Published in the proceedings of the Fifth European Workshop on OpenMP, EWOMP ’03, Aachen, Germany, Sept.

www.compunity.org

22-26, 2003,

Hybrid Parallel Programming on HPC Platforms

Rolf Rabenseifner*

Summary

Most HPC systems are clusters of shared memory nodes.
Parallel programming must combine the distributed mem-
ory parallelization on the node inter-connect with the
shared memory parallelization inside of each node. Various
hybrid MPI14-OpenMP programming models are compared
with pure MPI. Benchmark results of several platforms are
presented. This paper analyzes the strength and weakness
of several parallel programming models on clusters of SMP
nodes. Benchmark results on a Myrinet cluster and on re-
cent Cray, NEC, IBM, Hitachi, SUN and SGI platforms
show, that the hybrid-masteronly programming model can
be used more efficiently on some vector-type systems, but
also on clusters of dual-CPUs. On other systems, one
CPU is not able to saturate the inter-node network and
the commonly used masteronly programming model suffers
from insufficient inter-node bandwidth. This paper analy-
ses strategies to overcome typical drawbacks of this easily
usable programming scheme on systems with weaker inter-
connects. Best performance can be achieved with overlap-
ping communication and computation, but this scheme is
lacking in ease of use.

Keywords. OpenMP, MPI, Hybrid Parallel Programming,
Threads and MPI, HPC, Performance.

1 Introduction

Most systems in High Performance Computing are clus-
ters of shared memory nodes. Such hybrid systems
range from small clusters of dual-CPU PCs up to largest
systems like the Earth Simulator consisting of 640 SMP
nodes connected by a single-stage cross-bar and with
SMP nodes combining 8 vector CPUs on a shared mem-
ory [3, 5]. Optimal parallel programming schemes en-
able the application programmer to use the hybrid hard-

*High-Performance Computing-Center (HLRS), University
of Stuttgart, Allmandring 30, D-70550 Stuttgart, Germany
rabenseifner@hlrs.de, www.hlrs.de/people/rabenseifner/

ware in a most efficient way, i.e., without any overhead
induced by the programming scheme.

On distributed memory systems, message passing, es-
pecially with MPI [4, 12, 13], has shown to be the mainly
used programming paradigm. One reason of the success
of MPI was the clear separation of the optimization:
communication could be improved by the MPI library,
while the numerics had to be optimized by the compiler.
On shared memory systems, directive-based paralleliza-
tion was standardized with OpenMP [15], but there is
also a long history of proprietary compiler-directives for
parallelization. The directives handle mainly the work
sharing; there is no data distribution.

On hybrid systems, i.e., on clusters of SMP nodes,
parallel programming can be done in several ways: one
can use pure MPI, or some schemes combining MPI
and OpenMP, e.g., calling MPI routines only outside
of parallel regions (which is herein named the mas-
teronly style), or using OpenMP on top of a (virtual)
distributed shared memory (DSM) system. A classi-
fication on MPI and OpenMP based parallel program-
ming schemes on hybrid architectures is given in Sect. 2.
Unfortunately, there are several mismatch problems be-
tween the (hybrid) programming schemes and the hy-
brid hardware architectures. Often, one can see in pub-
lications, that applications may or may not benefit from
hybrid programming depending on some application pa-
rameters, e.g., in [7, 10, 22].

Sect. 3 gives a list of major problems often causing a
degradation of the speed-up, i.e., causing that the par-
allel hardware is utilized only partially. Sect.4 shows,
that there isn’t a silver bullet to achieve an optimal
speed-up. Benchmark results show that different hard-
ware platforms are more or less prepared for the hy-
brid programming models. Sect.5 discusses optimiza-
tion strategies to overcome typical drawbacks of the
hybrid masteronly style. With these optimizations, effi-
ciency can be achieved together with the ease of parallel
programming on clusters of SMPs. The conclusions are
provided in Sect. 6.

2 Parallel programming on hy-
brid systems, a classification

Often, hybrid MPI+OpenMP programming denotes a
programming style with OpenMP shared memory par-
allelization inside the MPI processes (i.e., each MPI
process itself has several OpenMP threads) and com-
municating with MPI between the MPI processes, but
only outside of parallel regions. For example, the MPI
parallelization is based on a domain decomposition, the
MPI communication mainly exchanges the halo infor-
mation after each iteration of the outer numerical loop,
and these numerical iterations itself are parallelized with
OpenMP, i.e., (inner) loops inside of the MPI processes
are parallelized with OpenMP work-sharing directives.
However, this scheme is only one style in a set of dif-
ferent hybrid programming methods. This hybrid pro-
gramming scheme will be named masteronly in the fol-
lowing classification, which is based on the question,
when and by which thread(s) the messages are sent be-
tween the MPI processes:

1. Pure MPI: each CPU of the cluster of SMP nodes
is used for one MPI process. The hybrid system
is treated as a flat massively parallel processing
(MPP) system. The MPI library has to optimize
the communication by using shared memory based
methods between MPI processes on the same SMP
node, and the cluster interconnect for MPI pro-
cesses on different nodes.

2. Hybrid MPI+OpenMP without overlapping calls to
MPI routines with other numerical application code
in other threads:

2a. Hybrid masteronly: MPI is called only outside
parallel regions, i.e., by the master thread.

