
Document Classification

Objectives

 Search documents on WWW to find

relevant information

 Implement manager-worker parallel model

Document Classification Problem

 Search directories, subdirectories for

documents (look for .html, .txt, .tex, etc.)

 Using a dictionary of key words, create a

profile vector for each document

 Store profile vectors

Task Dependence Graph and Parallelization

1. Most time spent reading

documents and generating

profile vectors

2. Create two primitive tasks

for each document

Reading and profiling of each document may

occur in parallel

1. Number of tasks not known at compile time

2. Tasks do not communicate with each other

3. Time needed to perform tasks varies widely

4. Strategy: map tasks to processes at run time

Manager/worker Model

Roles of Manager and Workers

Manager Pseudocode

Identify documents

Receive dictionary size from worker 0

Allocate matrix to store document vectors

repeat

 Receive message from worker

 if message contains document vector

 Store document vector

 endif

 if documents remain then Send worker file name

 else Send worker termination message

 endif

until all workers terminated

Write document vectors to file

Worker Pseudocode

Send first request for work to manager

if worker 0 then

 Read dictionary from file

endif

Broadcast dictionary among workers

Build hash table from dictionary

if worker 0 then

 Send dictionary size to manager

endif

repeat

 Receive file name from manager

 if file name is NULL then terminate

 endif

 Read document, generate document

vector

 Send document vector to manager

forever

Task/Channel Graph

Creating a Workers-only Communicator

1. Dictionary is broadcast among workers

2. To support workers-only broadcast, need

workers-only communicator

3. Can use MPI_Comm_split

4. Manager passes MPI_UNDEFINED as the value

of split_key, meaning it will not be part of any

new communicator

Workers-only Communicator

int id;

MPI_Comm worker_comm;

if (!id) // manager

 MPI_Comm_split (MPI_COMM_WORLD,

 MPI_UNDEFINED, id, &worker_comm);

else // worker

 MPI_Comm_split (MPI_COMM_WORLD, 0,

 id, &worker_comm);

Expected Things

1. Pseudo code describing the parallel algorithm

2. Justification of choosed communication mode
(block/non-block ?)

3. Performance table.

Reference:

W. Barry and M. Allen. Parallel Programming: Technique and
Applications Using Networked Workstations and Parallel
Computers. Upper Saddle River, NJ: Prentice-Hall, 1999.

Variations

