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Abstract

A number of parallel formulations of dense matrix multiplication algorithm have been devel-
oped. For arbitrarily large number of processors, any of these algorithms or their variants can
provide near linear speedup for sufficiently large matrix sizes and none of the algorithms can be
clearly claimed to be superior than the others. In this paper we analyze the performance and
scalability of a number of parallel formulations of the matrix multiplication algorithm and pre-
dict the conditions under which each formulation is better than the others. We present a parallel
formulation for hypercube and related architectures that performs better than any of the schemes
described in the literature so far for a wide range of matrix sizes and number of processors. The
superior performance and the analytical scalability expressions for this algorithm are verified
through experiments on the Thinking Machines Corporation’s CM-57MT parallel computer for
up to 512 processors. We show that special hardware permitting simultaneous communication
on all the ports of the processors does not improve the overall scalability of the matrix multipli-
cation algorithms on a hypercube. We also discuss the dependence of scalability on technology
dependent factors such as communication and computation speeds and show that under certain
conditions, it may be better to have a parallel computer with k-fold as many processors rather

than one with the same number of processors, each k-fold as fast.
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1 Introduction

Matrix multiplication is widely used in a variety of applications and is often one of the core
components of many scientific computations. Since the matrix multiplication algorithm is
highly computation intensive, there has been a great deal of interest in developing parallel
formulations of this algorithm and testing its performance on various parallel architectures
[1,3,5,6,7,9, 11, 17, 18, 37, 8].

Some of the early parallel formulations of matrix multiplication were developed by Cannon
[5], Dekel, Nassimi and Sahni [9], and Fox et al. [11]. Variants and improvements of these
algorithms have been presented in [3, 18]. In particular, Berntsen [3] presents an algorithm
which has a strictly smaller communication overhead than Cannon’s algorithm, but has a
smaller degree of concurrency. Ho et al. [18] present another variant of Cannon’s algorithm
for a hypercube which permits communication on all channels simultaneously. This algorithm
too, while reducing communication, also reduces the degree of concurrency.

For arbitrarily large number of processors, any of these algorithms or their variants can
provide near linear speedup for sufficiently large matrix sizes, and none of the algorithms can
be clearly claimed to be superior than the others. Scalability analysis is a an effective tool for
predicting the performance of various algorithm-architecture combinations. Hence a great deal
of research has been done to develop methods for scalability analysis [23]. The isoefficiency
function [24, 26] is one such metric of scalability which is a measure of an algorithm’s capability
to effectively utilize an increasing number of processors on a parallel architecture. Isoefficiency
analysis has been found to be very useful in characterizing the scalability of a variety of
parallel systems [19, 15, 24, 25, 28, 35, 36, 39, 38, 14, 26, 13, 22]. An important feature of the
isoefficiency function is that it succinctly captures the impact of communication overheads,
concurrency, serial bottlenecks, load imbalance, etc. in a single expression.

In this paper, we use the isoefficiency metric [24] to analyze the scalability of a num-
ber of parallel formulations of the matrix multiplication algorithm for hypercube and related
architectures. We analyze the performance of various parallel formulations of the matrix
multiplication algorithm for different matrix sizes and number of processors, and predict the
conditions under which each formulation is better than the others. We present a parallel
algorithm for the hypercube and related architectures that performs better than any of the
schemes described in the literature so far for a wide range of matrix sizes and number of pro-
cessors. The superior performance and the analytical scalability expressions for this algorithm
are verified through experiments on the CM-5 parallel computer for up to 512 processors. We
show that special hardware permitting simultaneous communication on all the ports of the
processors does not improve the overall scalability of the matrix multiplication algorithms on
a hypercube. We also discuss the dependence of scalability of parallel matrix multiplication
algorithms on technology dependent factors such as communication and computation speeds

and show that under certain conditions, it may be better to have a parallel computer with



k-fold as many processors rather than one with the same number of processors, each k-fold as
fast.

The organization of the paper is as follows. In Section 2, we define the terms that are
frequently used in the rest of the paper. Section 3 gives an overview of the isoefficiency metric
of scalability. In Section 4, we give an overview of several parallel algorithms for matrix
multiplication and give expressions for their parallel execution times. In Section 5, we analyze
the scalability of all the parallel formulations discussed in Section 4. In Section 6, we provide
a detailed comparison of all the algorithms described in this paper and derive the conditions
under which each one is better than the rest. In Section 7, we analyze the impact of permitting
simultaneous communication on all ports of the processors of a hypercube on the performance
and scalability of the various matrix multiplication algorithms. In Section 8, the impact
of technology dependent factors on the scalability of the algorithm is discussed. Section 9
contains some experimental results comparing the performance of our parallel formulation

with that of Cannon’s algorithm on the CM-5. Section 10 contains concluding remarks.

2 Terminology
In this section, we introduce the terminology that shall be followed in the rest of the paper.

Parallel System : We define a parallel system as the combination of a parallel algorithm

and the parallel architecture on which it is implemented.

Number of Processors, p: The number of homogeneous processing units in the parallel

computer that cooperate to solve a problem.

Problem Size, W: The time taken by the serial algorithm to solve the given problem on a
single processor. This is also equal to the sum total of all the useful work done by all the
processors while solving the same problem in parallel using p processors. For instance,
for the multiplication of two n x n matrices', we consider W = O(n?).

Parallel Execution Time, 7,: The time taken by p processors to solve a problem. For a

given parallel system, T, is a function of the problem size and the number of processors.

Parallel Speedup, 5: The ratio of W to T,,.

Total Parallel Overhead, 7T,: The sum total of all the overheads incurred by all the pro-
cessors during the parallel execution of the algorithm. It includes communication costs,

non-essential work and idle time due to synchronization and serial components of the

'n this paper we consider the conventional O(n?) serial matrix multiplication algorithm only. Serial matrix
multiplication algorithms with better complexity have higher constants and are not used much in practice.



algorithm. For a given parallel system, T, is usually a function of the problem size and
the number of processors and is often written as T,(W, p). Thus T,(W,p) = pT, — W.

