
Lecture 11: Programming on GPUs
(Part 1)

1

Overview

• GPGPU: General purpose computation using
graphics processing units (GPUs) and graphics API

• GPU consists of multiprocessor element that run
under the shared-memory threads model. GPUs can
run hundreds or thousands of threads in parallel and
has its own DRAM.
– GPU is a dedicated, multithread, data parallel processor.
– GPU is good at

• Data-parallel processing: the same computation executed on
many data elements in parallel

• with high arithmetic intensity

2

3

• Performance history: GPUs are much faster than CPUs

4
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3X9Fwos00

CUDA: Compute unified device architecture
– A new hardware and software architecture for

issuing and managing computations on the GPU
– CUDA C is a programming language developed by

NVIDIA for programming on their GPUs. It is an
extension of C.

• OpenGL (Open Graphics Library)

5

nVidia GPU Architecture

• Many processors are striped together
• Small, fast shared memory 6

7

Hardware Overview

• Basic building block is a “streaming multiprocessor”
(SM) with:
– 32 (or more) cores, each with 1024 registers
– up to 48 threads per core
– 64KB (or more) of shared memory / L1 cache
– 8KB (or more) cache for constants held in device memory

• C2050: 14 SMs, 3/6 GB memory
• Geforce GTX 780: 2,304 cores, 3GB memory
• Tesla P100: 56 SMs, 3584 FP32 CUDA Cores, 1792

FP64 CUDA Cores, 16GB memory

8

GPU Computing at CRC

• http://wiki.crc.nd.edu/wiki/index.php/Developmental_Systems
• gpu1.crc.nd.edu
• gpu2.crc.nd.edu
• gpu3.crc.nd.edu
• gpu4.crc.nd.edu
• gpu5.crc.nd.edu
• CUDA compiler is nvcc
• To compile and run GPU code:

– module load cuda
– module show cuda
– nvcc hello.cu

9

http://wiki.crc.nd.edu/wiki/index.php/Developmental_Systems
http://gpu1.crc.nd.edu/
http://gpu2.crc.nd.edu/
http://gpu3.crc.nd.edu/
http://gpu4.crc.nd.edu/
http://gpu5.crc.nd.edu/

Heterogeneous Computing
• Host: The CPU and its memory (host memory)
• Device: The GPU and its memory (device memory)

10

Things to learn:
1. Write code for the host and code for the device
2. Run device code from the host
3. Use device memory (transfer data between host and device)

A First Program
/* Cuda Hello, World, hello.cu”
#include <stdio.h>

__global__ void mykernel(void) {
}

int main(void){
mykernel<<<1,1>>>();
printf(“Hello, World\n”);
return 0;

}

11

__global__ :
1. A qualifier added to standard C. This alerts the compiler that a function should be

compiled to run on a device (GPU) instead of host (CPU).
2. Function mykernel() is called from host code.

Compile: nvcc hello.cu
nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler
Host functions (e.g. main()) processed by standard host compiler like gcc

CUDA Concepts and Terminology

mykernel<<<1,1>>>();

• Kernel: a C function which is flagged to be run on a
GPU (or a device).

• Triple angle brackets mark a call from host code to
device code
– Also called a “kernel launch”
– The parameters (1,1) will be explained in a moment

12

Processing Flow

1. Copy input data from CPU memory to GPU
memory and allocate memory

// cudaMalloc((void**)&device_c, sizeof(int));

13

14

2. Load GPU program and execute,
Caching data on chip for performance
//add<<<1, 1>>>(2, 7, device_c);

3. Copy results from GPU memory to CPU memory
//cudaMemcpy(&c, device_c, sizeof(int), cudaMemcpyDeviceToHost);

15

Passing Parameters & Data Transfer
// File name: add.cu
#include <stdio.h>

__global__ void add(int a, int b, int *c){
*c = a+b;

}

int main(void){
int c;
int *device_c;

cudaMalloc((void**)&device_c, sizeof(int));
add<<<1, 1>>>(2, 7, device_c);
cudaMemcpy(&c, device_c, sizeof(int), cudaMemcpyDeviceToHost);

printf(“2+7 = %d\n”, c);
cudeFree(device_c);
return 0;

}

16

• Can pass parameters to a kernel as with C function
• Need to allocate memory to do anything useful on a device, such as return values to the

host.

• add() runs on the device, so device_c must point to
the device memory
– This is why we call cudaMalloc() to allocate memory on

the device
• Do not deference the pointer returned by

cudaMalloc() from code that executes on the host.
Host code may pass this pointer around, perform
arithmetic on it. But we can not use it to read or
write from memory.
– Its C equivalent is malloc().

• We can access memory on a device through calls to
cudaMemcpy() from host code.
– Its C equivalent is memcpy().

17

Parallel Computing

• How do we run code in parallel on the device?
add<<< 256, 1>>>(2, 7, device_c);

– Instead of executing add() once, execute 256 times
in parallel

• <<<N,1>>>();
– The number “N” represents the number of parallel

blocks (of threads) in which we would like the GPU
to execute our kernel.

– add<<< 256, 1>>>() can be thought as that the
runtime creates 256 copies of the kernel and runs
them in parallel.

18

• A kernel is executed by an array of threads
• Threads are organized into blocks; blocks are

organized into grids.

19

Built-in variable “blockIdx”
• How to tell within the code which block is currently running?
• Suppose we add vectors a[] and b[].