2b. Hybrid multiple/masteronly: MPI is called
outside the parallel regions of the application code,
but the MPI communication is done itself by sev-
eral CPUs: The thread parallelization of the MPI
communication can be done

« automatically by the MPI library routines, or
« explicitly by the application, using a full thread-
safe MPI library.

In this category, the non-communicating threads
are sleeping (or executing some other applications,
if non-dedicated nodes are used). This problem of
idling CPUs is solved in the next category:

EWOMP 2003, Aachen, Sept. 22-26

3. Overlapping communication and computation:
While the communication is done by the mas-
ter thread (or a few threads), all other non-
communicating threads are executing application
code. This category requires, that the application
code is separated into two parts: the code that can
be overlapped with the communication of the halo
data, and that code that must be deferred until
the halo data is received. Inside of this category,
we can distinguish two types of sub-categories:

e How many threads communicate:

(A) Hybrid funneled: Only the master thread
calls MPI routines, i.e., all communication is
funneled to the master thread.

(B) Hybrid multiple: Each thread handles its
own communication needs (B1), or the commu-

nication is funneled to more than one thread
(B2).

e Except in case Bl, the communication load of
the threads is inherently unbalanced. To balance
the load between threads that communicate and
threads that do not communicate, the following
load balancing strategies can be used:

(I) Fixed reservation: reserving a fixed amount
of threads for communication and using a
fixed load balance for the application between
the communicating and non-communicating
threads.

(II) Adaptive.

4. Pure OpenMP: based on virtual distributed
shared memory systems (DSM), the total applica-
tion is parallelized only with shared memory direc-
tives.

Each of these categories of hybrid programming has
different reasons, why it is not appropriate for some
classes of applications or classes of hybrid hardware ar-
chitectures. The paper focuses on the first two methods.
Overlapping communication and computation is studied
in more detail in [17, 16]. Regarding pure OpenMP ap-
proaches, the reader is referred to [1, 6, 8, 11, 18, 19, 20].
Different SMP parallelization strategies in the hybrid
model are studied in [21] and in [2] for the NAS parallel
benchmarks. The following section shows major prob-
lems of mismatches between programming and hard-
ware architecture.

R. Rabenseifner: Hybrid Parallel Programming on HPC' Platforms 3

3 Mismatch problems

All these programming styles on clusters of SMP nodes
have advantages, but also serious disadvantages based
on mismatch problems between the (hybrid) program-
ming scheme and the hybrid architecture:

o With pure MPI, minimizing of the inter-node com-
munication requires that the application-domain’s
neighborhood-topology matches with the hardware
topology.

e Pure MPI also introduces intra-node communication
on the SMP nodes that can be omitted with hybrid
programming.

e On the other hand, such MPI+OpenMP program-
ming is not able to achieve full inter-node band-
width on all platforms for any subset of inter-
communicating threads.

e With masteronly style, all
threads are idling.

o CPU time is also wasted, if all CPUs of an SMP node
communicate, although a few CPUs are already able
to saturate the inter-node bandwidth.

e With hybrid masteronly programming, additional
overhead is induced by all OpenMP synchronization,
but also by additional cache flushing between the
generation of data in parallel regions and the con-
sumption in subsequent message passing routines and
calculations in subsequent parallel sections.

non-communicating

Overlapping of communication and computation is a
chance for an optimal usage of the hardware, but

« causes serious programming effort in the application
itself to separate numerical code that neds halo data
and that cannot be overlapped with the communica-
tion therefore,

o causes overhead due to the additional parallelization
level (OpenMP), and

e communicating and non-communicating threads
must be load balanced.

A few of these problems will be discussed im more de-
tail and based on benchmark results in the following
sections.

3.1 The inter-node bandwidth problem

With hybrid masteronly or funneled style, all communi-
cation must be done by the master thread. The bench-
mark measurements in Fig. 3 and the inter-node results
in Tab. 1 show, that on several platforms, the available
aggregated inter-node bandwidth can be achieved only,

MPI1+OpenMP: pure MPI:
only vertical vertical AND horizontal messages
e ———
- ™ .
(D-olp ofp 0 0 0
Multiple vertical
communication
paths, e.g., O intra-node
gpj) D O O-O- O inranode
* 3 0of 8 CPUs ‘ ‘ ‘ ‘ ‘
in each node
+ stride 2 :
hybrid: }
38 *8/3MB I | inter-node
[8+*8*1MB
U v U \
pure MPI: intra- + inter-node
stride (= vert. + horizontal)
Figure 1: Communication pattern with hybrid

MPI+OpenMP style and with pure MPI style.

if more than one thread is used for the communication
with other nodes.

In this benchmark, all SMP nodes are located in a
logical ring. Each CPU sends messages to the corre-
sponding CPU in the next node and receives from the
previous node in the ring. The benchmark is done with
pure MPI, i.e., one MPI process on each CPU, except
for Cray X1, where we used as smallest entity an MSP
(which itself has 4 SSPs [=CPUs]). Fig.1 shows the
communication patterns. The aggregated bandwidth
per node is defined as the number of all bytes of all
messages on the inter-node network divided by the time
needed for the communication and divided by the num-
ber of nodes. Note that in this definition, each message
is counted only once, and not twice.! Fig.2 shows the
absolute bandwidth over the number of CPUs (or MSPs
at Cray X1), Fig. 3 shows relative values, i.e., the per-
centage of the achieved peak bandwidth in each system
over the percentage of CPUs of a node.

