
Short Notes on C/C++

1

• Structure of a program
– See ~zxu2/Public/ACMS40212/C++_basics/basics.cpp

– To see how the code looks after pre-processing, type
icc –A –E basics.cpp

2

Compilation Stages

Program Structure
• Preprocessor directive

– It performs instructions compiler performed before the program is compile.
– The program “basics.cpp” have following directives.
#include <iostream>
#include <stdlib.h>
#include <stdio.h>

• Every C/C++ program contains exactly one block of code called main
function.

• Declarations
– Declarations define identifiers and must precede any statements that

references these identifiers.
– The program “basics.cpp” have following declaration
int answer, i =4, j = 5, k(4);

• Statements
– Specify the operations to be performed.
– The program “basics.cpp” have following statements
std::cout << "Hello World!";
answer = mean(i,j);
printf("The mean of %d and %d is %d\n", i, j, answer);

3

Variables and Literals

• The available scalar types are char, short, int, long,
float, double and long double etc.
unsigned int i, j;
float f = 3.14;
double pi(3.14); // we can also initialize value of variable

//in C++ using this way.
i = (unsigned int)f;

4

Aggregates
1. Variables of the same type can be put into arrays or multi-D arrays, e.g.,

char letters[50], values[50][30][60];
Remark: C has no subscript checking; if you go to the end of an array, C won't warn you.

2. Variables of different types can be grouped into a structure.
typedef struct {

int age;
int height;
char surname[30];

} person;
…
person fred;
fred.age = 20; //”.” operator is to access the member variable.
Remark: variables of structure type can not be compared.
Do not do:
person fred, jane;
…
if(fred == jane)
{

printf(“the outcome is undefined”);
}

5

Constructions
1. Selection

...
if (i==3) /* checking for equality; `!=' tests for inequality */
{

j=4;
}
else{

j=5;
k=6;

}
...

6

...
/* Switch is used for multiple-selection decision making.
The values that the switching variable is compared with case labels, which

have to be constants, or `default'.
*/

switch(i){
case 1: printf("i is one\n");

break; /* if break wasn't here, this case will
fall through into the next.

*/
case 2: printf("i is two\n");

break;
default: printf("i is neither one nor two\n");

break;
}
...

7

Loops

• while loop
...
while(i<30){ /* test at top of loop */

something();
...
}

8

• do/while loop

...
do {

something();
} while (i<30); /* test at bottom of loop */
...

9

• for loop
...
for(i=0; i<5; i=i+1){

something();
}
...

10

Preprocessor directives
• Preprocessor directives are lines included in the code of programs preceded

by a hash sign (#) and are processed by preprocessor of compiler.
• No semicolon (;) is expected at the end of a preprocessor directive.

1. macro definitions (#define, #undef)
– syntax: #define identifier replacement
– When the preprocessor encounters this identifier, it replaces any occurrence of

identifier in the rest of the code by replacement.
– Example.
#define TABLE_SIZE 100
#define getmax(a,b) ((a)>(b)?(a):(b))
#define sqr(x) ((x)*(x))
main()
{

int table1[TABLE_SIZE], x = 10, y;
y= getmax(x,2);
y= sqr(11 - 5);

}

11

2. Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else
and #elif)

– These directives allow to include or discard part of the code
of a program if a certain condition is met.

12

#define TABLE_SIZE 100

main(){
#ifdef TABLE_SIZE
int table[TABLE_SIZE];
#endif

}

#ifndef TABLE_SIZE
#define TABLE_SIZE 100
#endif

main(){
int table[TABLE_SIZE];

}

#if TABLE_SIZE>200
#undef TABLE_SIZE
#define TABLE_SIZE 200

#elif TABLE_SIZE<50
#undef TABLE_SIZE
#define TABLE_SIZE 50

#else
#undef TABLE_SIZE
#define TABLE_SIZE 100

#endif

main(){
int table[TABLE_SIZE];

}

See also:
ACMS40212/C_basics/struct_sample

3. Source file inclusion (#include)
– When the preprocessor finds an #include directive it replaces it

by the entire content of the specified header or file.
– #include <header> // This is used to include

//headers provided by the compiler.
– #include "file" // The file is searched for in an

// implementation-defined manner,
//which generally includes the current path.