__global__ void add(int *a, int *b, int *c){
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}
1. The set of blocks is referred to as a grid.
2. Each invocation can refer to its block index using blockIdx.x
3. By using blockIdx.x to index into the array, each block handles a different

index
4. On the device, each block executes in parallel and looks like the following:

20

Block 0,
blockIdx.x =0

c[0] = a[0] + b[0];

Block 1,
blockIdx.x=1

c[1] = a[1] + b[1];

Block 2,
blockIdx.x=2

c[2] = a[2] + b[2];

GPU Vector Sums (Block Version)
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>

#define N 512

__global__ void add(int *a, int *b, int *c){
int tid = blockIdx.x; // handle the data at this index

if(tid < N)
c[tid] = a[tid] + b[tid];

}

int main()
{

int a[N], b[N], c[N], i;
int *dev_a, *dev_b, *dev_c;

cudaMalloc((void**)&dev_c, N*sizeof(int));
cudaMalloc((void**)&dev_b, N*sizeof(int));
cudaMalloc((void**)&dev_a, N*sizeof(int));
for(i=0; i < N; i++)
{

a[i] = -i;
b[i] = i*i*i;

}
cudaMemcpy(dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N*sizeof(int), cudaMemcpyHostToDevice);

add <<<N, 1>>>(dev_a, dev_b, dev_c);
cudaMemcpy(c, dev_c, N*sizeof(int), cudaMemcpyDeviceToHost);
for(i=0; i < N; i++)

printf("%d + %d = %d\n", a[i], b[i], c[i]);

cudaFree(dev_c);
cudaFree(dev_b);
cudaFree(dev_a);
return 0;

} 21

• CUDA built-in variable: blockIdx
– CUDA runtime defines this variable.
– It contains the value of the block index for whichever block is currently

running the device code.
– CUDA C allows to define a group of blocks in one-, two- or three-

dimensions (version 2.x above).
• 𝑁𝑁 − specified as the number of parallel blocks per dimension

– A collection of parallel blocks is called a grid.
– This example specifies to the runtime system to allocate a one-

dimensional grid of 𝑁𝑁 blocks.
– Threads will have different values for blockIdx.x, from 0 to 𝑁𝑁 − 1.
– 𝑁𝑁 ≤ 65,535 − a hardware-imposed limit (𝑁𝑁 ≤ 231-1 from version 3.x

and above).
• if(tid< 𝑁𝑁)

– Avoid potential bugs – what if # threads requested is greater than 𝑁𝑁?

22

CUDA Threads
• A block can be split into parallel threads
• Using blocks:

__global__ void add(int *a, int *b, int *c){
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}
• Using threads all in one block:

__global__ void add(int *a, int *b, int *c){
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

main(){
…
add<<<1, 100>>>(dev_a, dev_b, dev_c);

}

23

Combining Blocks and Threads

• Hardwire limits the number of blocks in a single
launch to 65,535.

• Hardwire also limits the number of threads per
block with which we can launch a kernel.
– For many GPUs, maxThreadsPerBlock = 512 (or 1024,

version 2.x above).

• Blocks and threads are often combined.

24

To parallelize a for loop:
for(int i=0; i < 1000000; i++) {a[i]=x[i];}
• In block/thread, we would like to have a single

block/1000000 thread (𝑖𝑖 = 0, 𝑗𝑗 = 0, … , 999999)
kernels containing: a[thread_index] =
x[thread_index];

• In real implementation, the exact same kernel is
called blocks × threads times with the block and
thread indices changing.
– To use more than one multiprocessor, say 𝑖𝑖 = 0, . . , 19, 𝑗𝑗

= 0, … , 49 and kernel:
a[block_index+thread_index]=x[block_index+thread_index];

25

• Vector addition to use both blocks and threads
– We no longer simply use either blockIdx.x or

threadIdx.x
– Consider indexing an array with one element per

thread
– We also use 8 threads per block.

26

1. With “M” threads/block a unique index for each thread is given by:
int index = threadIdx.x + blockIdx.x*M;

2. Use the built-in variable blockDim.x for threads/block
int index = threadIdx.x + blockIdx.x*blockDim.x;

• New version of add() to use both threads and
blocks
__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];
}

27

#define N (2048*2048)
#define THREADS_PER_BLOCK 512

int main(void) {
…
// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(dev_a, dev_b, dev_c);
}

For Vector with Arbitrary Sizes

• Problems often are not multiples of blockDim.x
• To avoid accessing beyond the end of the arrays:
__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)

c[index] = a[index] + b[index];
}
• See code vec_add_ver2.cu
• Update the kernel launch:

Add<<<(N+M-1)/M, M>>>(dev_a, dev_b, dev_c, N);
• Remark:

– Threads add a level of complexity, why we need them?
– Unlike parallel blocks, threads have mechanisms to:

• Communicate
• Synchronize

28

29

• We can not assume threads will complete in the order they are indexed.
• We can not assume blocks will complete in the order they are labeled.
• To deal with data/task dependency:

• Use synchronization: __syncthreads();
• Split into kernels and call consecutively from C

• Shared memory model: do not write to same memory location from different
threads

Review: CUDA Programming Model

• A CUDA program consists of code to be run on the
host, i.e. the CPU, and the code to be run on the
device, i.e. the GPU.
– Device has its own DRAM
– Device runs many threads in parallel

• A function that is called by the host to execute on the
device is called a kernel.
– Kernels run on many threads which realize data parallel

portion of an application
• Threads in an application are grouped into blocks. The

entirety of blocks is called the grid of that application.

