
Lecture 3 Message-Passing
Programming Using MPI (Part 2)

1

Non-blocking Communication

• Advantages:
-- allows the separation between the initialization of the
communication and the completion.
-- can avoid deadlock
-- can reduce latency by posting receive calls early

• Disadvantages:
-- complex to develop, maintain and debug code

2

Non-block Send/Recv Syntax

3

• int MPI_Isend(void* message /* in */,
int count /* in */,
MPI_Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI_Comm comm /* in */,
MPI_Request* request /* out */)

• int MPI_Irecv(void* message /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI_Comm comm /* in */,
MPI_Request* request /* out */)

Non-blocking Send/Recv Details

• Non-blocking operation requires a minimum of
two function calls: a call to start the operation and
a call to complete the operation.

• The “request” is used to query the status of the
communicator or to wait for its completion.

• The user must NOT overwrite the send buffer
until the send (data transfer) is complete.

• The user can NOT use the receiving buffer before
the receive is complete.

4

Non-blocking Send/Recv Communication Completion

• int MPI_Wait(MPI_Request* request /* in-out */,
MPI_Status* status /* out */)

• int MPI_Test(MPI_Request* request /* out */,
int* flag /* out*/,
MPI_Status* status /* out */)

5

• Completion of a non-blocking send operation means that the sender is
now free to update the send buffer “message”.

• Completion of a non-blocking receive operation means that the receive
buffer “message” contains the received data.

Details of Wait/Test

• “request” is used to identify a previously posted
send/receive

• MPI_Wait() returns when the operation is
complete, and the status is updated for a receive.

• MPI_Test() returns immediately, with “flag” =
true if posted operation corresponding to the
“request” handle is complete.

6

Non-blocking Send/Recv Example
#include <stdio.h>
#include "mpi.h"
int main(int argc, char** argv)
{ /*** sample_nonblock2.c ***/

int my_rank, nprocs, recv_count;
MPI_Request request;
MPI_Status status;
double s_buf[100], r_buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

if (my_rank==0){
MPI_Irecv(r_buf, 100, MPI_DOUBLE, 1, 22, MPI_COMM_WORLD, &request);
MPI_Send(s_buf, 100, MPI_DOUBLE, 1, 10, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}
else if(my_rank == 1){

MPI_Irecv(r_buf, 100, MPI_DOUBLE, 0, 10, MPI_COMM_WORLD, &request);
MPI_Send(s_buf, 100, MPI_DOUBLE, 0, 22, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}
MPI_Get_count(&status, MPI_DOUBLE, &recv_count);
printf(“proc %d, source %d, tag %d, count %d\n”, my_rank,

status.MPI_SOURCE, status.MPI_TAG, recv_count);
MPI_Finalize();

}
7

Use MPI_Isend (not Safe to Change the Buffer)
#include <stdio.h>
#include "mpi.h"
int main(int argc, char** argv)
{ /** sample_unsafe_isend.c **/

int my_rank, nprocs, recv_count;
MPI_Request request;
MPI_Status status;
double s_buf[100], r_buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

if (my_rank==0){
MPI_Isend(s_buf, 100, MPI_DOUBLE, 1, 10, MPI_COMM_WORLD, &request);
MPI_Recv(r_buf, 100, MPI_DOUBLE, 1, 22, MPI_COMM_WORLD, &status);
MPI_Wait(&request, &status);

}
else if(my_rank == 1){

MPI_Isend(s_buf, 100, MPI_DOUBLE, 0, 22, MPI_COMM_WORLD, &request);
MPI_Recv(r_buf, 100, MPI_DOUBLE, 0, 10, MPI_COMM_WORLD, &status);
MPI_Wait(&request, &status);

}
MPI_Get_count(&status, MPI_DOUBLE, &recv_count);
printf(“proc %d, source %d, tag %d, count %d\n”, my_rank,

status.MPI_SOURCE, status.MPI_TAG, recv_count);
MPI_Finalize();

}
8

More about Communication Modes

9

Send Modes MPI function Completion Condition

Synchronous send MPI_Ssend()

MPI_Issend()

A send will not complete until a matching receive has been
posted and the matching receive has begun reception of the
data. Completion of a synchronous send not only indicates
that the send buffer can be reused, but also indicates that
the receiver has reached a certain point in its execution

Buffered send
(It has additional
associated functions.
The send operation is
local.)

MPI_Bsend()
MPI_Ibsend()

Bsend() always completes (unless an error occurs)
Completion is irrespective of the receiver.

**Standard send MPI_Send()
MPI_Isend()

message sent (no guarantee that the receive has
started). It is up to MPI to decide what to do.