Efficiency, E: The ratio of S to p. Hence, £ = W/pT, =1/(1 + %)

Data Communication Costs, ¢, and ¢,: On a message passing parallel computer, the
time required for the complete transfer of a message containing m words between two
adjacent processors is given by t; + t,m, where ¢; is the message startup time, and
ty (per-word communication time) is equal to % where B is the bandwidth of the
communication channel between the processors in bytes/second and y is the number of

bytes per word.

For the sake of simplicity, in this paper we assume that each basic arithmetic operation
(i.e., one floating point multiplication and one floating point addition in case of matrix
multiplication) takes unit time. Therefore, ¢, and ¢, are relative data communication

costs normalized with respect to the unit computation time.

3 The Isoefficiency Metric of Scalability

It is well known that given a parallel architecture and a problem instance of a fixed size,
the speedup of a parallel algorithm does not continue to increase with increasing number of
processors but tends to saturate or peak at a certain value. For a fixed problem size, the
speedup saturates either because the overheads grow with increasing number of processors or
because the number of processors eventually exceeds the degree of concurrency inherent in
the algorithm. For a variety of parallel systems, given any number of processors p, speedup
arbitrarily close to p can be obtained by simply executing the parallel algorithm on big enough
problem instances (e.g., 21, 12, 29, 34, 16, 10, 31, 33, 32, 40]). The ease with which a parallel
algorithm can achieve speedups proportional to p on a parallel architecture can serve as a
measure of the scalability of the parallel system.

The isoefficiency function [24, 26] is one such metric of scalability which is a measure of
an algorithm’s capability to effectively utilize an increasing number of processors on a parallel
architecture. The isoefficiency function of a combination of a parallel algorithm and a parallel
architecture relates the problem size to the number of processors necessary to maintain a

fixed efficiency or to deliver speedups increasing proportionally with increasing number of
w

WTo(W,p)

is used to solve a problem instance of a fixed size W, then the efficiency decreases as p

processors. The efficiency of a parallel system is given by £ = . If a parallel system
increases. The reason is that the total overhead T,(W, p) increases with p. For many parallel
systems, for a fixed p, if the problem size W is increased, then the efficiency increases because
for a given p, T,(W,p) grows slower than O(W). For these parallel systems, the efficiency

can be maintained at a desired value (between 0 and 1) for increasing p, provided W is also



increased. We call such systems scalable parallel systems. Note that for a given parallel
algorithm, for different parallel architectures, W may have to increase at different rates with
respect to p in order to maintain a fixed efficiency. For example, in some cases, W might need
to grow exponentially with respect to p to keep the efficiency from dropping as p is increased.
Such a parallel system is poorly scalable because it would be difficult to obtain good speedups
for a large number of processors, unless the size of the problem being solved is enormously
large. On the other hand, if W needs to grow only linearly with respect to p, then the parallel
system is highly scalable and can easily deliver speedups increasing linearly with respect to
the number of processors for reasonably increasing problem sizes. The isoefficiency functions
of several common parallel systems are polynomial functions of p; i.e., they are O(p”), where
x > 1. A small power of p in the isoefficiency function indicates a high scalability.

If a parallel system incurs a total overhead of T,(W, p), where p is the number of processors
in the parallel ensemble and W is the problem size, then the efficiency of the system is given

by £ = ﬁ wpr- I order to maintain a constant efficiency, W should be proportional to
w

T,(W,p) or the following relation must be satisfied:

W = KT,(W,p) (1)

Here K = % is a constant depending on the efficiency to be maintained. Equation (1) is
the central relation that is used to determine the isoefficiency function. This is accomplished
by abstracting W as a function of p through algebraic manipulations on Equation (1). If the
problem size needs to grow as fast as fr(p) to maintain an efficiency E, then fg(p) is defined
to be the isoefficiency function of the parallel algorithm-architecture combination for efficiency
E.

[soefficiency analysis has been found to be very useful in characterizing the scalability of
a variety of parallel systems [24, 15, 25, 27, 35, 36, 39, 38, 14, 26, 13, 22]. An important
feature of isoefficiency analysis is that in a single expression, it succinctly captures the effects
of characteristics of the parallel algorithm as well as the parallel architecture on which it
is implemented. By performing isoefficiency analysis, one can test the performance of a
parallel program on a few processors, and then predict its performance on a larger number
of processors. But the utility of the isoefficiency analysis is not limited to predicting the
impact on performance of an increasing number of processors. It can also be used to study
the behavior of a parallel system with respect to changes in other hardware related parameters

such as the speed of the processors and the data communication channels.

4 Parallel Matrix Multiplication Algorithms

In this section we briefly describe some well known parallel matrix multiplication algorithms

give their parallel execution times.



4.1 A Simple Algorithm

Consider a logical two dimensional mesh of p processors (with \/p rows and /p columns)
on which two n x n matrices A and B are to be multiplied to yield the product matrix
C. Let n > /p. The matrices are divided into sub-blocks of size NP X TP which are
mapped naturally on the processor array. The algorithm can be implemented on a hypercube
by embedding this processor mesh into it. In the first step of the algorithm, each processor
acquires all those elements of both the matrices that are required to generate the %2 elements of
the product matrix which are to reside in that processor. This involves an all-to-all broadcast
of %2 elements of matrix A among the /p processors of each row of processors and that of the
same sized blocks of matrix B among ,/p processors of each column which can be accomplished

in 2t;logp + th”—; time. After each processor gets all the data it needs, it multiplies the \/p

pairs of sub-blocks of the two matrices to compute its share of % elements of the product
matrix. Assuming that an addition and multiplication takes a unit time (Section 2), the
multiplication phase can be completed in % units of time. Thus the total parallel execution

time of the algorithm is given by the following equation:

3 2

n n
T,=— +2t;logp+ 2t,— 2
b= N (2)

This algorithm is memory-inefficient. The memory requirement for each processor is O( ”7;)
and thus the total memory requirement is O(n?,/p) words as against O(n?) for the sequential
algorithm.

4.2 Cannon’s Algorithm

A parallel algorithm that is memory efficient and is frequently used is due to Cannon [5].

