
A Short Introduction to Makefile

1

Make Utility and Makefile

• The make utility is a software tool for managing and maintaining
computer programs consisting many component files. The make utility
automatically determines which pieces of a large program need to be
recompiled, and issues commands to recompile them.

• Make reads its instruction from Makefile (called the descriptor file) by
default.

• Makefile sets a set of rules to determine which parts of a program
need to be recompile, and issues command to recompile them.

• Makefile is a way of automating software building procedure and other
complex tasks with dependencies.

• Makefile contains: dependency rules, macros and suffix(or implicit)
rules.

2

/* main.cpp */
#include <iostream>
#include "functions.h“

using namespace std;
int main()
{
 print_hello();
 cout << endl;
 cout << "The factorial of 5 is " <<
factorial(5) << endl;
 return 0;
}

/* hello.cpp */
#include <iostream>
#include "functions.h"

using namespace std;
void print_hello()
{
 cout << "Hello World!";
}

/* factorial.cpp */
#include "functions.h"

int factorial(int n)
{
 int i, fac = 1;
 if(n!=1){
 for(i=1; i<= n; i++)
 fac *= i;
 return fac;
 }
 else return 1;
}

/* functions.h */
#if !defined(_FUNC_H_)
#define _FUNC_H_

void print_hello();
int factorial(int n);

#endif /* if !define(_FUNC_H_) */

3

Command Line Approach to Compile

• g++ -c hello.cpp main.cpp factorial.cpp

• ls *.o

 factorial.o hello.o main.o

• g++ -o prog factorial.o hello.o main.o

• ./ prog

 Hello World!

 The factorial of 5 is 120

• Suppose we later modified hello.cpp, we need to:
• g++ -c hello.cpp

• g++ -o prog factorial.o hello.o main.o

4

Example Makefile
This is a comment line
CC=g++
CFLAGS will be the options passed to the compiler.
CFLAGS= -c -Wall

all: prog

prog: main.o factorial.o hello.o
 $(CC) main.o factorial.o hello.o -o prog

main.o: main.cpp
 $(CC) $(CFLAGS) main.cpp

factorial.o: factorial.cpp
 $(CC) $(CFLAGS) factorial.cpp

hello.o: hello.cpp
 $(CC) $(CFLAGS) hello.cpp

clean:
 rm -rf *.o

5

Basic Makefile Structure

Dependency rules
• A rule consists of three parts, one or more targets,

zero or more dependencies, and zero or more
commands in the form:

target: dependencies
<tab> commands to make target

• <tab> character MUST NOT be replaced be spaces.
• A “target” is usually the name of a file(e.g. executable or object

files). It can also be the name of an action (e.g. clean)
• “dependencies” are files that are used as input to create the

target.
• Each “command” in a rule is interpreted by a shell to be executed.
• By default, make uses /bin/sh shell.
• Typing “make target” will:

1. Make sure all the dependencies are up to date
2. If target is older than any dependency, recreate it using the specified

commands.
6

• By default, typing “make” creates first target in Makefile.
• Since prog depends on main.o factorial.o hello.o, all of object files

must exist and be up-to-date. make will check for them and
recreating them if necessary

• Phony targets
– A phony target is one that isn't really the name of a file. It will only

have a list of commands and no dependencies.
E.g. clean:
 rm -rf *.o

Macros
• By using macros, we can avoid repeating text entries and

makefile is easy to modify.
• Macro definitions have the form:

NAME = text string
e.g. we have: CC=g++

• Macros are referred to by placing the name in either
parentheses or curly braces and preceding it with $ sign.
– E.g. $(CC) main.o factorial.o hello.o -o prog

7

Internal macros

• Internal macros are predefined in make.

• “make -p” to display a listing of all the macros, suffix
rules and targets in effect for the current build.

Special macros

• The macro @ evaluates to the name of the current
target.
– E.g.

prog1 : $(objs)

 $(CXX) -o $@ $(objs)

is equivalent to

prog1 : $(objs)

 $(CXX) -o prog1 $(objs)

8

Suffix rules
A way to define default rules or implicit rules that make can use to build a
program. There are double-suffix and single-suffix.

• Suffix rules are obsolete and are supported for compatibility. Use pattern
rules (a rule contains character ‘%’) if possible.

• Doubles-suffix is defined by the source suffix and the target suffix . E.g.

.cpp.o:

 $(CC) $(CFLAGS) -c $<
– This rule tells make that .o files are made from .cpp files.

– $< is a special macro which in this case stands for a .cpp file that is used to
produce a .o file.

• This is equivalent to the pattern rule “%.o : %.cpp”
%.o : %.cpp

 $(CC) $(CFLAGS) -c $<

Command line macros
• Macros can be defined on the command line.

– E.g. make DEBUG_FLAG=-g

 9

How Does Make Work?

• The make utility compares the modification time
of the target file with the modification times of
the dependency files. Any dependency file that
has a more recent modification time than its
target file forces the target file to be recreated.

• By default, the first target file is the one that is
built. Other targets are checked only if they are
dependencies for the first target.

• Except for the first target, the order of the targets
does not matter. The make utility will build them
in the order required.

10

A New Makefile
This is a comment line
CC=g++
CFLAGS will be the options passed to the compiler.
CFLAGS=-c –Wall
OBJECTS = main.o hello.o factorial.o
all: prog

prog: $(OBJECTS)
 $(CC) $(OBJECTS) -o prog

%.o: %.cpp
 $(CC) $(CFLAGS) $<

clean:
 rm -rf *.o

11

• Reference
http://www.gnu.org/software/make/manual/html_node/

http://www.gnu.org/software/make/manual/html_node/
http://www.gnu.org/software/make/manual/html_node/
http://www.gnu.org/software/make/manual/html_node/
http://www.gnu.org/software/make/manual/html_node/