30

31

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SIMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

32

Extended C

• Type Qualifiers
– global, device, shared,

local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• Function(kernel) launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Thread Batching
• A kernel is executed as a grid of

thread blocks
• A thread block is a batch of

threads that can cooperate.
• Each thread uses ID to decide

what data to work on
– Block ID: 1D or 2D (or 3D from

version 2.x)
– Thread ID: 1D, 2D or 3D

• Threads within a block
coordinate by shared memory,
atomic operations and barrier
synchronization.

• Threads in different blocks can
not cooperate.

• Convenient for solving PDEs on
grid cells.

33

CUDA Memory Model

34

• Global memory
– Main means of

communicating
R/W Data
between host and
device

– Contents visible to
all threads

– Long latency
access

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Device Memory Allocation

• cudaMalloc(void **devPtr, size_t size)
– Allocate space in device Global Memory

• cudaFree()
– Free allocated space in device Global Memory

• Example. Allocate 64 by 64 single precision float
array. Attached the allocated storage to *Md.

35

TILE_WIDTH = 64;
float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

Host-Device Data Transfer

36

• cudaMemcpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind
kind)
– memory data transfer
– Requires four parameters

• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer

• Example:
– Transfer a 64 * 64 single precision float array
– M is in host memory and Md is in device memory
– cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are

symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

Device Memory Allocation – MultiD Case

• Linear memory can also be allocated through
cudaMallocPitch() and cudaMalloc3D() etc.
– Recommended for allocations of 2D or 3D arrays as it

makes sure that the allocation is appropriately padded
to meet the alignment requirements imposed by the
device.

– It ensures best performance when accessing the row
addresses or performing copies between 2D arrays
and other regions of device memory (using the
cudaMemcpy2D() and cudaMemcpy3D() functions)

– The returned pitch (or stride) must be used to access
array elements.

37

cudaError_t cudaMallocPitch(void **devPtr, size_t *pitch, size_t width,
size_t height)

– Allocates at least width (in bytes) * height bytes of linear
memory on the device and returns in *devPtr a pointer to the
allocated memory. The function may pad the allocation to ensure
that corresponding pointers in any given row will continue to
meet the alignment requirements for coalescing as the address is
updated from row to row. The pitch returned in *pitch by
cudaMallocPitch() is the width in bytes of the allocation.

– Parameters:
devPtr - Pointer to allocated pitched device memory
pitch - Pitch for allocation
width - Requested pitched allocation width (in bytes)
height - Requested pitched allocation height

– Returns: cudaSuccess, cudaErrorMemoryAllocation
– Given the row and column of an array element of type T, the

address is computed as:
T* pElement = (T*)((char*)BaseAddress + Row * pitch) + Column;

38

// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;
cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global__ void MyKernel(float* devPtr, size_t pitch, int width, int height)
{

for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int c = 0; c > width; ++c) {

float element = row[c];
}

}
}

See also pitch_sample.cu

39

CUDA Function Declarations

40

• __global__ defines a kernel function
– Must return void
– Example: __global__ void KernelFunc()
– Executed on the device, only callable from the

host

• __device__ defines a function called by kernels.
• Example: __device__ float DeviceFunc()
• Executed on the device, only callable from the

device

• __host__ defines a function running on the host
• Example: __host__ float HostFunc()
• Executed on the host, only callable from

the host

• __device__ functions cannot have their
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the function
– No variable number of arguments

41

Querying Device
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <string.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>

int main(int argc, char** argv)
{

int gpuDevice;
int devNum = 0;
int c, count;
int cudareturn;

cudaGetDeviceCount(&count);
while ((c = getopt (argc, argv, "d:")) != -1)
{

switch (c)
{
case 'd':

devNum = atoi(optarg);
break;
case '?':

if (isprint (optopt))
fprintf (stderr, "Unknown option `-%c'.\n", optopt);

else
fprintf (stderr,

"Unknown option character `\\x%x'.\n",
optopt);

return 1;
default:

printf("GPU device not specified using device 0 ");
}

}
cudareturn = cudaSetDevice(devNum);
printf("device count = %d\n", count);
if (cudareturn == 11)
{

printf("cudaSetDevice returned 11, invalid device number ");
exit(-1);

}
cudaGetDevice(&gpuDevice);
return 0;

}

42

Lecture 11: Programming on GPUs
(Part 2)

43

Thread Creation
• Threads are created when program calls kernel

functions.
• A kernel function must be called with an execution

configuration:
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(...);

• Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

44

dim3 is a special CUDA datatype with 3 components .x, .y, .z each initialized to 1.

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• A collection of blocks from a grid (1D, 2D
or 3D)
– Built-in variable gridDim specifies the size

(or dimension) of the grid.
– Each copy of the kernel can determine

which block it is executing with the built-in
variable blockIdx.

• Threads in a block are arranged in 1D, 2D,
or 3D arrays.
– Built-in variable blockDim specifies the

size (or dimensions) of block.
– threadIdx index (or 2D/3D indices) thread

within a block
– maxThreadsPerBlock: The limit is 512

threads per block

45

kernel_routine<<<gridDim, blockDim>>>(args);

Language Extensions: Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z unused below version 2.x)

• dim3 blockDim;
– Dimensions of the block in threads

• dim3 blockIdx;
– Block index within the grid

• dim3 threadIdx;
– Thread index within the block

46

dim3 is a special CUDA datatype with 3 components .x, .y, .z each initialized to 1.

