1.crc.nd.edu
• gpu2.crc.nd.edu
• gpu3.crc.nd.edu
• gpu4.crc.nd.edu
• gpu5.crc.nd.edu
• CUDA compiler is nvcc
• To compile and run GPU code:

– module load cuda
– module show cuda
– nvcc hello.cu

8

http://wiki.crc.nd.edu/wiki/index.php/Developmental_Systems
http://wiki.crc.nd.edu/wiki/index.php/Developmental_Systems
http://gpu1.crc.nd.edu/
http://gpu1.crc.nd.edu/
http://gpu1.crc.nd.edu/
http://gpu2.crc.nd.edu/
http://gpu2.crc.nd.edu/
http://gpu2.crc.nd.edu/
http://gpu3.crc.nd.edu/
http://gpu3.crc.nd.edu/
http://gpu3.crc.nd.edu/
http://gpu4.crc.nd.edu/
http://gpu4.crc.nd.edu/
http://gpu4.crc.nd.edu/
http://gpu5.crc.nd.edu/
http://gpu5.crc.nd.edu/
http://gpu5.crc.nd.edu/

CUDA Concepts and Terminology

• Kernel: a C function which is flagged to be run on a GPU.
• A kernel is executed on the core of a multiprocessor inside

a thread. Loosely speaking, a thread can be thought of as
just an index 𝑗 ∈ 𝑁, an index of cores in multiprocessors

• At any given time, a block of threads is executed on a
multiprocessor. A lock can be thought of as just an index
𝑖 ∈ 𝑁, an index of multiprocessors in devices

• Together, (𝑖, 𝑗) corresponds to one kernel running on a core
of a single multiprocessor.

• Simplistically speaking, parallelizing a problem is to split it
into identical chunks indexed by a pair (𝑖, 𝑗) ∈ 𝑁 × 𝑁

9

To parallelize a for loop:

for(int i=0; i < 1000; i++) {a=x[i];}

• In block/thread, we would like to have a single
block/1000 thread (𝑖 = 0, 𝑗 = 0, … , 999) kernels
containing: a = x[thread_index];

• In real implementation, the exact same kernel is
called blocks × threads times with the block and
thread indices changing.

– To use more than one multiprocessor, say
𝑖 = 0, . . , 19, 𝑗 = 0, … , 49 and kernel:

a = x[block_index+thread_index];

10

11

• We can not assume threads will complete in the order they are indexed.
• We can not assume blocks will complete in the order they are labeled.
• To deal with data/task dependency:

• Use synchronization: __syncthreads();
• Split into kernels and call consecutively from C

• Shared memory model: do not write to same memory location from different
threads

• CUDA: Compute unified device architecture

– A new hardware and software architecture for
issuing and managing computations on the GPU

• CUDA C is a programming language developed
by NVIDIA for programming on their GPUs. It
is a extension of C.

12

CUDA Programming Model

• A CUDA program consists of code to be run on the
host, i.e. the CPU, and the code to be run on the
device, i.e. the GPU.
– Device has its own DRAM

– Device runs many threads in parallel

• A function that is called by the host to execute on the
device is called a kernel.
– Kernels run on many threads which realize data parallel

portion of an application

• Threads in an application are grouped into blocks. The
entirety of blocks is called the grid of that application.

13

14

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SIMD kernel C code

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏

KernelB<<< nBlk, nTid >>>(args);
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

15

Extended C

• Type Qualifiers
– global, device, shared,

local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];

 ...

 region[threadIdx] = image[i];

 __syncthreads()

 ...

 image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Thread Batching

• A kernel is executed as a grid of
thread blocks

• A thread block is a batch of
threads that can cooperate.

• Each thread uses ID to decide
what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D or 3D

• Threads within a block
coordinate by shared memory,
atomic operations and barrier
synchronization.

• Threads in different blocks can
not cooperate.

• Convenient for solving PDEs on
grid cells.

16

CUDA Memory Model

17

• Global memory
– Main means of

communicating
R/W Data
between host and
device

– Contents visible to
all threads

– Long latency
access

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

Device Memory Allocation

• cudaMalloc()
– Allocate space in device Global Memory

• cudaFree()
– Free allocated space in device Global Memory

• Example. Allocate 64 by 64 single precision float
array. Attached the allocated storage to *Md.