Again the two n X n matrices A and B are divided into square submatrices of size =X 2

among the p processors of a wrap-around mesh (which can be embedded in a hype\l(;ube\/iﬁf
the algorithm was to be implemented on it). The sub-blocks of A and B residing with the
processor (i, 7) are denoted by A% and B respectively, where 0 <7 < Vpand 0 < j < ./p. In
the first phase of the execution of the algorithm, the data in the two input matrices is aligned in
such a manner that the corresponding square submatrices at each processor can be multiplied
together locally. This is done by sending the block A¥ to processor (i, (j +i)mod,/p), and the
block B* to processor ((z+ j)mod,/p, j). The copied sub-blocks are then multiplied together.
Now the A sub-blocks are rolled one step to the left and the B sub-blocks are rolled one step
upward and the newly copied sub-blocks are multiplied and the results added to the partial
results in the C' sub-blocks. The multiplication of A and B is complete after ,/p steps of
rolling the sub-blocks of A and B leftwards and upwards, respectively, and multiplying the

in coming sub-blocks in each processor. In a hypercube with cut-through routing, the time



spent in the initial alignment step can be ignored with respect to the \/p shift operations
during the multiplication phase, as the former is a simple one-to-one communication along

. . . . 2
non-conflicting paths. Since each sub-block movement in the second phase takes t, + tw%
time, the total parallel execution time for all the movements of the sub-blocks of both the

matrices is given by the following equation:

3 2

T, = i 20\/p + 9y
p

7 (3)

4.3 Fox’s Algorithm

This algorithm is due to Fox et al and is described in detail in [11] and [10]. The input
matrices are initially distributed among the processors in the same manner as in the algorithm
in Section 4.1. The algorithm works in ,/p iterations, where p is the number of processors
being used. The data communication in the algorithm involves successive broadcast of the
the sub-blocks of A in a horizontal direction so that all processors in the ith row receive the
sub-block A7) in the jth iteration (iterations are numbered from 0 to j - 1). After each
broadcast the sub-blocks of A are multiplied by the sub-blocks of B currently residing in each
processor and are accumulated in the sub-blocks of S. The last step of each iteration is the
shifting of the sub-blocks of B in all the processors to their respective North neighbors in the
wrap-around mesh, the sub-blocks of the topmost row being rolled into the bottommost row.
Thus, for the mesh architecture, the algorithm takes (¢5+ tw%)\/}_v time in communication in
each of the ,/p iterations, resulting in a total parallel execution time of %3 + t,n? +tp. By
sending the sub-blocks in small packets in a pipelined fashion, Fox et al. show the run time
of this algorithm to be:
3 n?

n
7="" o, +ip 4

Clearly the parallel execution time of this algorithm is worse than that of the simple algo-
rithm or Cannon’s algorithm. On a hypercube, it is possible to employ a more sophisticated
scheme for one-to-all broadcast [20] of sub-blocks of matrix A among the rows. Using this
scheme, the parallel execution time can be improved to % —I—th% —I—ts\/}_vlogp—l—Zn\/m,
which is still worse than Cannon’s algorithm. However, if the procedure is performed in an
asynchronous manner (i.e., in every iteration, a processor starts performing its computation
as soon as it has all the required data, and does not wait for the entire broadcast to finish)
the computation and communication of sub-blocks can be interleaved. It can be shown that
if each step of Fox’s algorithm is not synchronized and the processors work independently,
then its parallel execution time can be reduced to almost a factor of two of that Cannon’s

algorithm.



4.4 Berntsen’s Algorithm

Due to nearest neighbor communications on the |/p x |/p wrap-around array of processors,
Cannon’s algorithm’s performance is the same on both mesh and hypercube architectures.
In [3], Berntsen describes an algorithm which exploits greater connectivity provided by a
hypercube. The algorithm uses p = 2% processors with the restriction that p < n®? for
multiplying two n X n matrices A and B. Matrix A is split by columns and B by rows into 29

parts. The hypercube is split into 2¢ subcubes, each performing a submatrix multiplication

between submatrices of A of size 35 X 537 and submatrices of B of size 537 x 5% using Cannon’s
algorithm. It is shown in [3] that the time spent in data communication by this algorithm on
a hypercube is 2¢,p'/> + %ts log p+ 3twp7§%, and hence the total parallel execution time is given

by the following equation:

2

3
_n s L n
T, = p + 2t,p 7 4+ Sts log p 4+ 3twp2/3 (5)

The terms associated with both ¢; and ¢,, are smaller in this algorithm than the algorithms
discussed in Sections 4.1 to 4.2. It should also be noted that this algorithm, like the one in

n2

Section 4.1 is not memory efficient as it requires storage of 2% + matrix elements per

Processor.

4.5 The DNS Algorithm

4.5.1 One Element Per Processor Version

An algorithm that uses a hypercube with p = n® = 237 processors to multiply two n x n
matrices was proposed by Dekel, Nassimi and Sahni in [9, 35]. The p processors can be visu-
alized as being arranged in an 27 x 27 x 27 array. In this array, processor p, occupies position
(2,7, k) where r = 4227 4 j2¢ + k and 0 <¢,j, k < 29. Thus if the binary representation of r is
r3q—1734—2...T0, then the binary representations of ¢, 7 and k are rs;_17r3,_3...724, T24-1724—2.--1
and r,_yr,_s...rg respectively. Each processor p, has three data registers «,, b, and ¢,, re-
spectively. Initially, processor p; in position (0,j,k) contains the element a(j, k) and b(j, k) in
as and by respectively. The computation is accomplished in three stages. In the first stage,
the elements of the matrices A and B are distributed over the p processors. As a result, a,
gets a(j,7) and b, gets b(z, k). In the second stage, product elements ¢(j, k) are computed and
stored in each ¢,. In the final stage, the sums Z?:_Ol ¢ jx are computed and stored in ¢g ;.
The above algorithm accomplishes the O(n®) task of matrix multiplication in O(logn)
time using n> processors. Since the processor-time product of this parallel algorithm exceeds
the sequential time complexity of the algorithm, it is not processor-efficient. This algorithm
can be made processor-efficient by using fewer that n? processors, i.c.; by putting more than

one element of the matrices on each processor. There are more than one ways to adapt this



algorithm to use fewer than n® processors. The method proposed by Dekel, Nassimi and Sahni

in [9, 35] is as follows.

