
Scalability of Parallel Algorithms for MatrixMultiplication�Anshul Gupta and Vipin KumarDepartment of Computer Science,University of MinnesotaMinneapolis, MN - 55455agupta@cs.umn.edu and kumar@cs.umn.eduTR 91-54, November 1991 (Revised April 1994)AbstractA number of parallel formulations of dense matrix multiplication algorithm have been devel-oped. For arbitrarily large number of processors, any of these algorithms or their variants canprovide near linear speedup for su�ciently large matrix sizes and none of the algorithms can beclearly claimed to be superior than the others. In this paper we analyze the performance andscalability of a number of parallel formulations of the matrix multiplication algorithm and pre-dict the conditions under which each formulation is better than the others. We present a parallelformulation for hypercube and related architectures that performs better than any of the schemesdescribed in the literature so far for a wide range of matrix sizes and number of processors. Thesuperior performance and the analytical scalability expressions for this algorithm are veri�edthrough experiments on the Thinking Machines Corporation's CM-5TM y parallel computer forup to 512 processors. We show that special hardware permitting simultaneous communicationon all the ports of the processors does not improve the overall scalability of the matrix multipli-cation algorithms on a hypercube. We also discuss the dependence of scalability on technologydependent factors such as communication and computation speeds and show that under certainconditions, it may be better to have a parallel computer with k-fold as many processors ratherthan one with the same number of processors, each k-fold as fast.�This work was supported by IST/SDIO through the Army Research O�ce grant # 28408-MA-SDI to theUniversity of Minnesota and by the University of Minnesota Army High Performance Computing ResearchCenter under contract # DAAL03-89-C-0038.yCM-5 is a trademark of the Thinking Machines Corporation.1



1 IntroductionMatrix multiplication is widely used in a variety of applications and is often one of the corecomponents of many scienti�c computations. Since the matrix multiplication algorithm ishighly computation intensive, there has been a great deal of interest in developing parallelformulations of this algorithm and testing its performance on various parallel architectures[1, 3, 5, 6, 7, 9, 11, 17, 18, 37, 8].Some of the early parallel formulations of matrix multiplication were developed by Cannon[5], Dekel, Nassimi and Sahni [9], and Fox et al. [11]. Variants and improvements of thesealgorithms have been presented in [3, 18]. In particular, Berntsen [3] presents an algorithmwhich has a strictly smaller communication overhead than Cannon's algorithm, but has asmaller degree of concurrency. Ho et al. [18] present another variant of Cannon's algorithmfor a hypercube which permits communication on all channels simultaneously. This algorithmtoo, while reducing communication, also reduces the degree of concurrency.For arbitrarily large number of processors, any of these algorithms or their variants canprovide near linear speedup for su�ciently large matrix sizes, and none of the algorithms canbe clearly claimed to be superior than the others. Scalability analysis is a an e�ective tool forpredicting the performance of various algorithm-architecture combinations. Hence a great dealof research has been done to develop methods for scalability analysis [23]. The isoe�ciencyfunction [24, 26] is one such metric of scalability which is a measure of an algorithm's capabilityto e�ectively utilize an increasing number of processors on a parallel architecture. Isoe�ciencyanalysis has been found to be very useful in characterizing the scalability of a variety ofparallel systems [19, 15, 24, 25, 28, 35, 36, 39, 38, 14, 26, 13, 22]. An important feature of theisoe�ciency function is that it succinctly captures the impact of communication overheads,concurrency, serial bottlenecks, load imbalance, etc. in a single expression.In this paper, we use the isoe�ciency metric [24] to analyze the scalability of a num-ber of parallel formulations of the matrix multiplication algorithm for hypercube and relatedarchitectures. We analyze the performance of various parallel formulations of the matrixmultiplication algorithm for di�erent matrix sizes and number of processors, and predict theconditions under which each formulation is better than the others. We present a parallelalgorithm for the hypercube and related architectures that performs better than any of theschemes described in the literature so far for a wide range of matrix sizes and number of pro-cessors. The superior performance and the analytical scalability expressions for this algorithmare veri�ed through experiments on the CM-5 parallel computer for up to 512 processors. Weshow that special hardware permitting simultaneous communication on all the ports of theprocessors does not improve the overall scalability of the matrix multiplication algorithms ona hypercube. We also discuss the dependence of scalability of parallel matrix multiplicationalgorithms on technology dependent factors such as communication and computation speedsand show that under certain conditions, it may be better to have a parallel computer with2



k-fold as many processors rather than one with the same number of processors, each k-fold asfast.The organization of the paper is as follows. In Section 2, we de�ne the terms that arefrequently used in the rest of the paper. Section 3 gives an overview of the isoe�ciency metricof scalability. In Section 4, we give an overview of several parallel algorithms for matrixmultiplication and give expressions for their parallel execution times. In Section 5, we analyzethe scalability of all the parallel formulations discussed in Section 4. In Section 6, we providea detailed comparison of all the algorithms described in this paper and derive the conditionsunder which each one is better than the rest. In Section 7, we analyze the impact of permittingsimultaneous communication on all ports of the processors of a hypercube on the performanceand scalability of the various matrix multiplication algorithms. In Section 8, the impactof technology dependent factors on the scalability of the algorithm is discussed. Section 9contains some experimental results comparing the performance of our parallel formulationwith that of Cannon's algorithm on the CM-5. Section 10 contains concluding remarks.2 TerminologyIn this section, we introduce the terminology that shall be followed in the rest of the paper.Parallel System : We de�ne a parallel system as the combination of a parallel algorithmand the parallel architecture on which it is implemented.Number of Processors, p: The number of homogeneous processing units in the parallelcomputer that cooperate to solve a problem.Problem Size, W : The time taken by the serial algorithm to solve the given problem on asingle processor. This is also equal to the sum total of all the useful work done by all theprocessors while solving the same problem in parallel using p processors. For instance,for the multiplication of two n� n matrices1, we consider W = O(n3).Parallel Execution Time, Tp: The time taken by p processors to solve a problem. For agiven parallel system, Tp is a function of the problem size and the number of processors.Parallel Speedup, S: The ratio of W to Tp.Total Parallel Overhead, To: The sum total of all the overheads incurred by all the pro-cessors during the parallel execution of the algorithm. It includes communication costs,non-essential work and idle time due to synchronization and serial components of the1In this paper we consider the conventional O(n3) serial matrix multiplication algorithm only. Serial matrixmultiplication algorithms with better complexity have higher constants and are not used much in practice.3