Specifying 1D Grid and 1D Block
/// host code
int main(int argc, char **argv) {

float *h_x, *d_x; // h=host, d=device
int nblocks=3, nthreads=4, nsize=3*4;

h_x = (float *)malloc(nsize*sizeof(float));
cudaMalloc((void **)&d_x,nsize*sizeof(float));
my_first_kernel<<<nblocks,nthreads>>>(d_x);
cudaMemcpy(h_x,d_x,nsize*sizeof(float),
cudaMemcpyDeviceToHost);
for (int n=0; n<nsize; n++)

printf(" n, x = %d %f \n",n,h_x[n]);
cudaFree(d_x); free(h_x);

}

47

/// Kernel code
__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[tid] = (float) threadIdx.x;
}

Within each block of threads,
threadIdx.x ranges from 0 to
blockDim.x-1, so each thread
has a unique value for tid

Block 0 Thread 0 Thread 1 Thread 2 Thread 3

Block 1 Thread 0 Thread 1 Thread 2 Thread 3

Block 2 Thread 0 Thread 1 Thread 2 Thread 3

GPU SUMs of a Long Vector

• Assume 65,535*512 >> N > 512, so we need to launch
threads across multiple blocks.

• Let’s use 128 threads per block. We need N/128 blocks.
– N/128 is integer division. If N were < 128, N/128 would be 0.
– Actually compute (N+127)/128 blocks.

• add <<<(N+127)/128, 128>>>(dev_a, dev_b, dev_c);

48

#define N 4000
__global__ void add(int *a, int *b, int *c){

int tid = threadIdx.x + blockDim.x*blockIdx.x; // handle the data at this index

if(tid < N) c[tid] = a[tid] + b[tid]; // launch too many treads when N is not exact
} // multiple of 128

GPU Sums of Arbitrarily Long Vectors
• Neither dimension of a grid of blocks may exceed 65,535.
• Let’s use 1D grid and 1D block.

49

__global__ void add(int *a, int *b, int *c){
int tid = threadIdx.x + blockIdx.x*blockDim.x; // handle the data at this index

while(tid < N){
c[tid] = a[tid] + b[tid];
tid += blockDim.x*gridDim.x;

}
}

Principle behind this implementation:
• Initial index value for each parallel thread is:

int tid = threadIdx.x + blockIdx.x*blockDim.x;
• After each thread finishes its work at current index, increment each

of them by the total number of threads running in the grid, which is
blockDim.x*gridDim.x

#define N (55*1024)
__global__ void add(int *a, int *b, int *c){

int tid = threadIdx.x + blockIdx.x*blockDim.x; // handle the data at this index

while(tid < N){
c[tid] = a[tid] + b[tid];
tid += blockDim.x*gridDim.x;

}
}
int main()
{
…

add <<<128, 128>>>(dev_a, dev_b, dev_c);
…
}

//see vec_arb_len_add.cu

50

Specifying 1D Grid and 2D Block
If we want to use a 1D grid of blocks and 2D set of threads, then
blockDim.x, blockDim.y give the block dimensions, and threadIdx.x,
threadIdx.y give the thread indices.

51

Main()
{

int nblocks = 2;
dim3 nthreads(16, 4);
my_second_kernel<<<nblocks, nthreads>>>(d_x);

}

dim3 is a special CUDA datatype with 3 components .x, .y, .z each initialized to 1.

/// Kernel code
__global__ void my_second_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x* threadIdx.y +blockDim.x*blockDim.y*blockIdx.x;
x[tid] = (float) threadIdx.x;
}

• In a 3D block of threads, thread ID is computed by:
threadIdx.x +threadIdx.y * blockDim.x + threadIdx.z *
blockDim.x * blockDim.y

52

__global__ void KernelFunc(...);

main()
{
dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block
KernelFunc<<< DimGrid, DimBlock>>>(...);

}

Matrix Multiplication

• Demonstrate basic features of memory and
thread management in CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and device
– Assume square matrix for simplicity

53

• 𝑃𝑃 = 𝑀𝑀 × 𝑁𝑁 of size WIDTH×WIDTH
• Without blocking:

– One thread handles one element of 𝑃𝑃
– M and N are loaded WIDTH times from

global memory

54

M

N

P

C Language Implementation

void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {

double sum = 0;
for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

}
P[i * Width + j] = sum;

}
} 55

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

M

Data Transfer (Host/Device)

56

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{

int size = Width * Width * sizeof(float);
float *Md, *Nd, *Pd;
…
//1. Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

//2. Kernel invocation code –
…

// 3. Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

57

Kernel Function
// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;
for (int k = 0; k < Width; ++k) {

float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

58

Kernel Invocation

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{

…
//2. Kernel invocation code – to be shown later
// Setup the execution configuration

dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd,
Width);
…

}
59

60

• One Block of threads compute
matrix Pd
– Each thread computes one

element of Pd
• Each thread

– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and

addition for each pair of Md and
Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not very
high)

• Size of matrix limited by the
number of threads allowed in a
thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

WIDTH

Md Pd

Nd

• 𝑃𝑃 = 𝑀𝑀 × 𝑁𝑁 of size WIDTH×WIDTH
• With blocking:

– One thread block handles one
BLOCK_SIZE × BLOCK_SIZE (or
TILE_WIDTH × TILE_WIDTH) sub-
matrix (tile) 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 of 𝑃𝑃

• Block size equal tile size
• Each thread calculates one element

– Genrate a 2D grid of
(WIDTH/TILE_WIDTH)2 blocks

– Linear memory allocation for all
matrices is used

61

62

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Revised Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int
Width)

{
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column index of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