4.5.2 Variant With More Than One Element Per Processor

This variant of the DNS algorithm can work with n?r processors, where 1 < r < n, thus
using one processor for more than one element of each of the two n x n matrices. The
algorithm is similar to the one above except that a logical processor array of r* (instead of
n?) superprocessors is used, each superprocessor comprising of (n/r)? hypercube processors.
In the second step, multiplication of blocks of (n/r) x (n/r) elements instead of individual
elements is performed. This multiplication of (n/r) x (n/r) blocks is performed according to
the algorithm in Section 4.3 on = x = subarrays (each such subarray is actually a subcube) of
processors using Cannon’s algorithm for one element per processor. This step will require a
communication time of 2(t, 4 1,,)%.

In the first stage of the algorithm, each data element is broadcast over r processors. In order
to place the elements of matrix A in their respective positions, first the buffer a ;) is sent to
a(k,jk) in logr steps and then a(x ;) is broadcast to a( ;1),0 <1 < r, again in log r steps. By
following a similar procedure, the elements of matrix B can be transmitted to their respective
processors. In the second stage, groups of (n/r)* processors multiply blocks of (n/r) x (n/r)
elements each processor performing n/r computations and 2n/r communications. In the final
step, the elements of matrix C' are restored to their designated processors in logr steps. The
communication time can thus be shown to be equal to (5 + t,)(5logr + 2%) resulting in the

parallel run time given by the following equation:

3 3

T, = 4 (4, + tu)(5log( L) + z%) (6)

p n?

If p = k?;n processors are used, then the parallel execution time of the DNS algorithm
is O(logn). The processor-time product is now O(n?), which is same as the sequential time

complexity of the algorithm.

4.6 Our Variant of the DNS Algorithm

Here we present another scheme to adapt the single element per processor version of the DNS
algorithm to be able to use fewer than n® processors on a hypercube. In the rest of the paper
we shall refer to this algorithm as the GK variant of the DN§S algorithm. As shown later in
Section 6, this algorithm performs better than the DNS algorithm for a wide range of n and
p. Also, unlike the DNS algorithm which works only for n? < p < »n?, this algorithm can
use any number of processors from 1 to n>. In this variant, we use p = 2°¢ processors where
q < %log n. The matrices are divided into sub-blocks of % x 5% elements and the sub-blocks
are numbered just the way the single elements were numbered in the algorithm of Section



4.5.1. Now, all the single element operations of the algorithm of Section 4.5.1 are replaced by
sub-block operations; i.e., matrix sub-blocks are multiplied, communicated and added.

Let t,,u: and t,44 is the time to perform a single floating point multiplication and addition
respectively. Also, according to the assumption of Section 2, t,,,: +t,q4 = 1. In the first stage
of this algorithm, pZ—Z data elements are broadcast over p'/? processors for each matrix. In
order to place the elements of matrix A in their respective positions, first the buffer a( ;)

1/3 1/3

is sent to a(x jr) in logp , again

1/3

steps and then a ;) is broadcast to a ;1,0 < [ < p

steps. By following a similar procedure, the elements of matrix B can be sent
1/3

in logp

to the processors where they are to be utilized in 2log p'/° steps. In the second stage of

the algorithm, each processor performs (#)3 = %3 multiplications. In the third step, the

corresponding elements of p'/® groups of pZ—Z elements each are added in a tree fashion. The

first stage takes 4¢; log pl/3 + 4twp7§—j3 log pl/3 time. The second stage contributes tmult% to the
parallel execution time and the third stage involves ¢, log p*/® + twp;% log p'/ communication
time and tadd%g computation time for calculating the sums. The total parallel execution time

is therefore given by the following equation:

n3 2

5 5 n
T, = — + =¢t,1 . 7
P p —I_ 3 ng —I_ 3 p2/3 ng ( )

This execution time can be further reduced by using a more sophisticated scheme for

one-to-all broadcast on a hypercube [20]. This is discussed in detail in Section 5.4.

5 Scalability Analysis

If W is the size of the problem to be solved and T,(W, P) is the total overhead, then the
efficiency F is given by %W. Clearly, for a given W, if p increases, then E will decrease
because T,(W, p) increases with p. On the other hand, if W increases, then E increases because
the rate of increase of T, is slower than that of W for a scalable algorithm. The isoefficiency
function for a certain efficiency F can be obtained by equating W with %TO (Equation (1))
and then solving this equation to determine W as a function of p. In most of the parallel
algorithms described in Section 4, the communication overhead has two different terms due
to ts and t,,. When there are multiple terms in 7, of different order, it is often not possible
to obtain the isoefficiency function as a closed form function of p. As p and W increase in a
parallel system, efficiency is guaranteed not to drop if none of the terms of T, grows faster than
W. Therefore, if T, has multiple terms, we balance W against each individual term of T, to
compute the respective isoefficiency function. The component of T, that requires the problem
size to grow at the fastest rate with respect to p determines the overall isoefficiency function
of the entire computation. Sometimes, the isoefficiency function for a parallel algorithm is

due to the limit on the concurrency of the algorithm. For instance, if for a problem size W,

10



an algorithm can not use more than A(W) processors, then as the number of processors is
increased, eventually W has to be increased as h™!(p) in order to keep all the processors busy
and to avoid the efficiency from falling due to idle processors. If A~*(p) is greater than any of
the isoefficiency terms due to communication overheads, then 27!(p) is the overall isoefficiency
function and determines the scalability of the parallel algorithm. Thus it is possible for an
algorithm to have little communication overhead, but still a bad scalability due to limited
concurrency.

In the following subsections, we determine the isoefficiency functions for all the algorithms

discussed in Section 4. The problem size W is taken as n® for all the algorithms.

5.1 Isoefficiency Analysis of Cannon’s Algorithm

From Equation (3), it follows that the total overhead over all the processors for this algorithm
is 2t5py/p + 2twn2\/}_v. In order to determine the isoefficiency term due to t;, W has to be
proportional to 2Kt,p,/p (see Equation (1)), where K’ = 2= and E is the desired efficiency

that has to be maintained. Hence the following isoefficiency relation results:

n® =W o 2Kt,p\/p (8)

Similarly, to determine the isoefficiency term due to t,,, n” has to proportional to 2Kt,,n*\/p.