algorithm. For a given parallel system, To is usually a function of the problem size andthe number of processors and is often written as To(W;p). Thus To(W;p) = pTp �W .E�ciency, E: The ratio of S to p. Hence, E =W=pTp = 1=(1 + ToW ).Data Communication Costs, ts and tw: On a message passing parallel computer, thetime required for the complete transfer of a message containing m words between twoadjacent processors is given by ts + twm, where ts is the message startup time, andtw (per-word communication time) is equal to yB where B is the bandwidth of thecommunication channel between the processors in bytes/second and y is the number ofbytes per word.For the sake of simplicity, in this paper we assume that each basic arithmetic operation(i.e., one 
oating point multiplication and one 
oating point addition in case of matrixmultiplication) takes unit time. Therefore, ts and tw are relative data communicationcosts normalized with respect to the unit computation time.3 The Isoe�ciency Metric of ScalabilityIt is well known that given a parallel architecture and a problem instance of a �xed size,the speedup of a parallel algorithm does not continue to increase with increasing number ofprocessors but tends to saturate or peak at a certain value. For a �xed problem size, thespeedup saturates either because the overheads grow with increasing number of processors orbecause the number of processors eventually exceeds the degree of concurrency inherent inthe algorithm. For a variety of parallel systems, given any number of processors p, speeduparbitrarily close to p can be obtained by simply executing the parallel algorithm on big enoughproblem instances (e.g., [21, 12, 29, 34, 16, 10, 31, 33, 32, 40]). The ease with which a parallelalgorithm can achieve speedups proportional to p on a parallel architecture can serve as ameasure of the scalability of the parallel system.The isoe�ciency function [24, 26] is one such metric of scalability which is a measure ofan algorithm's capability to e�ectively utilize an increasing number of processors on a parallelarchitecture. The isoe�ciency function of a combination of a parallel algorithm and a parallelarchitecture relates the problem size to the number of processors necessary to maintain a�xed e�ciency or to deliver speedups increasing proportionally with increasing number ofprocessors. The e�ciency of a parallel system is given by E = WW+To(W;p). If a parallel systemis used to solve a problem instance of a �xed size W , then the e�ciency decreases as pincreases. The reason is that the total overhead To(W;p) increases with p. For many parallelsystems, for a �xed p, if the problem sizeW is increased, then the e�ciency increases becausefor a given p, To(W;p) grows slower than O(W ). For these parallel systems, the e�ciencycan be maintained at a desired value (between 0 and 1) for increasing p, provided W is also4



increased. We call such systems scalable parallel systems. Note that for a given parallelalgorithm, for di�erent parallel architectures, W may have to increase at di�erent rates withrespect to p in order to maintain a �xed e�ciency. For example, in some cases, W might needto grow exponentially with respect to p to keep the e�ciency from dropping as p is increased.Such a parallel system is poorly scalable because it would be di�cult to obtain good speedupsfor a large number of processors, unless the size of the problem being solved is enormouslylarge. On the other hand, if W needs to grow only linearly with respect to p, then the parallelsystem is highly scalable and can easily deliver speedups increasing linearly with respect tothe number of processors for reasonably increasing problem sizes. The isoe�ciency functionsof several common parallel systems are polynomial functions of p; i.e., they are O(px), wherex � 1. A small power of p in the isoe�ciency function indicates a high scalability.If a parallel system incurs a total overhead of To(W;p), where p is the number of processorsin the parallel ensemble and W is the problem size, then the e�ciency of the system is givenby E = 11+To(W;p)W . In order to maintain a constant e�ciency, W should be proportional toTo(W;p) or the following relation must be satis�ed:W = KTo(W;p) (1)Here K = E1�E is a constant depending on the e�ciency to be maintained. Equation (1) isthe central relation that is used to determine the isoe�ciency function. This is accomplishedby abstracting W as a function of p through algebraic manipulations on Equation (1). If theproblem size needs to grow as fast as fE(p) to maintain an e�ciency E, then fE(p) is de�nedto be the isoe�ciency function of the parallel algorithm-architecture combination for e�ciencyE. Isoe�ciency analysis has been found to be very useful in characterizing the scalability ofa variety of parallel systems [24, 15, 25, 27, 35, 36, 39, 38, 14, 26, 13, 22]. An importantfeature of isoe�ciency analysis is that in a single expression, it succinctly captures the e�ectsof characteristics of the parallel algorithm as well as the parallel architecture on which itis implemented. By performing isoe�ciency analysis, one can test the performance of aparallel program on a few processors, and then predict its performance on a larger numberof processors. But the utility of the isoe�ciency analysis is not limited to predicting theimpact on performance of an increasing number of processors. It can also be used to studythe behavior of a parallel system with respect to changes in other hardware related parameterssuch as the speed of the processors and the data communication channels.4 Parallel Matrix Multiplication AlgorithmsIn this section we brie
y describe some well known parallel matrix multiplication algorithmsgive their parallel execution times. 5