One can see, that only on the NEC SX-6, Cray X1
systems, and on the Myrinet based cluster of dual-CPU
PCs, one can achieve more than 75 % of the peak band-
width already with one CPU (or MSP on Cray X1) per
node (see highlighted values in Tab. 1, Col. 3).

On the other systems, the hybrid masteronly or fun-
neled programming scheme can achieve only a small
percentage of the peak inter-node bandwidth. [17] has

1The hardware specification typically presents the duplex
inter-node bandwidth by counting each message twice, i.e. as
incoming and outgoing message at a node, e.g., on a Cray X1,
25.6 GB/s = 2x12.8 GB/s; the measured 12GB/s (shmen_put)
must be compared with the 12.8 GB/s of the hardware specifi-
cation.

4 EWOMP 2003, Aachen, Sept. 22-26

Master- pure Master- pure | memory Peak max. | #nodes x #CPUs
only, MPI, only bw MPI, band- and inter- per
inter- inter- / max. intra- width Linpack node bw SMP node
node node inter- node perfor- / peak or
bandw. bandw. | node bw bandw. bandw. mance Linpack
perf.
(GB/s] [GB/s] [%] [GB/s] [GB/s] | [GFLOP/s] | [B/FLOP]
Cray X1, shmem _put 9.27 12.34 75 % 33.0 136 51.20 0.241 8 * 4 MSPs
preliminary results 45.03 0.27}4
Cray X1, MPI 4.52 5.52 82 % 19.5 136 51.20 0.108 8 * 4 MSPs
preliminary results 45.08 0.123
NEC SX-6, MPI with 7.56 4.98 100 % 78.7 256 64 0.118 4 * 8 CPUs
global memory 93.7+) 61.83 0.122
NEC SX-5Be 2.27 2.50 91 % 35.1 512 64 0.039 2 *16 CPUs
local memory a) 60.50 0.041 a) only 8 CPUs
Hitachi SR8000 0.45 0.91 49% 5.0 32432 8 0.114 8 * 8 CPUs
6.82 0.133
IBM SP Power3+ 0.16 0.57+) 28 % 2.0 16 24 0.023 8 *16 CPUs
14.27 0.040
SGI 03800 600MHz 0.427+) 1.74+) 25 % 1.734) 3.2 4.80 0.363 16 *4 CPUs
(2 MB messages) 3.6/ 0.478
SGI 03800 600MHz 0.156 0.400 39% 0.580 3.2 4.80 0.083 16 *4 CPUs
(16 MB messages) 3.64 0.110
SGI 03000 400MHz 0.10 0.30+) 33% 0.39+) 3.2 3.20 0.094 16 *4 CPUs
(preliminary results) 2.46 0.122
SUN Fire 6800 0.15 0.85 18% 1.68 43.1 0.019 4 *24 CPUs
(preliminary results) 23.3 0.036
HELICS Dual-PC 0.127+) | 0.129+4) 98 % | 0.186+) 2.80 0.046 32 * 2 CPUs
cluster with Myrinet 1.61 0.080
HELICS Dual-PC 0.105 0.091 100 % 0.192 2.80 0.038 32 * 2 CPUs
cluster with Myrinet 1.61 0.065
HELICS Dual-PC 0.118+) | 0.119+4) 99 % | 0.104+) 2.80 0.043 128 * 2 CPUs
cluster with Myrinet 1.61 0.07/
HELICS Dual-PC 0.093 0.082 100 % 0.101 2.80 0.033 128 * 2 CPUs
cluster with Myrinet 1.61 0.058
HELICS Dual-PC 0.087 0.077 100 % 0.047 2.80 0.031 239 * 2 CPUs
cluster with Myrinet 1.61 0.05/
Column® 1 2 3 4 5 6 7 8

Table 1: Inter- and Intra-node bandwidth for large messages compared with memory bandwidth and peak per-
formance. All values are aggregated over one SMP node. Each message counts only once for the bandwidth
calculation. Message size is 16 MB, except +) with 2 MB.

%A degradation may be caused by system processes because the benchmark used all processors of the SMP nodes.
bColumns 1, 2, 4 are benchmark results, Col. 3 is calculated from Col.1 & 2, Col.5 & 6 “peak” are theoretical values,
Col. 6 “Linpack” is based on the TOP500 values for the total system [14], and Col. 7 is calculated from Col. 1, 2 & 6.

R. Rabenseifner: Hybrid Parallel Programming on HPC' Platforms 5

—— Cray X1 MSP shmem_put/ 1920*4 kB
- - - Cray X1 MSP shmem_put/ 240*4 kB
---B---Cray X1 MSP shmem_put/ 30*4 kB
—&— Cray X1 MSP /1920*4 kB

—--o-- Cray X1 MSP / 2404 kB
---¢---Cray X1 MSP/ 30*4 kB

—aA— NEC SX6 gimem/1920*8 kB

12000 —u
Cray X1, smem_put
10000 - ‘\4MSPslnode —
AN |
;R

8000
NEC SX-6, —-& - NEC SX6 glmem/ 240*8 kB
MPI with global ---A---NEC SX6 gimem/ 30*8 kB
6000 - memory, —@— Hitachi SR8000 / 1920*8 kB

8CPUs/node | _ o _ hjitachi SRB000 / 240°8 kB

---@--- Hitachi SR8000/ 30*8 kB

4000 A 5 3y —X— IBM SP/Power3+/1920*16 kB
LS Ap - X - IBM SP/Power3+/ 240*16 kB
. A --X--- IBM SP/Power3+/_30*16 kB
2000 o=

accumulated bandwidth [MB/s]

Cray X1 results
are preliminary

AR TR e R
0+ T T T T T T 1 L accumulated message
0 2 4 6 8 10 12 14 16 | sizefrom node to node

communicating CPUs per SMP node

& © I —
9 -®Hitachi, 8 CPUs/node IBM, 16 CPUs/node

Figure 2: Aggregated bandwidth per SMP node.