Therefore,
3 A2
n” o 2Kt,n\/p

=> nx2Kt,\/p
=> n® =W x 8Kt p'*® 9)

According to both Equations (8) and (9), the asymptotic isoefficiency function of Cannon’s
algorithm is O(p'®). Also, since the maximum number of processors that can be used by this
algorithm is n?, the isoefficiency due to concurrency? is also O(p'®). Thus Cannon’s algorithm
is as scalable on a hypercube as any matrix multiplication algorithm using O(n?) processors
can be on any architecture.

All of the above analysis also applies to the simple algorithm and the asynchronous version
of Fox’s algorithm also because the degree of concurrency of Cannon’s algorithm as well as its
communication overheads (asymptotically, or within a constant factors) are identical to these

algorithms.

2p? xp => n3 = Wo<p1'5.

11



5.2 Isoefficiency Analysis of Berntsen’s Algorithm

The overall overhead function for this algorithm can be determined from the expression of the
parallel execution time in Equation (5) to be 2¢,p*° + %tsp log p + 3t,n?p'/?. By an analysis
similar to that in Section 5.1, it can be shown that the isoefficiency terms due to ¢, and ¢, for

this algorithm are given by the following equations:

n® =W x 2Kt,p*° (10)

n® =W o 27K p (11)

Recall from Section 4.4 that for this algorithm, p < n®/2. This means that n® = W o p?
as the number of processors is increased. Thus the isoefficiency function due to concurrency is
O(p?), which is worse than any of the isoefficiency terms due to the communication overhead.
Thus this algorithm has a poor scalability despite little communication cost due to its limited

concurrency.

5.3 Isoefficiency Analysis of the DNS Algorithm

It can be shown that the overhead function T, for this algorithm is (¢s + tw)(gp log p + 2n?).
Since W is O(n?), the terms 2(¢, + ¢,,)n® will always be balanced with respect to W. This
term is independent of p and does not contribute to the isoefficiency function. It does how-

ever impose an upper limit on the efficiency that this algorithm can achieve. Since, for this
1 1
1+5/32;)0gp+2(t5+tw) 14+2(ts+tw)

matter how big the problem size is. Since ¢, is usually a large constant for most practical

algorithm, F = , an efficiency higher than can not be attained, no

MIMD computers, the achievable efficiency of this algorithm is quite limited on such machines.
The other term in T, yields the following isoefficiency function for the algorithm:
3 5.
n° =W x g[&tsplogp (12)

The above equation shows that the asymptotic isoefficiency function of the DNS algorithm
on a hypercube is O(plog p). It can easily be shown that an O(plog p) scalability is the best
any parallel formulation of the conventional O(n®) algorithm can achieve on any parallel

architecture [4] and the DNS algorithm achieves this lower bound on a hypercube.

5.4 Isoefficiency Analysis of the GK Algorithm

The total overhead T, for this algorithm is equal to %tsp log p+ %twn2p1/3 log p and the following

equations give the isoefficiency terms due to ¢, and t,, respectively for this algorithm:

12



)
n® =W gKtsplogp (13)

125
n® =W ﬁf(?’tip(log p)’ (14)

The communication overheads and the isoefficiency function of the GK algorithm can be
improved by using a more sophisticated scheme for one-to-all broadcast on a hypercube [20].
Due to the complexity of this scheme, we have used the simple one-to-all broadcast scheme in
our implementation of this algorithm on the CM-5. We therefore use Equation (7) in Sections
6 for comparing the GK algorithm with the other algorithms discussed in this paper. In the
next subsection we give the expressions for the run time and the isoefficiency function of the
GK algorithm with the improved one-to-all broadcast.

5.4.1 GK Algorithm With Improved Communication

In the description of the GK algorithm in Section 4.6, the communication model on a hyper-
cube assumes that the one-to-all broadcast of a message of size m on p hypercube processors

takes t;log p+t,mlog p time. In [20], Johnsson and Ho present a more sophisticated one-to-all

broadcast scheme that will reduce this time to t;log p + t,m + 2t,, log p| tji:;p] Using this

scheme, the sub-blocks of matrices A and B can be transported to their destination processors
in time 4twp7§—2 + %ts log p+ 8#\ / %tstw log p with the condition that ,/% is considered
equal to 1 if 3t,n* < t,p'/?logp. A communication pattern similar to that used for this
one-to-all broadcast can be used to gather and sum up the sub-blocks of the result matrix C'
with a communication time of twp?;% + %ts log p + 2# %tstw log p.

An analysis similar to that in Section 5.4 can be performed to obtain the isoefficiency
function for this scheme. It can be shown that the asymptotically highest isoefficiency term
now is 2¢;plog p which is an improvement over O(p(log p)?) isoefficiency function for the naive
broadcasting scheme.

The broadcasting scheme of [20] requires that the message be broken up into packets and an

optimal packet size to obtain the broadcast time given above is /- tigép for a message of size m.
This means that in the GK algorithm, pZ—Z > Z—w logp, or n®> =W > (Z—;)I'Sp(log p)t5. In other

words, Johnsson’s scheme of reducing the communication time is effective only when there
is enough data to be sent on all the channels. This imposes a lower limit on the granularity
of the problem being solved. In case of the matrix multiplication algorithm under study in
this section, the scalability implication of this is that the problem size has to grow at least
as fast as O(p(log p)'*) with respect to p. Thus the effective isoefficiency function of the GK
algorithm with Johnsson’s one-to-all broadcast scheme on the hypercube is only O(p(log p)'?)

and not O(plog p) as might appear from the reduced communication terms.
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However, if the message startup time t; is close to zero (as might be the case for an SIMD
machine), the packet size can be as small as one word and an isoefficiency function of O(plog p)

is realizable.

5.5 Summary of Scalability Analysis

Subsections 5.1 through 5.4 give the overall isoefficiency functions of the four algorithms on
a hypercube architecture. The asymptotic scalabilities and the range of applicability of these
algorithms i1s summarized in Table 1. In this section and the rest of this paper, we skip
the discussion of the simple algorithm and Fox’s algorithm because the expressions for their

iso-efficiency functions differ with that for Cannon’s algorithm by small constant factors only.