4. Predefined macro names
– __LINE__ // Integer value representing
//the current line in the source code file being compiled.
– __cplusplus // An integer value. All C++ compilers

//have this constant defined
– …

13
See also: http://www.cplusplus.com/doc/tutorial/preprocessor/

Functions
• A function is a group of statements that together perform a

task.
• A functions generally require a prototype which gives basic

structural information: it tells the compiler what the function
will return, what the function will be called, as well as what
arguments the function can be passed.

14

#include <stdlib.h> /* Include rand() */
int main()
{

int a = rand(); /* rand is a standard function that all compilers have */
}
• The form of a function definition is:
return_type function_name (formal argument list)
{
Declarations; // good practice to have declarations at beginning
Statements;
}

double mean(double x, double y)
{

double tmp;

tmp = (x + y)*0.5;
return tmp;

}

15

C Input/Output
• Input: feed some data into a program. An input can be given

in the form of a file or from the command line.
• Output: display some data on screen, printer, or in any file.
• C programming provides a set of built-in functions for

input/output.
• C programming treats all the devices as files.
• The following three files are automatically opened when a

program executes to provide access to the keyboard and
screen.

16

Standard File File Pointer Device

Standard input stdin Keyboard

Standard output stdout Screen

Standard error stderr Your screen

scanf() and printf() of C Language

• The int scanf(const char *format, ...) function reads the
input from the standard input stream stdin and scans that
input according to the format provided.

• The int printf(const char *format, ...) function writes the
output to the standard output stream stdout and produces
the output according to the format provided.

• The format can be a simple constant string, but %s, %d, %c,
%f, etc. can be specified to print or read strings, integer,
character or float respectively.

There are many other I/O functions.
• int fscanf(FILE *stream, const char* format, ...);

// Reads the data from file stream stream
• int fprintf(FILE* stream, const char* format, ...);

// Writes the results to a file stream
17

/* scanf_printf.c */

#include <stdio.h>
int main() {

char str[100];
int i;

printf("Enter a value :");
scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, i);

return 0;
}

/* see also example in C_basics/struct_sample */

18

C++ IO Streams

• C++ supports all input/output mechanisms that C includes.
• A 'stream' is internally nothing but a series of characters. The

characters may be either normal characters (char) or wide
characters (wchar_t). Streams provide users with a universal
character-based interface to any type of storage medium (for
example, a file), without requiring to know the details of how to
write to the storage medium.

• A program can either insert or extract characters to/from stream.
• Streams work with built-in data types, and users can make user-

defined types work with streams by overloading the insertion
operator (<<) to put objects into streams, and the extraction
operator (>>) to read objects from streams.

• The stream library's unified approach makes it very friendly to use.
Using a consistent interface for outputting to the screen and
sending files over a network makes life easier.

19

C++ Standard Stream Objects for Console I/O
• These are declared in the <iostream> header
• The class ostream is defined with operator << (“put to”) to handle

output of the build-in types. Object of ostream corresponds to the
C stream stdout.
– extern std::ostream cout; // is defined in <iostream>
– The global objects std::cout control output to a stream buffer of

implementation-defined type.
– std::cout is guaranteed to be initialized.

• The class istream is defined with operator >> (“get from”) to
handle input of the build-in types. Object of istream corresponds
to the C stream stdin.
– extern std::ostream cin; // is defined in <iostream>
– The global objects std::cin control input to from stream buffer of

implementation-defined type.
– std::cin is guaranteed to be initialized.

20

// i/o example console_io.cpp

#include <iostream>
using namespace std;

int main ()
{

int i;
cout << "Please enter an integer value: ";
cin >> i;
cout << "The value you entered is " << i;
cout << " and its double is " << i*2 << ".\n";
return 0;

}

// see also: http://www.cplusplus.com/forum/articles/6046/

21

C++ Input/output with Files
• Following classes are used to perform output and input of

characters to/from files:
– ofstream: Stream class to write on files
– ifstream: Stream class to read from files
– fstream: Stream class to both read and write from/to files.

• Open a file
– In order to open a file with a stream object we use its member

function open:
open (filename, mode);
– Example
ofstream myfile;
myfile.open ("example.bin", ios::out | ios::app | ios::binary);
// ios is the base class for all stream classes.