4.1 A Simple AlgorithmConsider a logical two dimensional mesh of p processors (with pp rows and pp columns)on which two n � n matrices A and B are to be multiplied to yield the product matrixC. Let n � pp. The matrices are divided into sub-blocks of size n�pp � n�pp which aremapped naturally on the processor array. The algorithm can be implemented on a hypercubeby embedding this processor mesh into it. In the �rst step of the algorithm, each processoracquires all those elements of both the matrices that are required to generate the n2p elements ofthe product matrix which are to reside in that processor. This involves an all-to-all broadcastof n2p elements of matrix A among the pp processors of each row of processors and that of thesame sized blocks of matrixB amongpp processors of each column which can be accomplishedin 2ts log p+ 2tw n2pp time. After each processor gets all the data it needs, it multiplies the pppairs of sub-blocks of the two matrices to compute its share of n2p elements of the productmatrix. Assuming that an addition and multiplication takes a unit time (Section 2), themultiplication phase can be completed in n3p units of time. Thus the total parallel executiontime of the algorithm is given by the following equation:Tp = n3p + 2ts log p + 2tw n2pp (2)This algorithm is memory-ine�cient. The memory requirement for each processor is O( n2pp)and thus the total memory requirement is O(n2pp) words as against O(n2) for the sequentialalgorithm.4.2 Cannon's AlgorithmA parallel algorithm that is memory e�cient and is frequently used is due to Cannon [5].Again the two n � n matrices A and B are divided into square submatrices of size npp � nppamong the p processors of a wrap-around mesh (which can be embedded in a hypercube ifthe algorithm was to be implemented on it). The sub-blocks of A and B residing with theprocessor (i; j) are denoted by Aij and Bij respectively, where 0 � i < pp and 0 � j < pp. Inthe �rst phase of the execution of the algorithm, the data in the two input matrices is aligned insuch a manner that the corresponding square submatrices at each processor can be multipliedtogether locally. This is done by sending the block Aij to processor (i; (j+ i)modpp), and theblock Bij to processor ((i+ j)modpp; j). The copied sub-blocks are then multiplied together.Now the A sub-blocks are rolled one step to the left and the B sub-blocks are rolled one stepupward and the newly copied sub-blocks are multiplied and the results added to the partialresults in the C sub-blocks. The multiplication of A and B is complete after pp steps ofrolling the sub-blocks of A and B leftwards and upwards, respectively, and multiplying thein coming sub-blocks in each processor. In a hypercube with cut-through routing, the time6



spent in the initial alignment step can be ignored with respect to the pp shift operationsduring the multiplication phase, as the former is a simple one-to-one communication alongnon-con
icting paths. Since each sub-block movement in the second phase takes ts + tw n2ptime, the total parallel execution time for all the movements of the sub-blocks of both thematrices is given by the following equation:Tp = n3p + 2tspp + 2tw n2pp (3)4.3 Fox's AlgorithmThis algorithm is due to Fox et al and is described in detail in [11] and [10]. The inputmatrices are initially distributed among the processors in the same manner as in the algorithmin Section 4.1. The algorithm works in pp iterations, where p is the number of processorsbeing used. The data communication in the algorithm involves successive broadcast of thethe sub-blocks of A in a horizontal direction so that all processors in the ith row receive thesub-block Ai(i+j) in the jth iteration (iterations are numbered from 0 to j - 1). After eachbroadcast the sub-blocks of A are multiplied by the sub-blocks of B currently residing in eachprocessor and are accumulated in the sub-blocks of S. The last step of each iteration is theshifting of the sub-blocks of B in all the processors to their respective North neighbors in thewrap-around mesh, the sub-blocks of the topmost row being rolled into the bottommost row.Thus, for the mesh architecture, the algorithm takes (ts+ tw n2p )pp time in communication ineach of the pp iterations, resulting in a total parallel execution time of n3p + twn2 + tsp. Bysending the sub-blocks in small packets in a pipelined fashion, Fox et al. show the run timeof this algorithm to be: Tp = n3p + 2tw n2pp + tsp (4)Clearly the parallel execution time of this algorithm is worse than that of the simple algo-rithm or Cannon's algorithm. On a hypercube, it is possible to employ a more sophisticatedscheme for one-to-all broadcast [20] of sub-blocks of matrix A among the rows. Using thisscheme, the parallel execution time can be improved to n3p +2tw n2pp+tspp log p+2nptstw log p,which is still worse than Cannon's algorithm. However, if the procedure is performed in anasynchronous manner (i.e., in every iteration, a processor starts performing its computationas soon as it has all the required data, and does not wait for the entire broadcast to �nish)the computation and communication of sub-blocks can be interleaved. It can be shown thatif each step of Fox's algorithm is not synchronized and the processors work independently,then its parallel execution time can be reduced to almost a factor of two of that Cannon'salgorithm. 7



4.4 Berntsen's AlgorithmDue to nearest neighbor communications on the pp �pp wrap-around array of processors,Cannon's algorithm's performance is the same on both mesh and hypercube architectures.In [3], Berntsen describes an algorithm which exploits greater connectivity provided by ahypercube. The algorithm uses p = 23q processors with the restriction that p � n3=2 formultiplying two n�n matrices A and B. Matrix A is split by columns and B by rows into 2qparts. The hypercube is split into 2q subcubes, each performing a submatrix multiplicationbetween submatrices of A of size n2q � n22q and submatrices of B of size n22q � n2q using Cannon'salgorithm. It is shown in [3] that the time spent in data communication by this algorithm ona hypercube is 2tsp1=3+ 13ts log p+3tw n2p2=3 , and hence the total parallel execution time is givenby the following equation: Tp = n3p + 2tsp1=3 + 13 ts log p + 3tw n2p2=3 (5)The terms associated with both ts and tw are smaller in this algorithm than the algorithmsdiscussed in Sections 4.1 to 4.2. It should also be noted that this algorithm, like the one inSection 4.1 is not memory e�cient as it requires storage of 2n2p + n2p2=3 matrix elements perprocessor.4.5 The DNS Algorithm4.5.1 One Element Per Processor VersionAn algorithm that uses a hypercube with p = n3 = 23q processors to multiply two n � nmatrices was proposed by Dekel, Nassimi and Sahni in [9, 35]. The p processors can be visu-alized as being arranged in an 2q � 2q � 2q array. In this array, processor pr occupies position(i; j; k) where r = i22q + j2q + k and 0 � i; j; k < 2q. Thus if the binary representation of r isr3q�1r3q�2:::r0, then the binary representations of i, j and k are r3q�1r3q�2:::r2q, r2q�1r2q�2:::rqand rq�1rq�2:::r0 respectively. Each processor pr has three data registers ar, br and cr, re-spectively. Initially, processor ps in position (0,j,k) contains the element a(j; k) and b(j; k) inas and bs respectively. The computation is accomplished in three stages. In the �rst stage,the elements of the matrices A and B are distributed over the p processors. As a result, argets a(j; i) and br gets b(i; k). In the second stage, product elements c(j; k) are computed andstored in each cr. In the �nal stage, the sums �n�1i=0 ci;j;k are computed and stored in c0;j;k.The above algorithm accomplishes the O(n3) task of matrix multiplication in O(log n)time using n3 processors. Since the processor-time product of this parallel algorithm exceedsthe sequential time complexity of the algorithm, it is not processor-e�cient. This algorithmcan be made processor-e�cient by using fewer that n3 processors, i.e.; by putting more thanone element of the matrices on each processor. There are more than one ways to adapt this8