18

TILE_WIDTH = 64;

Float* Md

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

Host-Device Data Transfer

19

• cudaMemcpy()
– memory data transfer
– Requires four parameters

• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer

• Example:
– Transfer a 64 * 64 single precision float array
– M is in host memory and Md is in device memory
– cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are

symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

CUDA Function Declarations

20

• __global__ defines a kernel function
– Must return void

– Example: __global__ void KernelFunc()

– Executed on the device, only callable from the

host

• __device__ defines a function called by kernels.
• Example: __device__ float DeviceFunc()‏

• Executed on the device, only callable from the

device

• __host__ defines a function running on the host
• Example: __host__ float HostFunc()‏

• Executed on the host, only callable from

the host

• __device__ functions cannot have their
address taken

• For functions executed on the device:

– No recursion

– No static variable declarations inside the function

– No variable number of arguments

21

Thread Creation

• Threads are created when program calls kernel
functions.

• A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(...);

• Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

22

Kernel Call – Hello World

// File name: hello.cu

#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>

__global__ void kernel(void){
}

int main()
{
 kernel <<<1, 1>>> ();
 printf("Hello world\n");
 return 0;
}

23

Compile: nvcc hello.cu

// file name: add_num.cu
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>

__global__ void add(int a, int b, int *c){
 *c = a + b;
}

int main()
{
 int c;
 int *dev_c;

 cudaMalloc((void**)&dev_c, sizeof(int));
 add <<<1, 1>>>(3, 7, dev_c);
 cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
 printf("result = %d\n", c);
 cudaFree(dev_c);
 return 0;
}

24

• Can pass parameters to a kernel as with C function
• Need to allocate memory to do anything useful on a device, such as

return values to the host.

• Do not deference the pointer returned by
cudaMalloc() from code that executes on the
host. Host code may pass this pointer around,
perform arithmetic on it. But we can not use it to
read or write from memory.

• We can access memory on a device through calls
to cudaMemcpy() from host code.

25

Querying Device
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <string.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>

int main(int argc, char** argv)
{
 int gpuDevice;
 int devNum = 0;
 int c, count;
 int cudareturn;

 cudaGetDeviceCount(&count);
 while ((c = getopt (argc, argv, "d:")) != -1)
 {
 switch (c)
 {
 case 'd':
 devNum = atoi(optarg);
 break;
 case '?':
 if (isprint (optopt))
 fprintf (stderr, "Unknown option `-%c'.\n", optopt);
 else
 fprintf (stderr,
 "Unknown option character `\\x%x'.\n",
 optopt);
 return 1;
 default:
 printf("GPU device not specified using device 0 ");
 }
 }
 cudareturn = cudaSetDevice(devNum);
 printf("device count = %d\n", count);
 if (cudareturn == 11)
 {
 printf("cudaSetDevice returned 11, invalid device number ");
 exit(-1);
 }
 cudaGetDevice(&gpuDevice);
 return 0;
}

26

GPU Vector Sums
#include <stdio.h>

#include <cuda.h>

#include <cuda_runtime.h>

#include <curand_kernel.h>

#define N 50

__global__ void add(int *a, int *b, int *c){

 int tid = blockIdx.x; // handle the data at this index

 if(tid < N)

 c[tid] = a[tid] + b[tid];

}

int main()

{

 int a[N], b[N], c[N], i;

 int *dev_a, *dev_b, *dev_c;

 cudaMalloc((void**)&dev_c, N*sizeof(int));

 cudaMalloc((void**)&dev_b, N*sizeof(int));

 cudaMalloc((void**)&dev_a, N*sizeof(int));

 for(i=0; i < N; i++)

 {

 a[i] = -i;

 b[i] = i*i*i;

 }

 cudaMemcpy(dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice);

 cudaMemcpy(dev_b, b, N*sizeof(int), cudaMemcpyHostToDevice);

 add <<<N, 1>>>(dev_a, dev_b, dev_c);

 cudaMemcpy(c, dev_c, N*sizeof(int), cudaMemcpyDeviceToHost);

 for(i=0; i < N; i++)

 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 cudaFree(dev_c);

 cudaFree(dev_b);

 cudaFree(dev_a);

 return 0;

} 27

• CUDA built-in variable: blockIdx
– CUDA runtime defines this variable.
– It contains the value of the block index for whichever block is

currently running the device code.
– CUDA C allows to define a group of blocks in two-dimensions.

• 𝑁 − specified as the number of parallel blocks
– A collection of parallel blocks is called a grid.
– This example specifies to the runtime system to allocate a one-

dimensional grid of 𝑁 blocks.
– Threads will have different values for blockIdx.x, from 0 to 𝑁

− 1.
– 𝑁 ≤ 65,535 − a hardware-imposed limit.

• if(tid< 𝑁)
– Avoid potential bugs – what if # threads requested is greater

than 𝑁?

28