• Closing a file
– myfile.close();

// see examples: f_iostream.cpp, binary_rw.cpp
22

Pointers

• A variable is a memory location which can be accessed by
the identifier (the name of the variable).
– int k; /* the compiler sets aside 4 bytes of memory (on a PC) to hold the value

of the integer. It also sets up a symbol table. In that table it adds the symbol k
and the relative address in memory where those 4 bytes were set aside. */

– k = 8; /*at run time when this statement is executed, the value 8 will be placed
in that memory location reserved for the storage of the value of k. */

• With k, there are two associated values. One is the value of the
integer, 8, stored. The other is the “value” or address of the memory
location.

• The variable for holding an address is a pointer variable.
int *ptr; /*we also give pointer a type which refers to the type of data stored at
the address that we will store in the pointer. “*” means pointer to */

23

ptr = &k; /* & operator retrieves the address of k */
ptr = 7; / dereferencing operator “*” copies 7 to the address pointed to by

ptr */

See code: ACMS40212/C_basics/pointer_basics.c

• Pointers and 1D arrays
float a[100], *flp;
flp = &(a[0]); /* or flp = a; */ // Point flp to the first element in a[]
/* now increment flp to point to successive elements */
for(int i =0; i < 100; i++)
{

printf(“*flp is %f\n”, * flp);
flp++; /*or flp += 1; */ // flp is incremented by the length of an float

// and points to the next float, a[1], a[2] etc.
}
See code: ACMS40212/C_basics/pointer_array.c 24

• Multidimensional arrays and pointers
1. Array elements are stored row by row. Hence a 2D array

(i.e. int myMatrix[2][4] ={{1,2,3,4}, {5,6,7,8}};) is really a
1D array, each of whose element is itself an array.

2. myMatrix: pointer to the first element of the 2D array;
// myMatrix can be thought as a pointer to a pointer to int.

myMatrix[0]: pointer to the first row of the 2D array;
myMatrix[1]: pointer to the second row of the 2D array.

3. myMatrix[i][j] is same as: *(myMatrix[i] + j),
*(&myMatrix[0][0] + 4*i + j), (*(myMatrix + i))[j], and …

4. int *b[30]; //declares an array of 30 pointers to ints.
25

Pointers and Text Strings

• Text strings in C have been implemented as arrays
of characters, with the last byte in the string being a
zero, or the null character '\0'.
static const char *myFormat = "Total Amount Due: %d";
//The variable myFormat can be viewed as an array of 21 characters.

• An initialized array of strings would typically be
done as follows:

static const char *myColors[] = {
"Red", "Orange", "Yellow", "Green", "Blue", "Violet" };

26

• Using a pointer avoids copies of big structures.
typedef struct {

int age;
int height;
char surname[30];

} person;
int sum_of_ages(person *person1, person *person2)
{

int sum; // a variable local to this function
/* Dereference the pointers, then use the `.' operator to get the fields */
sum = (*person1).age + (*person2).age;
/* or use the notation “->”:

sum = person1->age + person2->age; */
return sum;

}

int main()
{

person fred, jane;
int sum;
…
sum = sum_of_ages(&fred, &jane);

}
27See also: ACMS40212/C_basics/struct_sample

Dynamic Memory Allocation in C/C++
Motivation
/* a[100] vs. *b or *c */

Func(int array_size)
{

double k, a[100], *b, *c;
b = (double *) malloc(array_size * sizeof(double)); /* allocation in C*/
c = new double[array_size]; /* allocation in C++ */
…

}
• The size of the problem often can not be determined at “compile time”.
• Dynamic memory allocation is to allocate memory at “run time”.
• Dynamically allocated memory must be referred to by pointers.

Remark: use debug option to compile code ~zxu2/Public/dyn_mem_alloc.cpp and
use debugger to step through the code.
Also ~zxu2/Public/dyn_mem_alloc_CPP_ver.cpp
icc –g dyn_mem_alloc.cpp

28

Stack vs Heap

When a program is loaded into memory:
• Machine code is loaded into text

segment
• Data segment: global, static and

constants data are stored in the data
segment

• Stack segment allocates memory for
automatic variables within functions, and
is used for passing arguments to the
function etc.

• Heap segment is for dynamic memory
allocation

• The size of the text and data segments
are known as soon as compilation is
completed. The stack and heap segments
grow and shrink during program
execution.

29

Memory Allocation/Free Functions in C

30

• void *malloc(size_t number_of_bytes)
-- allocate a contiguous portion of memory
-- it returns a pointer of type void * that is the beginning place in
memory of allocated portion of size number_of_bytes.