100% 2
%/X/
90%

80% J k ;

il
70%
60%
50%
40%
X

00% 125%

accumulated
message size
from node to node

Nearly all platforms: || g Cray X1 MSP shmem_put/ 7680 kB

>75% bandwidth with H
25% of CPUs/node

Nearly full bandwidth
+ with 1 MSP on Cray
» with 1 CPU on NEC | {_¢_ Hitachi SR8000 / 7680 kB

50 :ﬁeagﬁ]'e‘?; atforms | |2 IBMSP/Powerd. /7680 kB

Cray X1 results
are preliminary

—&—Cray X1 MSP, with MP1/ 7680 kB

[{-A—NEC SX6 glmem /7680 kB

of the peak bandwidth

4
s B8
SIS

accumulated bandwidth as percentage

T
250% 375% 500% 625% 750% 875% 100,0%

communicating CPUs per SMP node
as percentage of the total number of CPUs per SMP node

Figure 3: Aggregated bandwidth per SMP node.

compared the pure MPI with the masteronly scheme.
For this comparison, each MPI process in the pure MPI
scheme has also to exchange messages between the pro-
cesses in the same node. These intra-node messages
have the same size as the inter-node messages, (c.f.
Fig.1). Fig.4 shows the ratio of the inter-node com-
munication time of hybrid MPI+OpenMP masteronly
style divided by the time needed for the inter- and
intra-node communication with pure MPI. In case of
hybrid masteronly style, the messages must transfer
the accumulated data of the parallel inter-node mes-
sages in pure MPI style, i.e., the message size is mul-
tiplied with the number of CPUs of an SMP node. In
Fig.4, one can see a significantly better communica-
tion time with pure MPI, on those platforms, on which
the inter-node network cannot be saturated by the mas-
ter thread. In this benchmark, the master thread in
the masteronly scheme was emulated by an MPI pro-
cess (and the other threads by MPI process waiting

w

A -o-IBMSP 8x16 CPUs,
Pure MPI 1 CPU Masteronly

is faster . sa1 03000 16x4 GPUS,

1 CPU Masteronly
—A— Hitachi SR8000 8x8 CPUs,

1 CPU Masteronly
—o—Pure MPI,

horizontal + vertical
—-Cray X1 8x4 MSPs,

1 MSP Masteronly
—m-NEC SX6 glmem 4x8 CPUs,
1 CPU Masteronly

Cray X1 and SGI results
are preliminary

IBM SP. 03000. and SR 8000
Masteronly: MPI cannot saturate
inter-node bandwidth

S

0+
1E+2

ratio T_hybrid_masteronly / T_pure_MPI

1E+3

1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI) [bytes]

Figure 4: Ratio of hybrid communication time to pure
MPI communication time.

in a barrier). On most platforms, the measurements
were verified with a benchmark using hybrid compila-
tion and hybrid application start-up. The diagram com-
pares experiments with the same aggregated message-
size in the inter-node communication; on the x-axis, the
corresponding number of bytes in the pure-MPI exper-
iment is shown. This means, e.g., that the message size
in the hybrid-masteronly experiment on a 16-CPU-per-
node system is 16 times larger than in the experiments
with pure MPI.

Benchmark platforms were: a Cray X1 with 16 nodes
at Cray; the NEC SX-6 with 24 nodes and IXS in-
terconnect at the DKRZ, Hamburg, Germany; the
Hitachi SR8000 with 16 nodes at HLRS, Stuttgart,
Germany; the IBM SP-Power3 at NERSC, USA; the
SGI Origin 3000 (400 MHz) Lomaxz with 512 CPUs at
NASA/Ames Research Center, NAS, USA; an SGI Ori-
gin 3800 (600 MHz) at SGI; the SUN Fire 6800 cluster
with Sun Fire Link at the RWTH Aachen, Germany;
and HELICS, a Myrinet 2 GBit/s full bisection network
based cluster of 256 dual AMD Athlon 1.4 GHz PCs at
IWR, University of Heidelberg.

3.2 The sleeping-threads problem and
the saturation problem

The two most simple programming models on hybrid
systems have both the same problem although they look
quite different: With hybrid masteronly style the non-
master threads are sleeping while the master commu-
nicates, and with pure MPI, all threads try to commu-
nicate while only a few (or one) threads already can
saturate the inter-node network bandwidth (expecting
that the application is organized in communicating and
computing epochs). If one thread is able to achieve the

full inter-node bandwidth (e.g., NEC SX-6, see Fig. 2),
then both problems are equivalent. If one thread can
only achieve a small percentage (e.g., 28 % on IBM SP),
then the problem with masteronly style is significantly
higher.