algorithm to use fewer than n3 processors. The method proposed by Dekel, Nassimi and Sahniin [9, 35] is as follows.4.5.2 Variant With More Than One Element Per ProcessorThis variant of the DNS algorithm can work with n2r processors, where 1 < r < n, thususing one processor for more than one element of each of the two n � n matrices. Thealgorithm is similar to the one above except that a logical processor array of r3 (instead ofn3) superprocessors is used, each superprocessor comprising of (n=r)2 hypercube processors.In the second step, multiplication of blocks of (n=r) � (n=r) elements instead of individualelements is performed. This multiplication of (n=r) � (n=r) blocks is performed according tothe algorithm in Section 4.3 on nr � nr subarrays (each such subarray is actually a subcube) ofprocessors using Cannon's algorithm for one element per processor. This step will require acommunication time of 2(ts + tw)nr .In the �rst stage of the algorithm, each data element is broadcast over r processors. In orderto place the elements of matrix A in their respective positions, �rst the bu�er a(0;j;k) is sent toa(k;j;k) in log r steps and then a(k;j;k) is broadcast to a(k;j;l); 0 � l < r, again in log r steps. Byfollowing a similar procedure, the elements of matrix B can be transmitted to their respectiveprocessors. In the second stage, groups of (n=r)2 processors multiply blocks of (n=r) � (n=r)elements each processor performing n=r computations and 2n=r communications. In the �nalstep, the elements of matrix C are restored to their designated processors in log r steps. Thecommunication time can thus be shown to be equal to (ts + tw)(5 log r + 2nr ) resulting in theparallel run time given by the following equation:Tp = n3p + (ts + tw)(5 log( pn2 ) + 2n3p ) (6)If p = n3logn processors are used, then the parallel execution time of the DNS algorithmis O(log n). The processor-time product is now O(n3), which is same as the sequential timecomplexity of the algorithm.4.6 Our Variant of the DNS AlgorithmHere we present another scheme to adapt the single element per processor version of the DNSalgorithm to be able to use fewer than n3 processors on a hypercube. In the rest of the paperwe shall refer to this algorithm as the GK variant of the DNS algorithm. As shown later inSection 6, this algorithm performs better than the DNS algorithm for a wide range of n andp. Also, unlike the DNS algorithm which works only for n2 � p � n3, this algorithm canuse any number of processors from 1 to n3. In this variant, we use p = 23q processors whereq < 13 log n. The matrices are divided into sub-blocks of n2q � n2q elements and the sub-blocksare numbered just the way the single elements were numbered in the algorithm of Section9



4.5.1. Now, all the single element operations of the algorithm of Section 4.5.1 are replaced bysub-block operations; i.e., matrix sub-blocks are multiplied, communicated and added.Let tmult and tadd is the time to perform a single 
oating point multiplication and additionrespectively. Also, according to the assumption of Section 2, tmult+ tadd = 1. In the �rst stageof this algorithm, n2p2=3 data elements are broadcast over p1=3 processors for each matrix. Inorder to place the elements of matrix A in their respective positions, �rst the bu�er a(0;j;k)is sent to a(k;j;k) in log p1=3 steps and then a(k;j;k) is broadcast to a(k;j;l); 0 � l < p1=3, againin log p1=3 steps. By following a similar procedure, the elements of matrix B can be sentto the processors where they are to be utilized in 2 log p1=3 steps. In the second stage ofthe algorithm, each processor performs ( np1=3 )3 = n3p multiplications. In the third step, thecorresponding elements of p1=3 groups of n2p2=3 elements each are added in a tree fashion. The�rst stage takes 4ts log p1=3+4tw n2p2=3 log p1=3 time. The second stage contributes tmult n3p to theparallel execution time and the third stage involves ts log p1=3 + tw n2p2=3 log p1=3 communicationtime and tadd n3p computation time for calculating the sums. The total parallel execution timeis therefore given by the following equation:Tp = n3p + 53 ts log p + 53tw n2p2=3 log p (7)This execution time can be further reduced by using a more sophisticated scheme forone-to-all broadcast on a hypercube [20]. This is discussed in detail in Section 5.4.5 Scalability AnalysisIf W is the size of the problem to be solved and To(W;P ) is the total overhead, then thee�ciency E is given by WW+To(W;p). Clearly, for a given W , if p increases, then E will decreasebecause To(W;p) increases with p. On the other hand, ifW increases, then E increases becausethe rate of increase of To is slower than that of W for a scalable algorithm. The isoe�ciencyfunction for a certain e�ciency E can be obtained by equating W with E1�ETo (Equation (1))and then solving this equation to determine W as a function of p. In most of the parallelalgorithms described in Section 4, the communication overhead has two di�erent terms dueto ts and tw. When there are multiple terms in To of di�erent order, it is often not possibleto obtain the isoe�ciency function as a closed form function of p. As p and W increase in aparallel system, e�ciency is guaranteed not to drop if none of the terms of To grows faster thanW . Therefore, if To has multiple terms, we balance W against each individual term of To tocompute the respective isoe�ciency function. The component of To that requires the problemsize to grow at the fastest rate with respect to p determines the overall isoe�ciency functionof the entire computation. Sometimes, the isoe�ciency function for a parallel algorithm isdue to the limit on the concurrency of the algorithm. For instance, if for a problem size W ,10