• void free(void * ptr);
-- A block of memory previously allocated using a call
to malloc, calloc or realloc is deallocated, making it available again
for further allocations.

“void” type: was introduced to make C syntactically consistent. The main reason for
void is to declare functions that have no return value. The word "void" is therefore
used in the sense of "empty" rather than that of "invalid".

A variable that is itself declared void is useless. Void pointers (type void *) are a
different case, however. A void pointer is a generic pointer; any pointer can be cast to
a void pointer and back without any loss of information. Any type of pointer can be
assigned to (or compared with) a void pointer, without casting the pointer explicitly.

http://www.cplusplus.com/malloc
http://www.cplusplus.com/calloc
http://www.cplusplus.com/realloc

Memory Allocation/Free Functions in C++

31

C++:
• “new” operator

-- pointer = new type;
-- pointer = new type [number_of_elements];

It returns a pointer to the beginning of the new block of
memory allocated.

• “delete” operator
-- delete pointer;
-- delete [] pointer;

Example 1
double *Func()
/* C++ version */
{

double *ptr;
ptr = new double;
*ptr = -2.5;
return ptr;

}

32

Name Type Contents Address

ptr double pointer 0x3D3B38 0x22FB66

Memory heap (free storage we can use)

…

0x3D3B38 -2.5

0x3D3B39

double *Func_C()
/* C version */
{

double *ptr;
ptr = (double *)malloc(sizeof(double));
*ptr = -2.5;
return ptr;

}

Example 2
Func() /* C++ version , see also zxu2/Public/dyn_array.c */
{

double *ptr, a[100];
ptr = new double[10]; /* in C, use: ptr = (double *)malloc(sizeof(double)*10); */
for(int i = 0; i < 10; i++)

ptr[i] = -1.0*i;
a[0] = *ptr;
a[1] = *(ptr+1); a[2] = *(ptr+2);

}
• Illustration

33

Name Type Contents Address

ptr double array
pointer

0x3D3B38 0x22FB66

Memory heap (free storage we can use)

…

0x3D3B38 0.0

0x3D3B39 -1.0

…

Example 3

• Static array of dynamically allocated vectors
Func() /* allocate a contiguous memory which we can use for 20 ×30 matrix */
{

double *matrix[20];
int i, j;
for(i = 0; i < 20; i++)

matrix[i] = (double *) malloc(sizeof(double)*30);

for(i = 0; i < 20; i++)
{

for(j = 0; j < 30; j++)
matrix[i][j] = (double)rand()/RAND_MAX;

}

}

34

Example 4
• Dynamic array of dynamically allocated vectors
Func() /* allocate a contiguous memory which we can use for 20 ×30 matrix */
{ // see C++ example Public/dyn_2dmatrix.cpp

double **matrix; //double** is a pointer to an double*.
int I, j;

matrix = (double **) malloc(20*sizeof(double*));
for(I = 0; I < 20; I++)

matrix[I] = (double *) malloc(sizeof(double)*30);

for(I = 0; I < 20; I++)
{

for(j = 0; j < 30; j++)
matrix[I][j] = (double)rand()/RAND_MAX;

}
}

35

Example 5
• Another way to allocate dynamic array of dynamically allocated vectors

Func() /* allocate a contiguous memory which we can use for 20 ×30 matrix */
{ // Can you write a C++ version?

double **matrix;
int i, j;

matrix = (double **) malloc(20*sizeof(double*));
matrix[0] = (double*)malloc(20*30*sizeof(double));

for(i = 1; i < 20; i++)
matrix[i] = matrix[i-1]+30;

for(i = 0; i < 20; i++)
{

for(j = 0; j < 30; j++)
matrix[i][j] = (double)rand()/RAND_MAX;

}
}

36

Release Dynamic Memory

Func()
{

int *ptr, *p;
ptr = new int[100];
p = new int;
delete[] ptr;
delete p;

}

37

References
• Like a pointer, a reference is an alias for an object

(or variable), is usually implemented to hold a
machine address of an object (or variable), and
does not impose performance overhead
compared to pointers.
 The notation X& means “reference to X”.

• Differences between reference and pointer.
1. A reference can be accessed with exactly the same

syntax as the name of an object.
2. A reference always refers to the object to which it

was initialized.
3. There is no “null reference”, and we may assume

that a reference refers to an object.
38

void f() // check the code ~zxu2/Public/reference.cpp
{

int var = 1;
int& r{var}; // r and var now refer to the same int. same as: int& r = var;
int x = r; // x becomes 1
r = 2; // var becomes 2
++r; // var becomes 3
int *pp = &r; // pp points to var.