As example on the IBM system, if an application
communicates 1 sec in the pure MPI style (i.e. 1x16
= 16 CPUsec), then this program would need about
16/0.28 = 57 CPUsec in masteronly style, and if one
would use 4 CPUs for the inter-node communication (4
CPUs achieve 88.3 %) and the other 12 threads for over-
lapping computation, then only 4/0.883 = 4.5 CPUsec
would be necessary.

If the inter-node bandwidth cannot be achieved by
one thread, then it may be a better choice to split each
SMP node into several MPI processes that are itself
multithreaded. Then, the inter-node bandwidth in the
pure MPI and hybrid masteronly model are similar and
mainly the topology, intra-node communication, and
OpenMP-overhead problems determine which of both
programming styles are more effective. When overlap-
ping communication and computation, this splitting can
also solve the inter-node bandwidth problem described
in the previous section.

4 Bite the bullet

Each parallel programming scheme on hybrid architec-
tures has one or more significant drawbacks. Depending
on the needed resources of an applications, the draw-
backs may be major or only minor.

Programming without overlap of communication
and computation

One of the two problems, sleeping-threads and satura-
tion problem is indispensable. The major design crite-
rion may be the topology problem:

o If it cannot be solved, pure MPI may cause too much
inter-node traffic, but the masteronly scheme implies
on some platforms a slow inter-node communication
due to the inter-node bandwidth problem described
above.

o If the topology problem can be solved, then we can
compare hybrid masteronly with pure MPI: On some
platforms, wasting inter-node bandwidth with mas-
teronly style is the major problem; it causes more
CPUs longer idling than with pure MPI. For exam-
ple on an IBM SP system with 16 Power3+ CPUs on

EWOMP 2003, Aachen, Sept. 22-26

each SMP node, Fig.5 shows the aggregated band-
width per node with the experiment described in
Sect.3.1. The pure MPI horizontal+vertical band-
width is defined in this diagram by dividing the
amount of inter-node message bytes (without count-
ing the intra-node messages?) by the time needed for
inter- and intra-node communication, i.e., the intra-
node communication is treated as overhead. One can
see, that more than 4 CPUs per node must communi-
cate in parallel to achieve full inter-node bandwidth.
At least 3 CPU per node must communicate in the
hybrid model to beat the pure MPI model. Fig.6
shows the ratio of the execution time in the hybrid
models to the pure MPI model. A ratio greater than
1 shows that the hybrid model is slower than the pure
MPI model.

On systems with 8 CPUs per node, the problem may
be reduced, e.g., as one can see on a Hitachi SR 8000
in Fig. 7. On some vector type systems, one CPU may
already be able to saturate the inter-node network, as
shown in Fig.8-10. Note: the aggregated inter-node
bandwidth on the SX-6 is reduced, if more than one
CPU per node tries to communicate at the same time
over the IXS. Fig.9 and 10 show preliminary results on
a Cray X1 system with 16 nodes. Each SMP node con-
sists of 4 MSPs (multi streaming processors). Each MSP
itself consists of 4 SSPs (single streaming processors).
With MSP-based programming, each MSP is treated
as a CPU, i.e., each SMP node has 4 CPUs (=MSPs)
that internally use an (automatic) thread-based par-
allelization (= streaming). With SSP-based program-
ming, each SMP node has 16 CPUs (=SSPs). Prelim-
inary results with the SSP-mode have shown, that the
inter-node bandwidth is partially bound to the CPUs,
i.e., that the behavior is similar to the 16-way IBM sys-
tem.

Similar to the multi-threaded implementation of MPI
on the Cray MSPs, it would be also possible on all other
platforms to use multiple threads inside of the MPI com-
munication routines if the application uses the hybrid
masteronly scheme. The MPI library can easily detect
whether the application is inside or outside of a parallel
region. With this potential optimization (described in
more detail in Sect.5), the communication time of the
hybrid masteronly model should always be shorter than
the communication time in the pure MPI scheme.

2Because the intra-node messages must be treated as overhead
if we compare pure MPI with hybrid communication strategies.

R. Rabenseifner: Hybrid Parallel Programming on HPC' Platforms

Accumulated bandwidth per SMP node

Figure 5: Aggregated bandwidth per SMP node on IBM

500 1 full inter-node

400

100

o IBM at NERSC (16 Power3+ CPUs/node)

More than 4 CPUs per
node needed to achieve

bandwidth

Tl Second CPU
doubles the

accumulated
bandwidth

One CPU can achieve
only 27-30% of peak

1E+5 1E+6

1E+3 1E+4

—x— 8x16 CPUs, Hybrid
Multiple,12/16 CPUs Stride 1

—#— 8x16 CPUs, Hybrid Multiple,
6/16 CPUs Stride 1

—@— 8x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1

—=A— 8x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1

—o— 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 1

@--- 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4

- - 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 8

—B— 8x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs|

—o— 8x16 CPUs, Pure MPI,

horizontal + vertical

Message size (used with pure MPI on each CPU)

SP with 16 Power3+ CPUs per node.

Accumulated bandwidth per SMP node

Figure 7: Aggregated bandwidth per SMP node on Hi-

1000
900 T

800 1 for communication

Hitachi SR 8000

To spend more than
3 CPUs/node

makes no sense

only 60-70%
of pure MPI

1
—X— 8x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1

—#— 8x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1

—@— 8x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1

—=A— 8x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1

—o— 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1

- -& - 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4

—o— 8x8 CPUs, Pure MPI,
horizontal + vertical

—B— 8x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs

1E+2

1E+3
Message size (used with pure MPI on each CPU)

1E+4 1E+5 1E+6

tachi SR 8000.