63

Multithreading

• Cores in a streaming multiprocessor (SM) are Single
Instruction Multiple Threads (SIMT) cores:
– Maximum number of threads in a block depends on the

compute capability (1024 on Fermi)
• all cores execute the same instructions simultaneously, but with

different data.
– GPU multiprocessor creates, manages, schedules and executes

threads in warps of 32*
• minimum of 32 threads all doing the same thing at (almost) the same

time (Warp executes one common instruction at a time).
• no “context switching”; each thread has its own registers, which limits

the number of active threads
• Threads are allowed to branch, but branches are serialized

– threads on each SM execute in groups of 32 called “warps”
– execution alternates between “active” warps, with warps

becoming temporarily “inactive” when waiting for data

64

• Thread Branching

65

Program

int tid = threadIdx.x;

if (tid==0) {var1++}

else {var1 = var1+3;}

var2 = 3*5 + var1;

• Suppose we have 1000 blocks, and each one has 128
threads – how does it get executed?

• On current Fermi hardware, would probably get 8 blocks
running at the same time on each SM, and each block has
4 warps =) 32 warps running on each SM

• Each clock tick, SM warp scheduler decides which warp to
execute next, choosing from those not waiting for
– data coming from device memory (memory latency)
– completion of earlier instructions (pipeline delay)

• Programmer doesn’t have to worry about this level of
detail (can always do profiling later), just make sure there
are lots of threads / warps

66

Spatial Locality

__global__ void good_kernel(float *x)
{

int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[tid] = threadIdx.x;

}
• 32 threads in a warp address neighboring elements of array

x.
• If the data is correctly “aligned” so that x[0] is at the

beginning of a cache line, then x[0]-x[31] will be in the
same cache line.
– Cache line is the basic unit of data transfer, 128 bytes cache line

(32 floats or 16 doubles).
• Good spatial locality.

67

__global__ void bad_kernel(float *x)
{

int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[1000*tid] = threadIdx.x;

}
• Different threads within a warp access widely

spaced elements of array x.
• Each access involves a different cache line, so

performance is poor.

68

CUDA Memories
• Each thread can:

– Read/write per-thread registers
– Read/write per-thread local

memory
– Read/write per-block shared

memory
– Read/write per-grid global

memory
– Read/only per-grid constant

memory

69

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Local Memory
• Usually used when one runs out of SM

resources
• “Local” because each thread has its own

private area
• Not really a “memory” – bytes are stored in

global memory
• Stores are cached in L1

Fermi Memory Hierarchy

NVIDIA 2011 70

Access Times

71

• Register – dedicated HW – single cycle
• Shared Memory – dedicated HW – single cycle
• Local Memory – DRAM – slow
• Global Memory – DRAM – slow
• Constant Memory – DRAM, cached,

1…10s … 100s of cycles, depending on cache locality
• Texture Memory – DRAM, cached,

1…10s … 100s of cycles, depending on cache locality
• Instruction Memory (invisible) – DRAM, cached

Variable Types

• the __device__ indicates this is a global variable in the
GPU
– the variable can be read and modified by any kernel
– its lifetime is the lifetime of the whole application
– can also declare arrays of fixed size
– can read/write by host code using standard cudaMemcpy

• __device__ is optional when used with __local__,
__shared__, or __constant__

72

Variable declaration Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

• Constant variables
– Very similar to global variables, except that they can’t be modified by kernels
– defined with global scope within the kernel file using the prefix __constant__
– initialized by the host code using cudaMemcpyToSymbol,

cudaMemcpyFromSymbol or cudaMemcpy in combination with
cudaGetSymbolAddress

– Only 64KB of constant memory
• Pointers can only point to memory allocated or declared in global memory:

– Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable:
float* ptr = &GlobalVar;

• Automatic variables without any qualifier reside in a register
– Except arrays that reside in local memory

73

__global__ void lap(int I, int J,float *u1, float *u2) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;
if (i==0 || i==I-1 || j==0 || j==J-1) {

u2[id] = u1[id]; // Dirichlet b.c.’s }
else {
u2[id] = 0.25f * (u1[id-1] + u1[id+1]
+ u1[id-I] + u1[id+I]);}
}

Accessing Global Variables via the Runtime API

__constant__ float constData[256];
float data[256];
cudaMemcpyToSymbol(constData, data, sizeof(data));
cudaMemcpyFromSymbol(data, constData, sizeof(data));

__device__ float devData;
float value = 3.14f;
cudaMemcpyToSymbol(&devData, &value, sizeof(float));

__device__ float* devPointer;
float* ptr;
cudaMalloc(&ptr, 256 * sizeof(float));
cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));

74

Shared Memory
__shared__ int x_dim;
__shared__ float x[128];
• declares data to be shared between all of the

threads in the thread block – any thread can set its
value, or read it.