}

void f1()
{

int var = 1;
int& r{var}; // r and var now refer to the same int
int& r2; // error: initialization missing

}

Remark:
1. We can not have a pointer to a reference.
2. We can not define an array of references.

39

Functions and passing arguments
1. Pass by value //see ~zxu2/Public/Func_arguments

1. #include<iostream>
2. void foo(int);

3. using namespace std;
4. void foo(int y)
5. {
6. y = y+1;
7. cout << "y + 1 = " << y << endl;
8. }
9.
10. int main()
11. {
12. foo(5); // first call
13.
14. int x = 6;
15. foo(x); // second call
16. foo(x+1); // third call
17.
18. return 0;
19. }

40

When foo() is called, variable y is created, and the value of 5, 6 or 7 is copied into y. Variable
y is then destroyed when foo() ends.

Remark: Use debug option to compile the code and use debugger to step through the code.
icc -g pass_by_val.cpp

2. Pass by address (or pointer)
1. #include<iostream>
2. void foo2(int*);
3. using namespace std;

4. void foo2(int *pValue)
5. {
6. *pValue = 6;
7. }
8.
9. int main()
10. {
11. int nValue = 5;
12.
13. cout << "nValue = " << nValue << endl;
14. foo2(&nValue);
15. cout << "nValue = " << nValue << endl;
16. return 0;
17. }

41

Passing by address means passing the address of the argument variable. The function parameter
must be a pointer. The function can then dereference the pointer to access or change the value being
pointed to.
1. It allows us to have the function change the value of the argument.
2. Because a copy of the argument is not made, it is fast, even when used with large structures or
classes.
3. Multiple values can be returned from a function.

Passing Arrays
• Passing 1D array.

1. int ProcessValues (int a[], int size); // works with ANY 1D
array. The compiler only needs to know that the parameter
is an array; it doesn’t need to know its size. Moreover,
ProcessValues() receives access to the actual array, not a
copy of the values in the array. Thus any changes made to
the array within the function change the original array.

2. When declaring parameters to functions, declaring an array
variable without a size is equivalent to declaring a pointer.
Thus “int ProcessValues (int *a, int size)” is equivalent to
the above declaration.

• When we pass a 2D array to a function we must specify
the number of columns -- the number of rows is
irrelevant. We can do: f(int a[][35]) {.....}

42

Returning Address of Dynamic Memory
• The address of dynamically allocated memory can be returned from

argument of function.

43

1. #include<iostream>
2. void alloc_double_array(int, double**);
3. using namespace std;
4. // Public/dyn_array_from_func.cpp
5. void alloc_double_array(int size, double **ppValue)
6. {
7. double *vec;
8. vec = new double[size];
9. *ppValue = vec;
10. }
11.
12. int main()
13. {
14. double *pvec;
15. alloc_double_array(10,&pvec);
16. return 0;
17. }

3. Pass by reference //Public/Func_arguments/pass_by_ref.cpp
1. #include<iostream>
2. void foo3(int&);
3. using namespace std;

4. void foo3(int &y) // y is now a reference
5. {
6. cout << "y = " << y << endl;
7. y = 6;
8. cout << "y = " << y << endl;
9. } // y is destroyed here
10.
11. int main()
12. {
13. int x = 5;
14. cout << "x = " << x << endl;
15. foo3(x);
16. cout << "x = " << x << endl;
17. return 0;
18. }

44

Since a reference to a variable is treated exactly the same as the variable itself,
any changes made to the reference are passed through to the argument.