Accumulated bandwidth per SMP node

Figure 9: Aggregated bandwidth per SMP node on

600

5000

4000 1—|

[MBIs]

2000

1000

3000 +— hybrid masteronly.

Cray X1, 4 MSPs / node (1 MSP =4 CPUs), preliminary
0

1E+7

results
1

1 MSP achieves
already 80% of full
inter-node bandwidth. Ad
Same communication
time with

pure MPI and

—0— 8x4 MSPs, Hybrid Multiple,
4/4 MSPs Stride 1

—A— 8x4 MSPs, Hybrid Multiple,
3/4 MSPs Stride 1

—o— 8x4 MSPs, Hybrid Multiple,
2/4 MSPs Stride 1

—¢- - 8x4 MSPs, Hybrid Multiple,
2/4 MSPs Stride 2

—e— 8x4 MSPs, Pure MPI,
horizontal + vertical

—8— 8x4 MSPs, Hybrid
Masteronly, MPI: 1 of 4 MSPs

04
1E+2 1E+3 1E+4 1E+5 1E+6

Message size (used with pure MPl on each MS|

1E+7
P)

Cray X1, MSP-based MPI-parallelization.

pure MPI

../ T_comm. of

T_comm. of .

1BM at NERSC (16 Power3+ CPUs/node)

Hybrid Masteronly is by a
factor of 2.7-2.9 slower

than pure MPI| F/'_.\.//
5

More than 3 CPUs/node
needed to communicate
faster than with pure MPI

1E+3 1E+4 1E+5

Message size (used with pure MPI on each CPU)

—— 8x16 CPUs, Hybrid Masteronly,
MPI: 1 of 16CPUs
-g | —9— 8x16 CPUs, Hybrid Multiple,
%) 2/16 CPUs Stride 1
= |- -0 - 8x16 CPUs, Hybrid Multiple,
3 2/16 CPUs Stride 4
2]
& | —&— 8x16 CPUs, Hybrid Multiple,
7% E 3/16 CPUs Stride 1
"~ | —e— 8x16 cPUS, Pure WP
horizontal + vertical
I
'S | —o— 8x16 CPUs, Hybrid Multiple,
Ej] 4/16 CPUs Stride 1
@ | —i— 8x16 CPUS, Hybrid Multiple,
2 6/16 CPUs Stride 1
1E+6 € =| —X— 8x16 CPUS, Hybrid Multple,
12/16 CPUs Stride 1

Figure 6: Ratio of communication time in hybrid mod-
els to pure MPI programming on IBM SP.

Accumulated bandwidth per SMP node

8000

7000 +——

NEC SX6 (with MPI_Alloc_mem)

Inverse:

|
—X— 4x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1

More CPUs
= less bandwidth

—#— 4x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1

—@— 4x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1

—A— 4x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1

—<o— 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1

- -0 - 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4

—@— 4x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs

—o— 4x8 CPUs, Pure MPI,
horizontal + vertical

1E+3 1E+4

1E+5

1E+6 1E+7

Message size (used with pure MPI on each CPU)

Figure 8: Aggregated bandwidth per SMP node on
NEC SX-6.

Accumulated bandwidth per SMP node

d

[MB/s]

Cray X1, 4 MSPs/ node (1 MSP = 4 CPUs), shmem put, preliminary results

14000

12000

10000

1 MSP achieves
| | already 75% of full |

—©— 8x4 MSPs, put, Hybrid Multiple,
4/4 MSPs Stride 1

—4— 8x4 MSPs, put, Hybrid Multiple,
3/4 MSPs Stride 1

—<o— 8x4 MSPs, put, Hybrid Multiple,
2/4 MSPs Stride 1

— &~ - 8x4 MSPs, put, Hybrid Multiple,

2/4 MSPs Stride 2

—&— 8x4 MSPs, put, Pure MPI,

8000
inter-node bandwidth \W/; ;{//
6000 £ n i
/W
4000 n
2000

horizontal + vertical

—8— 8x4 MSPs, put, Hybrid Masteronly,|

MPI: 1 of 4 MSPs

1E+2 1E+8 1E+4

1E+5

1E+6 1E+7

Message size (used with pure MPI on each MSP)

Figure 10: Aggregated bandwidth per SMP node on

Cray X1. MSP-based and MPI_Sendrecv is substituted

by shmem_put.

On the other hand, looking on the Myrinet cluster
with only 2 CPUs per SMP node, the hybrid commu-
nication model hasn’t any drawback on such clusters
because one CPU is already able to saturate the inter-
node network (see lowermost rows in Tab. 1).

Programming with overlap of communication
and computation

Although overlapping communication with computation
is the chance to achieve fastest execution, this parallel
programming style isn’t widely used due to the lack of
ease of use. It requires a coarse-grained and thread-
rank-based OpenMP parallelization, the separation of
halo-based computation from the computation that can
be overlapped with communication, and the threads
with different tasks must be load balanced.