an algorithm can not use more than h(W ) processors, then as the number of processors isincreased, eventuallyW has to be increased as h�1(p) in order to keep all the processors busyand to avoid the e�ciency from falling due to idle processors. If h�1(p) is greater than any ofthe isoe�ciency terms due to communication overheads, then h�1(p) is the overall isoe�ciencyfunction and determines the scalability of the parallel algorithm. Thus it is possible for analgorithm to have little communication overhead, but still a bad scalability due to limitedconcurrency.In the following subsections, we determine the isoe�ciency functions for all the algorithmsdiscussed in Section 4. The problem size W is taken as n3 for all the algorithms.5.1 Isoe�ciency Analysis of Cannon's AlgorithmFrom Equation (3), it follows that the total overhead over all the processors for this algorithmis 2tsppp + 2twn2pp. In order to determine the isoe�ciency term due to ts, W has to beproportional to 2Ktsppp (see Equation (1)), where K = 11�E and E is the desired e�ciencythat has to be maintained. Hence the following isoe�ciency relation results:n3 = W / 2Ktsppp (8)Similarly, to determine the isoe�ciency term due to tw, n3 has to proportional to 2Ktwn2pp.Therefore, n3 / 2Ktwn2pp=> n / 2Ktwpp=> n3 = W / 8K3t3wp1:5 (9)According to both Equations (8) and (9), the asymptotic isoe�ciency function of Cannon'salgorithm is O(p1:5). Also, since the maximum number of processors that can be used by thisalgorithm is n2, the isoe�ciency due to concurrency2 is also O(p1:5). Thus Cannon's algorithmis as scalable on a hypercube as any matrix multiplication algorithm using O(n2) processorscan be on any architecture.All of the above analysis also applies to the simple algorithm and the asynchronous versionof Fox's algorithm also because the degree of concurrency of Cannon's algorithm as well as itscommunication overheads (asymptotically, or within a constant factors) are identical to thesealgorithms.2n2 / p => n3 = W / p1:5. 11



5.2 Isoe�ciency Analysis of Berntsen's AlgorithmThe overall overhead function for this algorithm can be determined from the expression of theparallel execution time in Equation (5) to be 2tsp4=3 + 13tsp log p + 3twn2p1=3. By an analysissimilar to that in Section 5.1, it can be shown that the isoe�ciency terms due to ts and tw forthis algorithm are given by the following equations:n3 = W / 2Ktsp4=3 (10)n3 = W / 27K3t3wp (11)Recall from Section 4.4 that for this algorithm, p � n3=2. This means that n3 = W / p2as the number of processors is increased. Thus the isoe�ciency function due to concurrency isO(p2), which is worse than any of the isoe�ciency terms due to the communication overhead.Thus this algorithm has a poor scalability despite little communication cost due to its limitedconcurrency.5.3 Isoe�ciency Analysis of the DNS AlgorithmIt can be shown that the overhead function To for this algorithm is (ts + tw)(53p log p + 2n3).Since W is O(n3), the terms 2(ts + tw)n3 will always be balanced with respect to W . Thisterm is independent of p and does not contribute to the isoe�ciency function. It does how-ever impose an upper limit on the e�ciency that this algorithm can achieve. Since, for thisalgorithm, E = 11+ 5=3p log pn3 +2(ts+tw) , an e�ciency higher than 11+2(ts+tw) can not be attained, nomatter how big the problem size is. Since ts is usually a large constant for most practicalMIMD computers, the achievable e�ciency of this algorithm is quite limited on such machines.The other term in To yields the following isoe�ciency function for the algorithm:n3 = W / 53Ktsp log p (12)The above equation shows that the asymptotic isoe�ciency function of the DNS algorithmon a hypercube is O(p log p). It can easily be shown that an O(p log p) scalability is the bestany parallel formulation of the conventional O(n3) algorithm can achieve on any parallelarchitecture [4] and the DNS algorithm achieves this lower bound on a hypercube.5.4 Isoe�ciency Analysis of the GK AlgorithmThe total overhead To for this algorithm is equal to 53tsp log p+ 53twn2p1=3 log p and the followingequations give the isoe�ciency terms due to ts and tw respectively for this algorithm:12



n3 = W / 53Ktsp log p (13)n3 = W / 12527 K3t3wp(log p)3 (14)The communication overheads and the isoe�ciency function of the GK algorithm can beimproved by using a more sophisticated scheme for one-to-all broadcast on a hypercube [20].Due to the complexity of this scheme, we have used the simple one-to-all broadcast scheme inour implementation of this algorithm on the CM-5. We therefore use Equation (7) in Sections6 for comparing the GK algorithm with the other algorithms discussed in this paper. In thenext subsection we give the expressions for the run time and the isoe�ciency function of theGK algorithm with the improved one-to-all broadcast.5.4.1 GK Algorithm With Improved CommunicationIn the description of the GK algorithm in Section 4.6, the communication model on a hyper-cube assumes that the one-to-all broadcast of a message of size m on p hypercube processorstakes ts log p+twm log p time. In [20], Johnsson and Ho present a more sophisticated one-to-allbroadcast scheme that will reduce this time to ts log p+ twm+ 2tw log pdq tsmtw log pe. Using thisscheme, the sub-blocks of matrices A and B can be transported to their destination processorsin time 4tw n2p2=3 + 43ts log p+8 np1=3q13tstw log p with the condition that q 3tsn2twp1=3 log p is consideredequal to 1 if 3tsn2 < twp1=3 log p. A communication pattern similar to that used for thisone-to-all broadcast can be used to gather and sum up the sub-blocks of the result matrix Cwith a communication time of tw n2p2=3 + 13ts log p+ 2 np1=3q13tstw log p.An analysis similar to that in Section 5.4 can be performed to obtain the isoe�ciencyfunction for this scheme. It can be shown that the asymptotically highest isoe�ciency termnow is 53tsp log p which is an improvement over O(p(log p)3) isoe�ciency function for the naivebroadcasting scheme.The broadcasting scheme of [20] requires that the message be broken up into packets and anoptimal packet size to obtain the broadcast time given above isq tsmtw log p for a message of sizem.This means that in the GK algorithm, n2p2=3 > tstw log p, or n3 =W > ( tstw )1:5p(log p)1:5. In otherwords, Johnsson's scheme of reducing the communication time is e�ective only when thereis enough data to be sent on all the channels. This imposes a lower limit on the granularityof the problem being solved. In case of the matrix multiplication algorithm under study inthis section, the scalability implication of this is that the problem size has to grow at leastas fast as O(p(log p)1:5) with respect to p. Thus the e�ective isoe�ciency function of the GKalgorithm with Johnsson's one-to-all broadcast scheme on the hypercube is only O(p(log p)1:5)and not O(p log p) as might appear from the reduced communication terms.13