Algorithm Total Overhead Asymptotic Range of

Function, T, Isoeff. Function Applicability

Berntsen’s 2t5p4/3 + %tsplogp + 3twn2p1/3 O(p*) 1<p< n3/2
Cannon’s 2t5p3/2 + Qtan\/ﬁ O(p'9) 1<p<n?
GK stsplogp + Stun®p'/Plogp O(p(log p)*) 1<p<w?

Imrpoved GK | t,,n2p'/? + Ttoplogp + 2np2/3\/%t5tw logp | O(p(logp)t?) | 1<p< (ﬁ)?’
= logn
DNS (ts + tw)(5plog p + 2n?) O(plogp) n? <p<n?

Table 1: Communication overhead, scalability and range of application of the four algorithms

on a hypercube.

Note that Table 1 gives only the asymptotic scalabilities of the four algorithms. In practice,
none of the algorithms is strictly better than the others for all possible problem sizes and
number of processors. Further analysis is required to determine the best algorithm for a given
problem size and a certain parallel machine depending on the number of processors being
used and the hardware parameters of the machine. A detailed comparison of these algorithms

based on their respective total overhead functions is presented in the next section.

6 Relative Performance of the Four Algorithms on a

Hypercube

The isoefficiency functions of the four matrix multiplication algorithms predict their relative
performance for a large number of processors and large problem sizes. But for moderate

values of n and p, a seemingly less scalable parallel formulation can outperform the one that
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has an asymptotically smaller isoefficiency function. In this subsection, we derive the exact
conditions under which each of these four algorithms yields the best performance.

We compare a pair of algorithms by comparing their total overhead functions (7},) as given
in Table 1. For instance, while comparing the GK algorithm with Cannon’s algorithm, it
is clear that the #; term for the GK algorithm will always be less than that for Cannon’s
algorithm. Even if t; = 0, the 7,, term of the GK algorithm becomes smaller than that of
Cannon’s algorithm for p > 130 million. Thus, p = 130 million is the cut-off point beyond
which the GK algorithm will perform better than Cannon’s algorithm irrespective of the values
of n. For p < 130 million, the performance of the GK algorithm will be better than that of
Cannon’s algorithm for values of n less than a certain threshold value which is a function of p
and the ration of ¢; and ?,,. A hundred and thirty million processors is clearly too large, but
we show that for reasonable values of ¢;, the GK algorithm performs better than Cannon’s
algorithm for very practical values of p and n.

In order to determine ranges of p and n where the GK algorithm performs better than
Cannon’s algorithm, we equate their respective overhead functions and compute n as a function
of p. We call this nggua—1,(p) because this value of n is the threshold at which the overheads
of the two algorithms will be identical for a given p. If n > nggua—71,(p), Cannon’s algorithm
will perform better and if n < nggua—7,(p), the GK algorithm will perform better.

A4 0D 3
TO(Cannon) — 2t5p3/2 + Qtan\/p — TO(GB) — gtsplogp + gtwn2p1/3 1ng

(5/3plog p — 2p*/2)t,
2\/p — 5/3p'/?log p)t.,

Similarly, equal overhead conditions can be determined for other pairs of algorithms too

NEqual-T,(P) = J ( (15)

and the values of ¢, and #; can be plugged in depending upon the machine in question to
determine the best algorithm for a give problem size and number of processors. We have
performed this analysis for three practical sets of values of ¢,, and ;. In the rest of the section
we demonstrate the practical importance of this analysis by showing how any of the four
algorithms can be useful depending on the problem size and the parallel machine available.
Figures 1, 2 and 3 show the regions of applicability and superiority of different algorithms.
The plain lines represent equal overhead conditions for pairs of algorithms. For a curve
marked “X vs Y7 in a figure, algorithm X has a smaller value of communication overhead
to the left of the curve, algorithm Y has smaller communication overhead to the right side of
the curve, while the two algorithms have the same value of T, along the curve. The lines with

32 p =n? and p = n®, respectively. These lines

symbols &, + and O plot the functions p =n
demarcate the regions of applicabilities of the four algorithms (see Table 1) and are important
because an algorithm might not be applicable in the region where its overhead function T}, is

mathematically superior than others. In all the figures in this section, the region marked with
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Figure 1: A comparison of the four algorithms for t, = 3 and t; = 150.

an x is the one where p > n® and none of the algorithms is applicable, the region marked with
an a is the one where the GK algorithm is the best choice, the symbol b represents the region
where Berntsen’s algorithm is superior to the others, the region marked with a ¢ is the one
where Cannon’s algorithm should be used and the region marked with a d is the one where
the DNS algorithm is the best.

Figure 1 compares the four algorithms for ¢,, = 3 and ¢, = 150. These parameters are very
close to that of a currently available parallel computer like the nCUBE27MT, In this figure,
since the ngguq—7, curve for the DNS algorithm and the GK algorithm lies in the x region,
and the DNS algorithm is better than the GK algorithm only for values of n smaller than
nEgual—1,(p). Hence the DNS algorithm will always® perform worse than the GK algorithm for
this set of values of ¢, and #,, and the latter is the best overall choice for p > n? as Berntsen’s
algorithm and Cannon’s algorithm are not applicable in this range of p. Since the nggyai—7,
curve for GK and Cannon’s algorithm lies below the p = n%/? curve, the GK algorithm is the

3/2 Berntsen’s algorithm is always better than

best choice even for n*? < p < n? For p < n
Cannon’s algorithm, and for this set of ¢, and ?,,, also than the GK algorithm. Hence it is the
best choice in that region in Figure 1.