1. #include <iostream>
2. int nFive = 5;
3. int nSix = 6;
4. void SetToSix(int *pTempPtr);
5. using namespace std;
6.
7. int main()
8. {
9. int *pPtr = &nFive;
10. cout << *pPtr;
11.
12. SetToSix(pPtr);
13. cout << *pPtr;
14. return 0;
15. }
16.
17. // pTempPtr copies the value of pPtr! I.e., pTempPtr stores the content of pPtr
18. void SetToSix(int *pTempPtr)
19. {
20. pTempPtr = &nSix;
21.
22. cout << *pTempPtr;
23. }

45

• A string reverser program //~zxu2/Public/wrong_string_reverse.c
#include <stdio.h>
/* WRONG! */
char* make_reverse(char *str)
{

int i, j;
unsigned int len;
char newstr[100];
len = strlen(str) - 1;
j=0;
for (i=len; i>=0; i--){

newstr[j] = str[i];
j++;

}
return newstr; /* now return a pointer to this new string */

}

int main()
{

char input_str[100];
char *c_ptr;
printf("Input a string\n");
gets(input_str); /* should check return value */
c_ptr = make_reverse(input_str);
printf("String was %s\n", input_str);
printf("Reversed string is %s\n", c_ptr);

}
46

1. The memory allocated for newstr
when it was declared as an `automatic'
variable in make_reverse isn't
permanent. It only lasts as long as
make_reverse() takes to execute.

2. The newly created array of characters,
newstr, isn't terminated with a zero
character, `\0', so trying to print the
characters out as a string may be
disastrous.

• Another string reverser program //~zxu2/Public/ok_string_reverse.c
#include <stdio.h>
#include <stdlib.h>
char* make_reverse(char *str)
{

int i;
unsigned int len;
char *ret_str, *c_ptr;
len = strlen(str);
ret_str = (char*) malloc(len +1); /* Create enough space for the string AND the final \0. */
c_ptr = ret_str + len; /* Point c_ptr to where the final '\0' goes and put it in */
*c_ptr = '\0';

/* now copy characters from str into the newly created space. The str pointer will be advanced a char at a time, the cptr pointer
will be decremented a char at a time. */

while(*str !=0){ /* while str isn't pointing to the last '\0' */
c_ptr--;

*c_ptr = *str;
str++; /* increment the pointer so that it points to each character in turn. */

}
return ret_str;

}
int main()
{

char input_str[100];
char *c_ptr;
printf("Input a string\n");
gets(input_str); /* Should check return value */
c_ptr = make_reverse(input_str);
printf("String was %s\n", input_str);
printf("Reversed string is %s\n", c_ptr);

}

47

The malloc'ed space will be preserved
until it is explicitly freed (in this case by
doing `free(c_ptr)'). Note that the pointer
to the malloc'ed space is the only way you
have to access that memory: lose it and
the memory will be inaccessible. It will
only be freed when the program finishes.

Singly Linked Lists

• Overall Structure of Singly-Linked Lists
A list element(node) contains the data plus pointers to
the next list items.

48

• A generic singly linked list node:
struct sl_node {
int data;
struct sl_node* next; // that points to the next node in the list
};

Remark.
1. Regarding “struct sl_node* next”, it is okay as it is

only a pointer to the incomplete type.
2. Memory for saving a node of singly linked list can

be allocated dynamically:
// C version
struct sl_node* head = (node*) malloc(sizeof(struct sl_node));
//C++ version
struct sl_node* head = new (struct sl_node);

49

• Inserting to a singly linked list from the beginning

50

Cur_head

New_node

Following codes are needed:
1. New_node->next = Cur_head;
2. Cur_head = New_node;
// See Public/dyn_linked_list.cpp

Doubly Linked Lists

• Overall Structure of Doubly Linked Lists
A list element contains the data plus pointers to the
next and previous list items.

51

• A generic doubly linked list node:
struct node {
int data;
struct node* next; // that points to the next node in the list
struct node* prev; // that points to the previous node in the list.
};

Remark.
1. Regarding “struct node* next” and “struct node*

prev”, they are okay as they are only pointers to
the incomplete type.

2. Memory for saving a node can be allocated
dynamically:

// C version
struct node* head = (node*) malloc(sizeof(struct node));
//C++ version
struct node* head = new (struct node);

52

• Inserting to a Doubly Linked List

53

Following codes are needed:
1. newNode->prev = location->prev;
2. newNode->next = location;
3. location->prev->next=newNode;
4. location->prev = newNode;

• Deleting “location” node from a Doubly Linked List

54

node* temp;
1. temp = location->prev;
2. temp->next =location->next;
3. (temp->next)->prev = temp;
4. free(location);

• Special trailer and header nodes and initiating doubly
linked list

55

trailerheader nodes/positions

1. To simplify programming, two special nodes have been added at both
ends of the doubly-linked list.

2. Head and tail are dummy nodes, and do not store any data elements.
3. Head: it has a null-prev reference (link).
4. Tail: it has a null-next reference (link).

trailerheader

//Initialization:
node header, trailer;
1. header.next = &trailer;
2. trailer.prev = &header;

• Insertion into a Doubly Linked List from the End

56

AddLast algorithm – to add a new node as the last of list:

void addLast(node *T, node *trailer)
{

T->prev = trailer->prev;
trailer->prev->next = T;
trailer->prev = T;
trailer->prev->next = trailer;

}

Hash Table
• A hash is a data structure used to implement an

associative array, a structure that can map keys
to values. A hash table uses a hash function to
compute an index into an array of buckets or
slots, from which the correct value can be
found.