However, if the message startup time ts is close to zero (as might be the case for an SIMDmachine), the packet size can be as small as one word and an isoe�ciency function of O(p log p)is realizable.5.5 Summary of Scalability AnalysisSubsections 5.1 through 5.4 give the overall isoe�ciency functions of the four algorithms ona hypercube architecture. The asymptotic scalabilities and the range of applicability of thesealgorithms is summarized in Table 1. In this section and the rest of this paper, we skipthe discussion of the simple algorithm and Fox's algorithm because the expressions for theiriso-e�ciency functions di�er with that for Cannon's algorithm by small constant factors only.Algorithm Total Overhead Asymptotic Range ofFunction, To Isoe�. Function ApplicabilityBerntsen's 2tsp4=3 + 13 tsp log p+ 3twn2p1=3 O(p2) 1 � p � n3=2Cannon's 2tsp3=2 + 2twn2pp O(p1:5) 1 � p � n2GK 53tsp log p+ 53 twn2p1=3 log p O(p(log p)3) 1 � p � n3Imrpoved GK twn2p1=3 + 13tsp log p+ 2np2=3q13tstw log p O(p(log p)1:5) 1 � p � ( nq tstw logn)3DNS (ts + tw)(53p log p+ 2n3) O(p log p) n2 � p � n3Table 1: Communication overhead, scalability and range of application of the four algorithmson a hypercube.Note that Table 1 gives only the asymptotic scalabilities of the four algorithms. In practice,none of the algorithms is strictly better than the others for all possible problem sizes andnumber of processors. Further analysis is required to determine the best algorithm for a givenproblem size and a certain parallel machine depending on the number of processors beingused and the hardware parameters of the machine. A detailed comparison of these algorithmsbased on their respective total overhead functions is presented in the next section.6 Relative Performance of the Four Algorithms on aHypercubeThe isoe�ciency functions of the four matrix multiplication algorithms predict their relativeperformance for a large number of processors and large problem sizes. But for moderatevalues of n and p, a seemingly less scalable parallel formulation can outperform the one that14



has an asymptotically smaller isoe�ciency function. In this subsection, we derive the exactconditions under which each of these four algorithms yields the best performance.We compare a pair of algorithms by comparing their total overhead functions (To) as givenin Table 1. For instance, while comparing the GK algorithm with Cannon's algorithm, itis clear that the ts term for the GK algorithm will always be less than that for Cannon'salgorithm. Even if ts = 0, the tw term of the GK algorithm becomes smaller than that ofCannon's algorithm for p > 130 million. Thus, p = 130 million is the cut-o� point beyondwhich the GK algorithm will perform better than Cannon's algorithm irrespective of the valuesof n. For p < 130 million, the performance of the GK algorithm will be better than that ofCannon's algorithm for values of n less than a certain threshold value which is a function of pand the ration of ts and tw. A hundred and thirty million processors is clearly too large, butwe show that for reasonable values of ts, the GK algorithm performs better than Cannon'salgorithm for very practical values of p and n.In order to determine ranges of p and n where the GK algorithm performs better thanCannon's algorithm, we equate their respective overhead functions and compute n as a functionof p. We call this nEqual�To(p) because this value of n is the threshold at which the overheadsof the two algorithms will be identical for a given p. If n > nEqual�To(p), Cannon's algorithmwill perform better and if n < nEqual�To(p), the GK algorithm will perform better.T (Cannon)o = 2tsp3=2 + 2twn2pp = T (GK)o = 53tsp log p + 53twn2p1=3 log pnEqual�To(p) = vuut (5=3p log p� 2p3=2)ts(2pp� 5=3p1=3 log p)tw (15)Similarly, equal overhead conditions can be determined for other pairs of algorithms tooand the values of tw and ts can be plugged in depending upon the machine in question todetermine the best algorithm for a give problem size and number of processors. We haveperformed this analysis for three practical sets of values of tw and ts. In the rest of the sectionwe demonstrate the practical importance of this analysis by showing how any of the fouralgorithms can be useful depending on the problem size and the parallel machine available.Figures 1, 2 and 3 show the regions of applicability and superiority of di�erent algorithms.The plain lines represent equal overhead conditions for pairs of algorithms. For a curvemarked \X vs Y " in a �gure, algorithm X has a smaller value of communication overheadto the left of the curve, algorithm Y has smaller communication overhead to the right side ofthe curve, while the two algorithms have the same value of To along the curve. The lines withsymbols 3, + and 2 plot the functions p = n3=2, p = n2 and p = n3, respectively. These linesdemarcate the regions of applicabilities of the four algorithms (see Table 1) and are importantbecause an algorithm might not be applicable in the region where its overhead function To ismathematically superior than others. In all the �gures in this section, the region marked with15
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Figure 2: A comparison of the four algorithms for tw = 3 and ts = 10.applicability of these algorithms, the regions of superiority of each of the algorithms can bedetermined just as in case of Figure 1. It is noteworthy that in Figure 2 each of the fouralgorithms performs better than the rest in some region and all the four regions a, b, c andd contain practical values of p and n.In Figure 3, we present a comparison of the four algorithms for tw = 3 and ts = 0:5. Theseparameters are close to what one can expect to observe on a typical SIMD machine like theCM-2. For the range of processors shown in the �gure, the GK algorithm is inferior to theothers4. Hence it is best to use the DNS algorithm for n2 � p � n3, Cannon's algorithm forn3=2 � p � n2 and Berntsen's algorithm for p < n3=2.7 Scalabilities of Di�erent Algorithms With Simulta-neous Communication on All Hypercube ChannelsOn certain parallel machines like the nCUBE2, the hardware supports simultaneous communi-cation on all the channels. This feature of the hardware can be utilized to signi�cantly reducethe communication cost of certain operations involving broadcasting and personalized com-munication [20]. In this section we investigate as to what extent can the performance of thealgorithms described in Section 4 can be improved by utilizing simultaneous communicationon all the log p ports of the hypercube processors.Cannon's algorithm (Section 4.2), Berntsen's algorithm (Section 4.4) and the pipelined4The GK algorithm does begin to perform better than the other algorithms for p > 1:3 � 108, but againwe consider this range of p to be impractical. 17
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Figure 3: A comparison of the four algorithms for tw = 3 and ts = 0:5.version of Fox's algorithm employ only nearest neighbor communication and hence can bene�tfrom simultaneous communication by a constant factor only as the subbocks of matricesA andB can now be transferred simultaneously. The DNS algorithm can also gain only a constantfactor in its communication terms as all data messages are only one word long. Hence, amongthe algorithms discussed in this paper, the ones that can potentially bene�t from simultaneouscommunications on all the ports are the simple algorithm (or its variations [18]) and the GKalgorithm.7.1 The Simple Algorithm With All Port CommunicationThis algorithm requires an all-to-all broadcast of the sub-blocks of the matrices A and Bamong groups of pp processors. The best possible scheme utilizing all the channels of ahypercube simultaneously can accomplish an all-to-all broadcast of blocks of size n2p amongpp processors in time 2tw n2ppp logp + 12ts log p. Moreover, the communication of the sub-blocks ofboth A and B can proceed simultaneously. Thus the parallel execution time of this algorithmon a hypercube with simultaneous communication is given by the following equation:Tp = n3p + 2tw n2pp log p + 12 ts log p (16)Recall from Section 4.1 that the simple algorithm is not memory e�cient. Ho et al. [18]give a memory e�cient version of this algorithm which has somewhat higher execution timethan that given by Equation (16). It can be shown that the isoe�ciency function due tocommunication overheads is only O(p log p) now, which is a signi�cant improvement over the18