In Figure 2, we compare the four algorithms for a hypercube with ¢, = 3 and ¢, = 10.
Such a machine could easily be developed in the near future by using faster CPU’s (¢,, and
ts represent relative communication costs with respect to the unit computation time) and

reducing the message startup time. By observing the nggyuq—7, curves and the regions of

TnCUBE2 is a trademark of the Ncube corporation.
3 Actually, the ngguai—r, curve for DNS vs GK algorithms will cross the p = n® curve for p = 2.6 x 10'8,
but clearly this region has no practical importance.
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Figure 2: A comparison of the four algorithms fort, =3 and t; = 10.

applicability of these algorithms, the regions of superiority of each of the algorithms can be
determined just as in case of Figure 1. It is noteworthy that in Figure 2 each of the four
algorithms performs better than the rest in some region and all the four regions a, b, ¢ and
d contain practical values of p and n.

In Figure 3, we present a comparison of the four algorithms for ¢,, = 3 and ¢; = 0.5. These
parameters are close to what one can expect to observe on a typical SIMD machine like the
CM-2. For the range of processors shown in the figure, the GK algorithm is inferior to the
others*. Hence it is best to use the DNS algorithm for n? < p < n* Cannon’s algorithm for

n3/? < p < n? and Berntsen’s algorithm for p < n?/2.

7 Scalabilities of Different Algorithms With Simulta-

neous Communication on All Hypercube Channels

On certain parallel machines like the nCUBE2, the hardware supports simultaneous communi-
cation on all the channels. This feature of the hardware can be utilized to significantly reduce
the communication cost of certain operations involving broadcasting and personalized com-
munication [20]. In this section we investigate as to what extent can the performance of the
algorithms described in Section 4 can be improved by utilizing simultaneous communication
on all the log p ports of the hypercube processors.

Cannon’s algorithm (Section 4.2), Berntsen’s algorithm (Section 4.4) and the pipelined

*The GK algorithm does begin to perform better than the other algorithms for p > 1.3 x 108, but again
we consider this range of p to be impractical.
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Figure 3: A comparison of the four algorithms fort, =3 and t, = 0.5.

version of Fox’s algorithm employ only nearest neighbor communication and hence can benefit
from simultaneous communication by a constant factor only as the subbocks of matrices A and
B can now be transferred simultaneously. The DNS algorithm can also gain only a constant
factor in its communication terms as all data messages are only one word long. Hence, among
the algorithms discussed in this paper, the ones that can potentially benefit from simultaneous
communications on all the ports are the simple algorithm (or its variations [18]) and the GK
algorithm.

7.1 The Simple Algorithm With All Port Communication

This algorithm requires an all-to-all broadcast of the sub-blocks of the matrices A and B

among groups of ,/p processors. The best possible scheme utilizing all the channels of a

hypercube simultaneously can accomplish an all-to-all broadcast of blocks of size %2 among

\/P processors in time 2¢,, Ziﬁ + %ts log p. Moreover, the communication of the sub-blocks of

both A and B can proceed simultaneously. Thus the parallel execution time of this algorithm

on a hypercube with simultaneous communication is given by the following equation:

n3 n2
T, = — 4 2t,——
P V/plogp

Recall from Section 4.1 that the simple algorithm is not memory efficient. Ho et al. [18]

1
+ §t5 log p (16)

give a memory efficient version of this algorithm which has somewhat higher execution time
than that given by Equation (16). It can be shown that the isoefficiency function due to

communication overheads is only O(plog p) now, which is a significant improvement over the
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O(p'®) isoefficiency function of this algorithm when communication on only one of the log p
ports of a processor was allowed at a time.

However, as mentioned in [18], the lower limit on the message size imposes the condition
that n > %\/}_ﬂog p. This requires that n®> = W > épm(log p)®. Thus the rate at which the the
problem size is required to grow with respect to the number of processors in order to utilize
all the communication channels of the hypercube is higher than the isoefficiency function of

the algorithm implemented on a simple hypercube with one port communication at a time.

7.2 The GK Algorithm With All Port Communication

Using the one-to-all broadcast scheme of [20] for a hypercube with simultaneous all-port com-

munication, the parallel execution time of the GK algorithm can be reduced to the following:

3 2

T, = n——l—tslogp—|—9t
p

n

Vit (17)

The communication terms now yield an isoefficiency function of O(plog p), but it can be

n
y 6
p*/3logp - pL/3

shown that lower limit on the message size entails the problem size to grow as O(p(log p)?)
with respect to p which is not any better that the isoefficiency function of this algorithm on

a simple hypercube with one port communication at a time.

7.3 Discussion

The gist of the analysis in this section is that allowing simultaneous on all the ports of a
processor on a hypercube does not improve the overall scalability of matrix multiplication
algorithms. The reason is that simultaneous communication on all channels requires that
each processor has large enough chunks of data to transfer to other processors. This imposes
a lower bound on the size of the problem that will generate such large messages. In case of
matrix multiplication algorithms, the problem size (as a function of p) that can generate large
enough messages for simultaneous communication to be useful, turns out to be larger than
what is required to maintain a fixed efficiency with only one port communication at a time.
However, there will be certain values of n and p for which the modified algorithm will perform
better.

8 Isoefficiency as a Function of Technology Dependent

Factors

The isoefficiency function can be used not only to determine the rate at which the problem size
should grow with respect to the number of processors, but also with respect to a variation in

other hardware dependent constants such as the communication speed and processing power
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of the processors used etc. In many algorithms, these constants contribute a multiplicative
term to the isoefficiency function, but in some others they effect the asymptotic isoefficiency of
a parallel system (e.g., parallel FF'T [14]). For instance, a multiplicative term of (¢,,)* appears
in most isoefficiency functions of matrix multiplication algorithms described in this paper. As
discussed earlier, t,, depends on the ratio of the data communication speed of the channels to
the computation speed of the processors used in the parallel architecture. This means that
if the processors of the multicomputer are replaced by & times faster processors, then the
problem size will have to be increased by a factor of &% in order to obtain the same efficiency.
Thus the isoefficiency function for matrix multiplication is very sensitive to the hardware
dependent constants of the architecture. For example, in case of Cannon’s algorithm, if the
number of processors is increased 10 times, one would have to solve a problem 31.6 times
bigger in order to get the same efficiency. On the other hand, for small values of ¢; (as may
be the case with most SIMD machines), if p is kept the same and 10 times faster processors
are used, then one would need to solve a 1000 times larger problem to be able to obtain the
same efficiency. Hence for certain problem sizes, it may be better to have a parallel computer
with k-fold as many processors rather than one with the same number of processors, each
k-fold as fast (assuming that the communication network and the bandwidth etc. remain the
same). This should be contrasted with the conventional wisdom that suggests that better

performance is always obtained using fewer faster processors [2].