Advantages of the overlapping scheme are: (a) the
problem that one CPU may not achieve the inter-node
bandwidth is no longer relevant as long as there is
enough computational work that can be overlapped
with the communication; (b) the saturation problem
is solved as long as not more CPUs communicate in
parallel than necessary to achieve the inter-node band-
width; (c¢) the sleeping threads problem is solved as long
as all computation and communication is load balanced
among the threads.

A detailed analysis of the performance benefits of
overlapping communication and computation can be

found in [17].

5 Optimization Chance

On Cray X1 with MSP-based programming and on NEC
SX-6, the hybrid masteronly communication pattern is
faster than the pure MPI. Although both systems have
vector-type CPUs, the reasons for these performance
results are quite different: On the NEC SX-6, the hard-
ware of one CPU is really able to saturate the inter-node
network if the user data resides in global memory. On
the Cray X1, each MSP consist of 4 SSPs (=CPUs).
MPI communication issued by one MSP seems inter-
nally to be multi-streamed by all 4 SSPs. With this
multi-threaded implementation of the communication,
Cray can achieve 75-80% of the full inter-node band-
width, i.e., of the bandwidth that can be achieved if all
MSPs (or all SSPs) communicate in parallel.

This approach can be generalized for the masteronly
style. Depending on whether the application itself is

EWOMP 2003, Aachen, Sept. 22-26

translated for pure MPI approach, hybrid MPI 4+ au-
tomatic SMP-parallelization, or hybrid MPI+OpenMP,
the linked MPI library itself can also be parallelized with
OpenMP directives or vendor-specific directives.

Often, the major basic capabilities of an MPI library
are to put data into a shared memory region of the
destination process (RDMA put), or to get data from
the source process (RDMA get), or to locally calculate
reduction operations on a vector, or to handle derived
datatypes and data. All these operations (and not the
envelop handling of the message passing interface) can
be implemented multi-threaded, e.g., inside of a paral-
lel region. In the case, that the application calls the
MPI routines outside of parallel application regions, the
parallel region inside of the MPI routines will allow a
thread-parallel handling of these basic capabilities. In
the case, the application overlaps communication and
computation, the parallel region inside of the MPI li-
brary is a nested region and will get only the (one)
thread on which it is already running. Of course, the
parallel region inside of MPI should only be launched,
if the amount of data that must be transferred (or re-
duced) exceeds a given threshold.

This method optimizes the bandwidth without a sig-
nificant penalty to the latency. On the Cray X1, cur-
rently only 4 SSPs are used to stream the communica-
tion in MSP mode achieving only 75-80% of peak. It
may be possible to achieve full inter-node bandwidth, if
the SSPs of an additional MSP would also be applied.
With such a multi-threaded implementation of the MPI
communication for masteronly-style applications, there
is no further need (with respect to the communication
time) to split large SMP nodes into several MPI pro-
cesses each with a reduced number of threads (as pro-
posed in Sect. 3.2).

6 Conclusions

Different programming schemes on clusters of SMPs
show different performance benefits or penalties on the
hardware platforms benchmarked in this paper. Table 1
summarizes the results. Cray X1 with MSP-based pro-
gramming and NEC SX-6 are well designed for the hy-
brid MPI4+OpenMP masteronly scheme. On the other
platforms, as well as on the Cray X1 with SSP-based
programming, the master thread cannot saturate the
inter-node network which is a significant performance
bottleneck for the masteronly style.

To overcome this disadvantage, a multi-threaded im-

R. Rabenseifner: Hybrid Parallel Programming on HPC' Platforms 9

plementation of the basic device capabilities in the MPI
libraries is proposed in Sect. 5. Partially, this method is
already implemented in the Cray X1 MSP-based MPI-
library. Such MPI optimization would allow the satura-
tion of the network bandwidth in the masteronly style.
The implementation of this feature is important espe-
cially on platforms with more than 8 CPUs per SMP
node.

This enhancement of current MPI implementations
implies that the hybrid masteronly communication
should be always faster than pure MPI communication.
Both methods still include the sleeping threads or sat-
urated network problem, i.e., that more CPUs are used
for communicating than really needed to saturate the
network. This drawback can be solved with overlapping
of communication and computation, but this program-
ming style needs extreme programming effort.

To achieve an optimal usage of the hardware, one can
also try to use the idling CPUs for other applications, es-
pecially low-priority single-threaded or multi-threaded
non-MPI applications if the parallel high-priority hy-
brid application does not use the total memory of the
SMP nodes.

Acknowledgments

The author would like to acknowledge his colleagues
and all the people that supported this project with
suggestions and helpful discussions. He would espe-
cially like to thank Gerhard Wellein at RRZE, Dieter an
Mey at RWTH Aachen, Thomas Ludwig, Stefan Friedel,
Ana Kovatcheva, and Andreas Bogacki at IWR,, Monika
Wierse, Wilfried Oed, and Tom Goozen at CRAY, Hol-
ger Berger at NEC, Reiner Vogelsang at SGI, Gabriele
Jost at NASA, and Horst Simon at NERSC for their as-
sistance in executing the benchmark on their platforms.
This research used resources of the HLRS Stuttgart,
LRZ Munich, RWTH Aachen, University of Heidelberg,
Cray Inc., NEC, SGI, NASA/AMES, and resources
of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of
the U.S. Department of Energy.