• Advantages of using shared memory
– essential for operations requiring communication

between threads
– useful for data re-use
– alternative to local arrays in device memory
– reduces use of registers when a variable has same value

for all threads

75

Cooperating Threads

76

1D Stencil
• Consider applying a 1D stencil to a 1D array of

elements
– Each output element is the sum of input elements

within a radius
– If radius = 3, then each output element is the sum of

7 input elements
– Assume we use 1D block grid and 1D block of

threads

Implementing within a Block
• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times
– With radius 3, each input element is read 7 times

77

Sharing Data Between Threads

• Within a block, threads share data by shared
memory

• Extremely fast on-chip memory, user-
managed

• Declare using __shared__, allocated per block
• Data is not visible to threads in other blocks

78

Implementation
• Cache data in shared memory

– Read (blockDim.x + 2*radius) input elements from
device global memory to shared memory

– Compute blockDim.x output elements
– Write blockDim.x output elements to global

memory

79

__global__ void stencil_1d(int *in, int *out)
{

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];
// Store the result
out[gindex] = result;

}

80

Data Race
• The stencil example will not work
• Suppose thread 15 reads the halo before

thread 0 has fetch it

81

void __syncthreads()
• Synchronizes all threads within a block

– Used to prevent data races

• All threads must reach the barrier
– In conditional code, the condition must be

uniform across the block

82

__global__ void stencil_1d(int *in, int *out)
{

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

__syncthreads();
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];
// Store the result
out[gindex] = result;

}

83

• If a thread block has more than one warp, it’s not pre-determined
when each warp will execute its instructions – warp 1 could be
many instructions ahead of warp 2, or well behind.

• Consequently, almost always need thread synchronization to ensure
correct use of shared memory.

• Instruction
– __syncthreads();

• inserts a “barrier”; no thread/warp is allowed to proceed beyond
this point until the rest have reached it

• Total size of shared memory is specified by an optional third
arguments when launching the kernel:
– kernel<<<blocks,threads,shared_bytes>>>(...)

84

• Global memory resides in device memory (DRAM) - much slower access than
shared memory

• So, a profitable way of performing computation on the device is to tile data to
take advantage of fast shared memory:
– Partition data into subsets that fit into shared memory
– Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory, using multiple threads to exploit
memory-level parallelism

• Performing the computation on the subset from shared memory; each thread can efficiently
multi-pass over any data element

• Copying results from shared memory to global memory
• Constant memory also resides in device memory (DRAM) - much slower access

than shared memory
– But… cached!
– Highly efficient access for read-only data

• Carefully divide data according to access patterns
– R/Only constant memory (very fast if in cache)
– R/W shared within Block shared memory (very fast)
– R/W within each thread registers (very fast)
– R/W inputs/results global memory (very slow)

85

Shared Memory and Synchronization for Dot
Product

#define imin(a,b) ((a)<(b)?(a):(b))
const int N = 33*1024;
const int threadsPerBlock = 256;
const int blocksPerGrid = imin(32, (N+threadsPerBlock-1)/threadsPerBlock);
int main(){

float *a, *b, c, *partial_c;
float *dev_a, *dev_b, *dev_partial_c;
a = (float*)malloc(N*sizeof(float)); b = (float*)malloc(N*sizeof(float));
partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
cudaMalloc((void**)&dev_a,N*sizeof(float));
cudaMalloc((void**)&dev_b,N*sizeof(float));
cudaMalloc((void**)&dev_partial_c,blocksPerGrid*sizeof(float));
// initialize a[] and b[] …
cudaMemcpy(dev_a,a,N*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(dev_b,b,N*sizeof(float),cudaMemcpyHostToDevice);
dot<<< blocksPerGrid, threadsPerBlock>>>(dev_a,dev_b,dev_partial_c);
cudaMemcpy(partial_c,dev_partialc,blocksPerGrid*sizeof(float),cudaMemcpyDeviceToHost);
c = 0;
for(int i=0; i<blocksPerGrid;i++) c += partial_c[i];
// cuda memory free, etc.

}

86

__global__ void dot(float *a, float*b, float *c){
__shared__ float cache[threadsPerBlock];
//this buffer will be used to store each thread’s running sum
// the compiler will allocate a copy of shared variables for each block
int tid = threadIdx.x + BlockIdx.x*blockDim.x;
int cacheIndex = threadIdx.x;
float temp = 0.0;
while(tid < N){

temp += a[tid]*b[tid];
tid += blockDim.x*gridDim.x;

}
// set the cache values
cache[cacheIndex]=temp;

// we need to sum all the temporary values in the cache.
// need to guarantee that all of these writes to the shared array
// complete before anyone to read from this array.

// synchronize threads in this block
__syncthreads(); // This call guarantees that every thread in the block has

// completed instructions prior to __syncthreads() before the
// hardware will execute the next instruction on any thread.

87

// each thread will add two of values in cache[] and
// store the result back to cache[].
// We continue in this fashion for log_2(threadsPerBlock)
//steps till we have the sum of every entry in cache[].
// For reductions, threadsPerBlock must be a power of 2

int i=blockDim.x/2;
while(i!=0){

if(cacheIndex <i)
cache[cacheIndex] += cache[cacheIndex+i];

__syncthreads();
i/=2;

}
if(cacheIndex==0)

c[blockIdx.x]=cache[0];
}

88

0 1 2 3 4 5 6 7

89

+
+

+

+

+
+

+

Shared Memory to Reuse Global Memory Data

9090

• Each input element is
read by Width
threads.