Ready send MPI_Rsend()
MPI_Irsend()

may be used only when the a matching receive
has already been posted

http://www.mpi-forum.org/docs/mpi-11-html/node40.html#Node40
http://www.mpi-forum.org/docs/mpi-11-html/node44.html#Node44

http://www.mpi-forum.org/docs/mpi-11-html/node40.html
http://www.mpi-forum.org/docs/mpi-11-html/node44.html

• MPI_Ssend()
-- synchronization of source and destination
-- the behavior is predictable and safe
-- recommend for debugging purpose

• MPI_Bsend()
-- only do copy message to buffer
-- completes immediately
-- predictable behavior and no synchronization
-- user must allocate extra buffer space by MPI_Buffer_attach()

• MPI_Rsend()
-- completes immediately
-- will succeed only if a matching receive is already posted
-- if receiving process is not ready, action is undefined.
-- may improve performance

10

“Recommendations: In general, use MPI_Send. If non-blocking routines are necessary,
then try to use MPI_Isend or MPI_Irecv. Use MPI_Bsend only when it is too inconvenient
to use MPI_Isend. The remaining routines, MPI_Rsend, MPI_Issend, etc., are rarely used
but may be of value in writing system-dependent message-passing code entirely within
MPI.” --- http://www.mcs.anl.gov/research/projects/mpi/sendmode.html

• See also ping_pong.c

http://www.mcs.anl.gov/research/projects/mpi/sendmode.html

Buffered Mode
• Standard Mode – If buffer is provided, amount of buffering

is not defined by MPI
• Buffered Mode - Send may start and return before a

matching receive. Necessary to specify buffer space via
routine MPI_Buffer_attach().

11

int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_detach(void *buffer, int *size)

• The buffer size given should be the sum of the sizes of all outstanding MPI_Bsends, plus
MPI_BSEND_OVERHEAD for each MPI_Bsend that will be done.

• MPI_Buffer_detach() returns the buffer address and size so that nested libraries can
replace and restore the buffer.

• See sample_Bsend.c

MPI collective Communications

• Routines that allow groups of processes to communicate.
• Classification by Operation:

– One-To-All Mode
• One process contributes to the results. All processes receive the result.
• MPI_Bcast()
• MPI_Scatter(), MPI_Scatterv()

– All-To-One Mode
• All processes contribute to the result. One process receive the result.
• MPI_Gather(), MPI_Gatherv()
• MPI_Reduce()

– All-To-All Mode
• All processes contribute to the result. All processes receive the result.
• MPI_Alltoall(), MPI_Alltoallv()
• MPI_Allgather(), MPI_Allgatherv()
• MPI_Allreduce(), MPI_Reduce_scatter()

– Other
• Collective operations that do not fit into above categories
• MPI_Scan()
• MPI_Barrier()

12

Barrier Synchronization
MPI_Barrier(MPI_Comm comm)
• This routine provides the ability to block the calling process until all

processes in the communicator have reached this routine.

13

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, nprocs;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Barrier(MPI_COMM_WORLD);
printf("Hello, world. I am %d of %d\n", rank, procs);
fflush(stdout);

MPI_Finalize();
return 0;

}

http://mpi.deino.net/mpi_functions/MPI_Init.html
http://mpi.deino.net/mpi_functions/MPI_Comm_size.html
http://mpi.deino.net/mpi_functions/MPI_Comm_rank.html
http://mpi.deino.net/mpi_functions/MPI_Barrier.html
http://mpi.deino.net/mpi_functions/MPI_Finalize.html

Broadcast (One-To-All)
MPI_Bcast(void *buffer /* in/out */, int count /* in */,

MPI_Datatype datatype /* in */, int root /* in */, MPI_Comm comm)
• Broadcasts a message from the process with rank "root" to all other processes of

the communicator.
• All members of the communicator use the same argument for “comm”, “root”.
• On return, the content of root’s buffer has been copied to all processes.

14

Tags and Synchronization
Time Root (x=5, y = 10) Process B Process C

1 MPI_Bcast &x Local work Local work

2 MPI_Bcast &y Local work Local work

3 Local work MPI_Bcast &y MPI_Bcast &x

4 Local work MPI_Bcast &x MPI_Bcast &y

15

On Process B: x = 10, y = 5
On Process C: x = 5, y = 10

1. There is no tag in collective communication.
2. Normally, broadcast (and all other collective communication calls) are points of

synchronization: on a given process the broadcast would not return until every process
had received the broadcast data.

3. On current system, restriction on synchronization has been relaxed. It’s OK for root to
complete two broadcast before other processes begin their calls. However, in terms of
data communicated, the effect must be the same as if the processes synchronized.