9 Experimental Results

We verified a part of the analysis of this paper through experiments of the CM-5 parallel
computer. On this machine, the fat-tree [30] like communication network on the CM-5 provides
simultaneous paths for communication between all pairs of processors. Hence the CM-5 can be
viewed as a fully connected architecture which can simulate a hypercube connected network.
We implemented Cannon’s algorithm described in Section 4.2 and the algorithm described in
Section 4.6.

On the CM-5, the time taken for one floating point multiplication and addition was mea-
sured to be 1.53 microseconds on our implementation. The message startup time for our
program was observed to be about 380 microseconds and the per-word transfer time for 4
byte words was observed to be about 1.8 microseconds®. Since the CM-5 can be considered
as a fully connected network of processors, the expression for the parallel execution time for
the algorithm of Section 4.6 will have to be modified slightly. The first part of the procedure

to place the elements of matrix A in their respective positions, requires sending the buffer

>These values do not necessarily reflect the communication speed of the hardware but the overheads ob-
served for our implementation. For instance, a function call in the program associated with sending or receiving
a message could contribute to the message startup overhead.
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ago,;,k) 10 a k). This can be done in one step on the CM-5 instead of log(p1/3) steps on a
conventional hypercube. The same is true for matrix B as well. It can be shown that the

following modified expression gives the parallel execution time for this algorithm on the CM-5:

3 2

T, = — +tlogp+2) + tu-zs(logp +2) (18)
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Figure 4: Efficiency as a function of matriz size for Cannon’s algorithm and GK the algorithm

for 64 processors.

Computing the condition for equal T, for this and Cannon’s algorithm by deriving the
respective values of T, from Equations (18) and (3), it can be shown that for 64 processors,
Cannon’s algorithm should perform better that our algorithm for n > 83. Figure 4 shows the
efficiency vs n curves for the two algorithms for p = 64. It can be seen that as predicted, our
algorithm performs better for smaller problem sizes. The experimental cross-over point of the
two curves is at n = 96. A slight deviation from the derived value of 83 can be explained due
to the fact that the values of £, and ¢,, are not exactly the same for the two programs. For 512
processors, the predicted cross-over point is for n = 295. Since the number of processors has
to be a perfect square for Cannon’s algorithm on square matrices, in Figure 5, we draw the
efficiency vs n curve for p = 484 for Cannon’s algorithm and for p = 512 for the GK algorithm®.
The cross-over point again closely matches the predicted value. These experiments suggest

that the algorithm of Section 4.6 can outperform the classical algorithms like Cannon’s for a

5This is not an unfair comparison because the efficiency can only be better for smaller number of processors.

21



wide range of problem sizes and number of processors. Moreover, as the number of processors
is increased, the cross-over point of the efficiency curves of the GK algorithm and Cannon’s
algorithm corresponds to a very high efficiency. As seen in Figure 5, the cross-over happens at
FE 2~ 0.93 and Cannon’s algorithm can not outperform the GK algorithm by a wide margin at
such high efficiencies. On the other hand, the GK algorithm achieves an efficiency of 0.5 for a
matrix size of 112 x 112, whereas Cannon’s algorithm operates at an efficiency of only 0.28 on
484 processors on 110 x 110 matrices. In other words, in the region where the GK algorithm

is better than Cannon’s algorithm, the difference in the efficiencies is quite significant.
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Figure 5: Efficiency vs matriz size for Cannon’s algorithm (p = 484) and the GK algorithm
(p = 512).

10 Concluding Remarks

In this paper we have presented the scalability analysis of a number of matrix multiplication
algorithms described in the literature [5, 9, 11, 3, 18]. Besides analyzing these classical al-
gorithms, we show that the GK algorithm that we present in this paper outperforms all the
well known algorithms for a significant range of number of processors and matrix sizes. The
scalability analysis of all these algorithms provides several important insights regarding their
relative superiority under different conditions. None of the algorithms discussed in this paper
is clearly superior to the others because there are a number of factors that determine the

algorithm that performs the best. These factors are the communication related constants of
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the machine in use such as ¢, and ?,,, the number of processors employed, and the sizes of the
matrices to be multiplied. In this paper we predict the precise conditions under which each
formulation is better than the others. It may be unreasonable to expect a programmer to
code different algorithms for different machines, different number of processors and different
matrix sizes. But all the algorithms can stored in a library and the best algorithm can be
pulled out by a smart preprocessor/compiler depending on the various parameters.

We show that an algorithm with a seemingly small expression for the communication
overhead is not necessarily the best one because it may not scale well as the number of
processors is increased. For instance, the best algorithm in terms of communication overheads
(Berntsen’s algorithm described in Section 4.4) turns out to be the least scalable one with an
isoefliciency function of O(p*) due its limited degree of concurrency. The algorithm with the
best asymptotic scalability (the DNS algorithm with O(plog p) isoefficiency function) has a
limit on the achievable efficiency, which can be quite low if the message startup time is high.
Thus this algorithm too is outperformed by others under a wide range of conditions. For
instance, even if ¢; is 10 times the values of ¢,,, the DNS algorithm will perform worse than
the GK algorithm for up to almost 10,000 processors for any problem size.

We also show that special hardware permitting simultaneous communication on all the
ports of the processors does not improve the overall scalability of the matrix multiplication
algorithms on a hypercube. The reason is that simultaneous communication on all ports
requires that each processor has large enough messages to transfer so that all the channels
can be utilized simultaneously. This imposes a lower bound on the size of the problem that
will generate such large messages and hence limits the concurrency of the algorithm. The
limited concurrency translates to reduced scalability because for a given problem size more
than certain number of processors can not be used.

We discuss the dependence of scalability of parallel matrix multiplication algorithms on
technology dependent factors such as communication and computation speeds. Contrary to
conventional wisdom, we show that under certain conditions, it may be better to use several

slower processors rather than fewer faster processors.
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