References

[1] Rudulf Berrendorf, Michael Gerndt, Wolfgang
E. Nagel and Joachim Prumerr, SVM Fortran,
Technical Report 1B-9322, KFA Jlich, Germany,

1993.

www.fz-juelich.de/zam/docs/printable/ib/ib-93/ib-9322.ps

Frank Cappello and Daniel Etiemble, MPI versus
MPI+OpenMP on the IBM SP for the NAS bench-
marks, in Proc. Supercomputing’00, Dallas, TX,
2000. nttp://citeseer.nj.nec.com/cappelloOOmpi.html

www.sc2000.org/techpapr/papers/pap.pap214.pdf

The Earth Simulator. www.es. jamstec.go.jp

William Gropp, Ewing Lusk, Nathan Doss, and
Anthony Skjellum, A high-performance, portable
implementation of the MPI message passing
interface standard, in Parallel Computing 22-6,

Sep. 1996, pp 789-828.
http://citeseer.nj.nec.com/gropp96highperformance.html

Shinichi Habataa, Mitsuo Yokokawa, and Shige-
mune Kitawaki, The FEarth Simulator System, in
NEC Research & Development, Vol. 44, No. 1,
Jan. 2003, Special Issue on High Performance Com-
puting.

Jonathan Harris, Fztending OpenMP for NUMA
Architectures, in proceedings of the Second Eu-
ropean Workshop on OpenMP, EWOMP 2000.

www.epcc.ed.ac.uk/ewomp2000/proceedings.html

D. S. Henty, Performance of hybrid message-
passing and shared-memory parallelism for discrete
element modeling, in Proc. Supercomputing’00,
Dallas, TX, 2000.
http://citeseer.nj.nec.com/hentyOOperformance.html

www.sc2000.org/techpapr/papers/pap.pap154.pdf

Matthias Hess, Gabriele Jost, Matthias Miiller,
and Roland Riihle, FExperiences using OpenMP
based on Compiler Directed Software DSM on a
PC Cluster, in WOMPAT2002: Workshop on
OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska,
Fairbanks, Aug. 5-7, 2002. http://www.hlrs.de/
people/mueller/papers/wompat2002/wompat2002. pdf

Georg Karypis and Vipin Kumar. A parallel algo-
rithm for multilevel graph partitioning and sparse
matriz ordering, Journal of Parallel and Dis-
tributed Computing, 48(1): 71-95, 1998.
http://citeseer.nj.nec.com/karypis98parallel.html

http://www-users.cs.umn.edu/ karypis/metis/

10

[10]

[15]

[16]

[17]

Richard D. Loft, Stephen J. Thomas, and John
M. Dennis, Terascale spectral element dynamical
core for atmospheric general circulation models, in
proceedings, SC 2001, Nov. 2001, Denver, USA.
www.sc2001.org/papers/pap.pap189.pdf

John Merlin, Distributed OpenMP: Extensions to
OpenMP for SMP Clusters, in proceedings of the

Second European Workshop on OpenMP, EWOMP
2000. www.epcc.ed.ac.uk/ewomp2000/proceedings.html

Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, Rel. 1.1, June

1995, www.mpi-forum.org.

Message Passing Interface Forum. MPI-2: Exten-
sions to the Message-Passing Interface, July 1997,

www.mpi-forum.org.

Hans Meuer, Erich Strohmaier, Jack Dongarra,
Horst D. Simon, Universities of Mannheim
and Tennessee, TOP500 Supercomputer Sites,
www.top500.org.

OpenMP GI‘Oup, WWW.openmp.org.

Rolf Rabenseifner, Hybrid Parallel Programming:
Performance Problems and Chances, in proceed-
ings of the 45th CUG Conference 2003, Columbus,
Ohio, USA, May 12—16, 2003, WWW.cug.org.

Rolf Rabenseifner and Gerhard Wellein, Commu-
nication and Optimization Aspects of Parallel Pro-
gramming Models on Hybrid Architectures, Inter-
national Journal of High Performance Computing
Applications, Sage Science Press, Vol. 17, No. 1,
2003, pp 49-62.

Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Ku-
sano, and Yoshio Tanaka, Design of OpenMP
Compiler for an SMP Cluster, in proceedings
of the 1st European Workshop on OpenMP
(EWOMP’99), Lund, Sweden, Sep. 1999, pp 32—

39. http://citeseer.nj.nec.com/sato99design.html

Alex Scherer, Honghui Lu, Thomas Gross, and
Willy Zwaenepoel, Transparent Adaptive Paral-
lelism on NOWs using OpenMP, in proceedings of
the Seventh Conference on Principles and Practice
of Parallel Programming (PPoPP ’99), May 1999,
pp 96-106.

[20]

EWOMP 2003, Aachen, Sept. 22-26

Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey, Techni-
cal report No. 980005, Center for High Per-
formance Computing, Institute of Computing
Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

Lorna Smith and Mark Bull, Development of Mized
Mode MPI / OpenMP Applications, in proceedings
of Workshop on OpenMP Applications and Tools
(WOMPAT 2000), San Diego, July 2000.

www.cs.uh.edu/wompat2000/

Gerhard Wellein, Georg Hager, Achim Basermann,
and Holger Fehske, Fast sparse matriz-vector multi-
plication for TeraFlop/s computers, in proceedings
of VECPAR’2002, 5th Int’l Conference on High
Performance Computing and Computational Sci-
ence, Porto, Portugal, June 26-28, 2002, part I, pp
5T7—70. nttp://vecpar.fe.up.pt/