O(p1:5) isoe�ciency function of this algorithm when communication on only one of the log pports of a processor was allowed at a time.However, as mentioned in [18], the lower limit on the message size imposes the conditionthat n � 12pp log p. This requires that n3 = W � 18p1:5(log p)3. Thus the rate at which the theproblem size is required to grow with respect to the number of processors in order to utilizeall the communication channels of the hypercube is higher than the isoe�ciency function ofthe algorithm implemented on a simple hypercube with one port communication at a time.7.2 The GK Algorithm With All Port CommunicationUsing the one-to-all broadcast scheme of [20] for a hypercube with simultaneous all-port com-munication, the parallel execution time of the GK algorithm can be reduced to the following:Tp = n3p + ts log p + 9tw n2p2=3 log p + 6 np1=3ptstw (17)The communication terms now yield an isoe�ciency function of O(p log p), but it can beshown that lower limit on the message size entails the problem size to grow as O(p(log p)3)with respect to p which is not any better that the isoe�ciency function of this algorithm ona simple hypercube with one port communication at a time.7.3 DiscussionThe gist of the analysis in this section is that allowing simultaneous on all the ports of aprocessor on a hypercube does not improve the overall scalability of matrix multiplicationalgorithms. The reason is that simultaneous communication on all channels requires thateach processor has large enough chunks of data to transfer to other processors. This imposesa lower bound on the size of the problem that will generate such large messages. In case ofmatrix multiplication algorithms, the problem size (as a function of p) that can generate largeenough messages for simultaneous communication to be useful, turns out to be larger thanwhat is required to maintain a �xed e�ciency with only one port communication at a time.However, there will be certain values of n and p for which the modi�ed algorithm will performbetter.8 Isoe�ciency as a Function of Technology DependentFactorsThe isoe�ciency function can be used not only to determine the rate at which the problem sizeshould grow with respect to the number of processors, but also with respect to a variation inother hardware dependent constants such as the communication speed and processing power19



of the processors used etc. In many algorithms, these constants contribute a multiplicativeterm to the isoe�ciency function, but in some others they e�ect the asymptotic isoe�ciency ofa parallel system (e.g., parallel FFT [14]). For instance, a multiplicative term of (tw)3 appearsin most isoe�ciency functions of matrix multiplication algorithms described in this paper. Asdiscussed earlier, tw depends on the ratio of the data communication speed of the channels tothe computation speed of the processors used in the parallel architecture. This means thatif the processors of the multicomputer are replaced by k times faster processors, then theproblem size will have to be increased by a factor of k3 in order to obtain the same e�ciency.Thus the isoe�ciency function for matrix multiplication is very sensitive to the hardwaredependent constants of the architecture. For example, in case of Cannon's algorithm, if thenumber of processors is increased 10 times, one would have to solve a problem 31.6 timesbigger in order to get the same e�ciency. On the other hand, for small values of ts (as maybe the case with most SIMD machines), if p is kept the same and 10 times faster processorsare used, then one would need to solve a 1000 times larger problem to be able to obtain thesame e�ciency. Hence for certain problem sizes, it may be better to have a parallel computerwith k-fold as many processors rather than one with the same number of processors, eachk-fold as fast (assuming that the communication network and the bandwidth etc. remain thesame). This should be contrasted with the conventional wisdom that suggests that betterperformance is always obtained using fewer faster processors [2].9 Experimental ResultsWe veri�ed a part of the analysis of this paper through experiments of the CM-5 parallelcomputer. On this machine, the fat-tree [30] like communication network on the CM-5 providessimultaneous paths for communication between all pairs of processors. Hence the CM-5 can beviewed as a fully connected architecture which can simulate a hypercube connected network.We implemented Cannon's algorithm described in Section 4.2 and the algorithm described inSection 4.6.On the CM-5, the time taken for one 
oating point multiplication and addition was mea-sured to be 1.53 microseconds on our implementation. The message startup time for ourprogram was observed to be about 380 microseconds and the per-word transfer time for 4byte words was observed to be about 1.8 microseconds5. Since the CM-5 can be consideredas a fully connected network of processors, the expression for the parallel execution time forthe algorithm of Section 4.6 will have to be modi�ed slightly. The �rst part of the procedureto place the elements of matrix A in their respective positions, requires sending the bu�er5These values do not necessarily re
ect the communication speed of the hardware but the overheads ob-served for our implementation. For instance, a function call in the program associated with sending or receivinga message could contribute to the message startup overhead.20