• Load each element
into Shared Memory
and have several
threads use the local
version to reduce the
memory bandwidth
– Tiled algorithms

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

Tiled Multiplication

9191

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

• Break up the execution of the kernel into
phases so that the data accesses in each
phase is focused on one subset (tile) of
Md and Nd

• Each block computes one square sub-
matrix Pdsub of size TILE_WIDTH

• Each thread computes one element of
Pdsub

Breaking Md and Nd into Tiles

92

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

93

Every Md and Nd Element is used exactly twice in
generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access
order

94

Each Phase of a Thread Block Uses One Tile from
Md and One from Nd

Step 4 Step 5 Step 6

T0,0 Md0,0

↓
Mds0,0

Nd0,0

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Md2,0

↓
Mds0,0

Nd0,2

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

T1,0 Md1,0

↓
Mds1,0

Nd1,0

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Md3,0

↓
Mds1,0

Nd1,2

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

T0,1 Md0,1

↓
Mds0,1

Nd0,1

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Md2,1

↓
Mds0,1

Nd0,3

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

T1,1 Md1,1

↓
Mds1,1

Nd1,1

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Md3,1

↓
Mds1,1

Nd1,3

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Phase 1 Phase 2

time

• Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

95

Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width/TILE_WIDTH,

Width/TILE_WIDTH);

96

97

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
__shared__float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__float Nds[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;

float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element

for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory

Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
__syncthreads();

for (int k = 0; k < TILE_WIDTH; ++k)
Pvalue += Mds[ty][k] * Nds[k][tx];

Synchthreads();
}
Pd[Row*Width+Col] = Pvalue;

}

Performance on G80
• Each SM in G80 has 16KB shared memory

– SM size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
– Can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per

thread block, allowing only up to two thread blocks active at the same time
• Using 16x16 tiling, we reduce the accesses to the global memory by a factor

of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS

98

G
FL

O
PS

0

10

20

30

40

50

60

70

80

90

100

tile
d

on
ly

tile
d

&
un

ro
lle

d

tile
d

on
ly

tile
d

&
un

ro
lle

d

tile
d

on
ly

tile
d

&
un

ro
lle

d

tile
d

on
ly

tile
d

&
un

ro
lle

d

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

2D Laplace Solver
• Jacobi iteration to solve discrete Laplace equation on a

uniform grid

for (int j=0; j<J; j++) {
for (int i=0; i<I; i++) {

id = i + j*I; // 1D memory location
if (i==0 || i==I-1 || j==0 || j==J-1)

u2[id] = u1[id];
else
u2[id] = 0.25*(u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

}

99

2D Laplace Solver Using CUDA

• each thread responsible for one grid point
• each block of threads responsible for a block

of the grid
• conceptually very similar to data partitioning

in MPI distributed-memory implementations,
but much simpler

100

→

101

102

• Each block of threads processes one of these grid blocks,
reading in old values and computing new values.

103

__global__ void lap(int I, int J, float *u1, float *u2) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;
if (i==0 || i==I-1 || j==0 || j==J-1) {

u2[id] = u1[id]; // Dirichlet b.c.’s
}
else {

u2[id] = 0.25 * (u1[id-1] + u1[id+1]
+ u1[id-I] + u1[id+I]);

}
}

104

Assumptions:
• I is a multiple of blockDim.x
• J is a multiple of blockDim.y

grid breaks up perfectly into blocks
• I is a multiple of 32

Can remove these assumptions by
• testing if i, j are within grid
• padding the array in x to make it a multiple of 32, so

each row starts at the beginning of a cache line – this
uses a special routine cudaMallocPitch

105

Lecture 11: Programming on GPUs
(Part 3)

106

Hybrid MPI/CUDA

1. One MPI process per GPU
– GPU handling is straight forward
– Wastes the other cores of the processor

2. Many MPI processes per GPU, only one uses it
– Poses difficult load balancing problems

3. Many MPI processes share a GPU
– Two processes cannot share the same GPU context,

per process memory on GPU
– Sharing may not always be possible

• Limited memory on GPU
• If GPUs are in exclusive mode

107

• CUDA will be:
– Doing the computational heavy lifting
– Dictating your algorithm & parallel

layout (data parallel)
• Therefore:

– Design CUDA portions first
– Use MPI to move work to each node

108

Multi-GPU Programming

• Selecting GPUs
The number of active GPUs visible to the rank is
cudaGetDeviceCount(&deviceCount);

• One GPU per process (strategy 1)
if(processesPerNode==deviceCount){

id= nodeRank%deviceCount;
cudaSetDevice(id);

}
else //ERROR

109

110

Process #1

Process #2

cudaSetDevice(0)

cudaSetDevice(1)

CUDA
kernel

CUDA
kernel

Compiling

• Kernel, kernel invocation, cudaMalloc, are all best
off in a .cu file somewhere

• MPI calls should be in .c files
• nvcc processes .cu files to generate objective files
• mpicc/mpicxx processes .c/.cpp files to generate

objective files
• If we need to call CUDA kernels from within an

MPI task, we can wrap the appropriate CUDA-
compiled functions with the “extern” keyword.

111

CUDA RNG
• RNG: random number generator
• CURAND

– NVIDIA's library for random number generation in
CUDA

– CURAND can be called from the host and the device
– CURAND Host API provides functions callable on the

host to generate random data in GPU global memory
– Can create multiple pseudorandom generators using

different algorithms

112

• Example:
curandGenerator_t r;
// argument tells which algorithm to use
curandCreateGenerator(&r, CURAND_RNG_PSEUDO_DEFAULT);
curandSetStream(r, stream); // optional
curandSetPseudoRandomGeneratorSeed(r, seed);
curandGenerateUniform(r, data, numElems);
curandDestroyGenerator(r);

113

Using CURAND in the Host

#include <curand.h>
int main()
{
. . .
curandGenerator_t gen;
float *devNum, *hostNum;
hostNum = new float[n];
cudaMalloc((void **)&devNum, n*sizeof(float));
. . .
curandCreateGenerator(&gen,CURAND_RNG_PSEUDO_DEFAULT);
curandSetPseudoRandomGeneratorSeed(gen, 12345);
curandGenerateUniform(gen, devNum, n);
cudaMemcpy(hostNum, devNum, n*sizeof(float),cudaMemcpyDeviceToHost);
. . .
curandDestroyGenerator(gen);
cudaFree(devNum);
. . .
}