4. Corresponding with 3, the system is assumed to providing buffering. In MPI parlance, it is
unsafe.

Gather (All-To-One)
int MPI_Gather(void *sendbuf /* in */, int sendcnt /* in */, MPI_Datatype sendtype /*
in */, void *recvbuf /* out */, int recvcnt /* in */, MPI_Datatype recvtype /* in */, int
root /* in */, MPI_Comm comm /* in */)
MPI_Gather collects the data from each process in the same communicator and
store the data in process rank order on the process with rank root.

• Each process sends contents in “sendbuf” to “root”.
• Root stores received contents in rank order
• “recvbuf” is the address of receive buffer, which is significant only at “root”.
• “recvcnt” is the number of elements for any single receive, which is significant

only at “root”.

16

AllGather (All-To-All)
int MPI_Allgather(void *sendbuf /* in */, int sendcount /* in */, MPI_Datatype
sendtype /* in */, void *recvbuf /* out */, int recvcount /* in */, MPI_Datatype
recvtype /* in */, MPI_Comm comm /* in */)
• Gather data from all tasks and distribute the combined data to all tasks
• recvcount: number of elements received from any process (integer)
• Similar to Gather + Bcast

17

Scatter (One-To-All)
int MPI_Scatter(void *sendbuf /* in */, int sendcnt /* in */, MPI_Datatype sendtype /* in
*/, void *recvbuf /* out */, int recvcnt /* in */, MPI_Datatype recvtype /* in */, int root /*
in */, MPI_Comm comm /* in */);
• Send data from one process “root” to all other processes in “comm”.
• It is the reverse operation of MPI_Gather
• It is a One-To-All operation which each recipient get a different chunk.
• “sendbuf”, “sendcnt” and “sendtype” are significant only at “root”.

MPI_Scatter splits the data referenced by sendbuf on the process with rank root
into p segments, each of which consists of sendcnt elements of type sendtype. The
first segment is sent to process 0, the second to process 1, etc.

18

Alltoall (All-To-All)
int MPI_Alltoall(void *sendbuf /* in */, int sendcount /* in */, MPI_Datatype
sendtype /* in */, void *recvbuf /* out */, int recvcount /* in */, MPI_Datatype
recvtype /* in */, MPI_Comm comm /* in */)
• an extension of MPI_ALLGATHER to case where each process sends

distinct data to each of the receivers.
• the jth block from process i is received by process j and is placed in

the ith block of recvbuf.
• The type signature associated with sendcount, sendtype at a process

must be equal to the type structure associated with recvcount,
recvtype at any other process.

19

Reduction (All-To-One)

int MPI_Reduce(void *sendbuf /* in */, void *recvbuf /* out
/, int count / in */, MPI_Datatype datatype /* in */, MPI_Op op /*
in */, int root /* in */, MPI_Comm comm /* in */)
• This routine combines values in “sendbuf” on all

processes to a single value using the specified
operation “op”.

• The combined value is put in “recvbuf” of the
process with rank “root”.

• The routine is called by all group members using
the same arguments for count, datatype, op, root
and comm.

20

Predefined Reduction Operations

21

• Each process can provide one element, or a
sequence of elements, in which case the
combine operation is executed element-by-
element on each entry of the sequence.

22

Benchmarking Parallel Performance
double MPI_Wtime(void)
• Return an elapsed time in seconds on the calling processor
• There is no requirement that different nodes return “the same time”.

23

#include "mpi.h"
#include <time.h>
#include <stdio.h>
/*measure_time.c*/
int main(int argc, char *argv[])
{

double t1, t2;

MPI_Init(argc, argv);
t1 = MPI_Wtime();
sleep(1);
t2 = MPI_Wtime();
printf("MPI_Wtime measured a 1 second sleep to be: %1.2f\n", t2-t1);
fflush(stdout);
MPI_Finalize();
return 0;

}

http://mpi.deino.net/mpi_functions/MPI_Init.html
http://mpi.deino.net/mpi_functions/MPI_Wtime.html
http://mpi.deino.net/mpi_functions/MPI_Wtime.html
http://mpi.deino.net/mpi_functions/MPI_Wtime.html
http://mpi.deino.net/mpi_functions/MPI_Finalize.html

	Lecture 3 Message-Passing Programming Using MPI (Part 2)
	Non-blocking Communication
	Non-block Send/Recv Syntax
	Non-blocking Send/Recv Details
	Non-blocking Send/Recv Communication Completion
	Details of Wait/Test
	Non-blocking Send/Recv Example
	Use MPI_Isend (not Safe to Change the Buffer)
	More about Communication Modes
	Slide Number 10
	Buffered Mode
	MPI collective Communications
	Barrier Synchronization
	Broadcast (One-To-All)
	Tags and Synchronization
	Gather (All-To-One)
	AllGather (All-To-All)
	Scatter (One-To-All)
	Alltoall (All-To-All)
	Reduction (All-To-One)
	Predefined Reduction Operations
	Slide Number 22
	Benchmarking Parallel Performance