a(0;j;k) to a(k;j;k). This can be done in one step on the CM-5 instead of log(p1=3) steps on aconventional hypercube. The same is true for matrix B as well. It can be shown that thefollowing modi�ed expression gives the parallel execution time for this algorithm on the CM-5:Tp = n3p + ts(log p+ 2) + tw n2p2=3 (log p + 2) (18)
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40 60 80 100 120 140"E n! GKCannon'sFigure 4: E�ciency as a function of matrix size for Cannon's algorithm and GK the algorithmfor 64 processors.Computing the condition for equal To for this and Cannon's algorithm by deriving therespective values of To from Equations (18) and (3), it can be shown that for 64 processors,Cannon's algorithm should perform better that our algorithm for n > 83. Figure 4 shows thee�ciency vs n curves for the two algorithms for p = 64. It can be seen that as predicted, ouralgorithm performs better for smaller problem sizes. The experimental cross-over point of thetwo curves is at n = 96. A slight deviation from the derived value of 83 can be explained dueto the fact that the values of ts and tw are not exactly the same for the two programs. For 512processors, the predicted cross-over point is for n = 295. Since the number of processors hasto be a perfect square for Cannon's algorithm on square matrices, in Figure 5, we draw thee�ciency vs n curve for p = 484 for Cannon's algorithm and for p = 512 for the GK algorithm6.The cross-over point again closely matches the predicted value. These experiments suggestthat the algorithm of Section 4.6 can outperform the classical algorithms like Cannon's for a6This is not an unfair comparison because the e�ciency can only be better for smaller number of processors.21



wide range of problem sizes and number of processors. Moreover, as the number of processorsis increased, the cross-over point of the e�ciency curves of the GK algorithm and Cannon'salgorithm corresponds to a very high e�ciency. As seen in Figure 5, the cross-over happens atE � 0:93 and Cannon's algorithm can not outperform the GK algorithm by a wide margin atsuch high e�ciencies. On the other hand, the GK algorithm achieves an e�ciency of 0.5 for amatrix size of 112 � 112, whereas Cannon's algorithm operates at an e�ciency of only 0.28 on484 processors on 110 � 110 matrices. In other words, in the region where the GK algorithmis better than Cannon's algorithm, the di�erence in the e�ciencies is quite signi�cant.
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100 150 200 250 300 350 400 450"E n! GKCannon'sFigure 5: E�ciency vs matrix size for Cannon's algorithm (p = 484) and the GK algorithm(p = 512).10 Concluding RemarksIn this paper we have presented the scalability analysis of a number of matrix multiplicationalgorithms described in the literature [5, 9, 11, 3, 18]. Besides analyzing these classical al-gorithms, we show that the GK algorithm that we present in this paper outperforms all thewell known algorithms for a signi�cant range of number of processors and matrix sizes. Thescalability analysis of all these algorithms provides several important insights regarding theirrelative superiority under di�erent conditions. None of the algorithms discussed in this paperis clearly superior to the others because there are a number of factors that determine thealgorithm that performs the best. These factors are the communication related constants of22



the machine in use such as ts and tw, the number of processors employed, and the sizes of thematrices to be multiplied. In this paper we predict the precise conditions under which eachformulation is better than the others. It may be unreasonable to expect a programmer tocode di�erent algorithms for di�erent machines, di�erent number of processors and di�erentmatrix sizes. But all the algorithms can stored in a library and the best algorithm can bepulled out by a smart preprocessor/compiler depending on the various parameters.We show that an algorithm with a seemingly small expression for the communicationoverhead is not necessarily the best one because it may not scale well as the number ofprocessors is increased. For instance, the best algorithm in terms of communication overheads(Berntsen's algorithm described in Section 4.4) turns out to be the least scalable one with anisoe�ciency function of O(p2) due its limited degree of concurrency. The algorithm with thebest asymptotic scalability (the DNS algorithm with O(p log p) isoe�ciency function) has alimit on the achievable e�ciency, which can be quite low if the message startup time is high.Thus this algorithm too is outperformed by others under a wide range of conditions. Forinstance, even if ts is 10 times the values of tw, the DNS algorithm will perform worse thanthe GK algorithm for up to almost 10,000 processors for any problem size.We also show that special hardware permitting simultaneous communication on all theports of the processors does not improve the overall scalability of the matrix multiplicationalgorithms on a hypercube. The reason is that simultaneous communication on all portsrequires that each processor has large enough messages to transfer so that all the channelscan be utilized simultaneously. This imposes a lower bound on the size of the problem thatwill generate such large messages and hence limits the concurrency of the algorithm. Thelimited concurrency translates to reduced scalability because for a given problem size morethan certain number of processors can not be used.We discuss the dependence of scalability of parallel matrix multiplication algorithms ontechnology dependent factors such as communication and computation speeds. Contrary toconventional wisdom, we show that under certain conditions, it may be better to use severalslower processors rather than fewer faster processors.References[1] S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cli�s, NJ, 1989.[2] M. L. Barton and G. R. Withers. Computing performance as a function of the speed, quantity, and thecost of processors. In Supercomputing '89 Proceedings, pages 759{764, 1989.[3] Jarle Berntsen. Communication e�cient matrix multiplication on hypercubes. Parallel Computing,12:335{342, 1989.[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cli�s, NJ, 1989. 23
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