114

PI Calculation

• Disk: 𝑆𝑆1 = 𝜋𝜋𝑟𝑟2

• Square: 𝑆𝑆2 = 4𝑟𝑟2

• 𝜋𝜋 = 4𝑆𝑆1
𝑆𝑆2

115

• To generate random numbers on the GPU
memory:
1. Include curand_kernel.h
2. Allocate a memory space on device to store

CURAND state.
3. Initialize the state with a “seed”
4. Generate random number sequences

116

#include <stdio.h>
#include <stdlib.h>
#include <curand_kernel.h> // CURAND lib header file
#define TRIALS_PER_THREAD 2048
#define BLOCKS 256
#define THREADS 256

int main(int argc, char *argv[]) {
float host[BLOCKS * THREADS];
float *dev;
curandState *devStates;

cudaMalloc((void **) &dev, BLOCKS * THREADS * sizeof(float));
cudaMalloc((void **)&devStates, BLOCKS*THREADS*sizeof(curandState));
…

}

117

__global__ void pi_mc(float *estimate, curandState *states) {
unsigned int tid = threadIdx.x + blockDim.x*blockIdx.x;
int points_in_circle = 0;
float x, y;
// Initialize CURAND
curand_init(tid, 0, 0, &states[tid]);
for(int i = 0; i < TRIALS_PER_THREAD; i++) {

x = curand_uniform(&states[tid]);
y = curand_uniform(&states[tid]);
// count if x & y is in the circule.
points_in_circle += (x*x + y*y <= 1.0f);

}
estimate[tid] = 4.0f * points_in_circle / (float) TRIALS_PER_THREAD;

}

118

• __device__ void curand_init (unsigned long long seed, unsigned long long
sequence, unsigned long long offset, curandState *state)

– The curand_init() function sets up an initial state allocated by the caller. thread will use its own
curandState to generate its own random number sequence

• __device__ float curand_uniform (curandState *state)
– This function returns a sequence of pseudorandom floats uniformly distributed between 0.0 and

1.0

• __device__ float curand_normal (curandState *state)
– This function returns a single normally distributed float with mean 0.0 and standard deviation

1.0.

119

• Generate many randomly
distributed points within the
square

• The area of the circle can be
approximately obtained from
the ratio of points inside of
the circle and the total
number of points.

120

References
• An Introduction to GPU Computing and CUDA

Architecture, S. Tariq, NVIDIA Corporation
• CUDA C Programming Guide, NVIDIA Corporation
• CUDA by Example, An Introduction to General-

Purpose GPU Programming, J. Sanders, E. Kandrot

121

	Lecture 11: Programming on GPUs (Part 1)
	Overview
	Slide Number 3
	Slide Number 4
	Slide Number 5
	nVidia GPU Architecture
	Slide Number 7
	Hardware Overview
	GPU Computing at CRC
	Heterogeneous Computing
	A First Program
	CUDA Concepts and Terminology
	Processing Flow
	Slide Number 14
	Slide Number 15
	Passing Parameters & Data Transfer
	Slide Number 17
	Parallel Computing
	Slide Number 19
	Built-in variable “blockIdx”
	GPU Vector Sums (Block Version)
	Slide Number 22
	CUDA Threads
	Combining Blocks and Threads
	Slide Number 25
	Slide Number 26
	Slide Number 27
	For Vector with Arbitrary Sizes
	Slide Number 29
	Review: CUDA Programming Model
	Slide Number 31
	Extended C
	Thread Batching
	CUDA Memory Model
	Device Memory Allocation
	Host-Device Data Transfer
	Device Memory Allocation – MultiD Case
	Slide Number 38
	Slide Number 39
	CUDA Function Declarations
	Slide Number 41
	Querying Device
	Lecture 11: Programming on GPUs (Part 2)
	Thread Creation
	Slide Number 45
	Language Extensions: Built-in Variables
	Specifying 1D Grid and 1D Block
	GPU SUMs of a Long Vector
	GPU Sums of Arbitrarily Long Vectors
	Slide Number 50
	Specifying 1D Grid and 2D Block
	Slide Number 52
	Matrix Multiplication
	Slide Number 54
	C Language Implementation
	Data Transfer (Host/Device)
	Slide Number 57
	Kernel Function
	Kernel Invocation
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Revised Matrix Multiplication Kernel
	Multithreading
	Slide Number 65
	Slide Number 66
	Spatial Locality
	Slide Number 68
	CUDA Memories
	Fermi Memory Hierarchy
	Access Times
	Variable Types
	Slide Number 73
	Accessing Global Variables via the Runtime API
	Shared Memory
	Cooperating Threads
	Slide Number 77
	Sharing Data Between Threads
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Shared Memory and Synchronization for Dot Product
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Shared Memory to Reuse Global Memory Data
	Tiled Multiplication
	Breaking Md and Nd into Tiles
	Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P
	Each Phase of a Thread Block Uses One Tile from Md and One from Nd
	Slide Number 95
	Kernel Execution Configuration
	Slide Number 97
	Performance on G80
	2D Laplace Solver
	2D Laplace Solver Using CUDA
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Lecture 11: Programming on GPUs (Part 3)
	Hybrid MPI/CUDA
	Slide Number 108
	Multi-GPU Programming
	Slide Number 110
	Compiling
	CUDA RNG
	Slide Number 113
	Using CURAND in the Host
	PI Calculation
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121