See also http://xlinux.nist.gov/dads/HTML/hashtab.html

57

Hashing: Given a key, the algorithm computes an index that suggests
where the entry can be found.

index = f(key, array_size);

Remark: 1. see ANSI C for Programmers on UNIX Systems by Tim Love
2. C++ STL has its implementation

C++ Class
• A class is a user-defined type provided to represent a concept in

the code of a program. It contains data and function members.

58

// Vector.h // see ~zxu2/Public/C++_sample_vec

#if !defined(_VECTOR_H)
#define _VECTOR_H

class Vector{
private:

double* elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s); // constructor: acquire resources
~Vector(){delete[] elem;} //destructor : release resources
double& operator[](int); //operator overloading
int size() const; //const indicates that this function does not modify data

};
#endif /* !defined(_VECTOR_H) */

• A class is defined to have a set of members, which
can be data, function or type members.

• The public keyword specifies that those members are
accessible from any function.

• The private keyword specifies that those members
are accessible only from member functions and
friends of the class.

• The interface is defined by public members of a class,
and private members are accessible only through
that interface.

• A “function” with the same name as its class is called
a constructor, which is used to construct objects of a
class. A constructor is guaranteed to be used to
initialize objects of its class.

59

// Vector.cpp, here we define interfaces to the data
#include “Vector.h”
Vector::Vector(int s):elem{new double[s]}, sz{s} // constructor: acquire resources
{

for(int I = 0; I < s; I++) elem[I] = 0;
}
// :elem{new double[s]}, sz{s} is the member initializer list.

double& Vector::operator[](int i) //overloading operator
{

return elem[i];
}
// Access to elements is provided by a subscript function, operator[].
int Vector::size() const
{

return sz;
}

60

// main.cpp. To compile icpc main.cpp Vector.cpp
#include “Vector.h”
#include <iostream>

int main()
{

Vector v(10);
v[4] = 2.0;
std::cout<<“size of vector = ”<<v.size() <<std::endl;

}

61

Vector.h : Vector Interface

main.cpp : #include “Vector.h”
-- Use vector

Vector.cpp : #include “Vector.h”
-- Define vector

Modularity
• A C++ program consists of many separately developed parts,

such as functions, user-defined types and templates.
• The key to managing a program is to clearly define

interactions among these parts.
• The first step is to distinguish between interface to a part and

its implementation.
• C++ represents interfaces by declarations. They are usually in

*.h files. For example:
double sqrt(double); // the square root
class Vector{
public:

Vector(int s);
};

• Function definitions (bodies) are elsewhere. They are
usually in *.cpp files.

62

Enumerations
• Enumerations are used to represent small set of “integer” values.

They are used to make code more readable and less error-prone.
• User-defined type.

63

enum class Color {red, blue, green};
enum class Traffic_light {green, yellow, red};

// class after enum specifies that an enumeration is strongly typed and that its
// enumerators are scoped.
Color x = red; // error: which red
Color y = Traffic_light:: red; // error: that red is not a Color
Color z = Color::red; // OK.
int I = Color::red; // error: Color::red is not integer

Namespaces
• A mechanism for expressing that some declarations belong

together and that their names shouldn’t clash with other
names.

64

namespace My_code{
class complex {};
complex sqrt(complex);
…
int main();

}

int My_code::main()
{

complex z(1,2);
//…

}

int main()
{

return My_code::main();
}

Error Handling
• Exceptions report errors found at run time. Exceptions are used to signal errors that cannot

be handled locally, such as the failure to acquire a resource in a constructor.
• Three related keywords: throw, try, catch
double Vector::operator[](int i)
{

if(i<0 || size()<=i) throw out_of_range{“operator[]”};
return elem[i];

}
//throw transfers control to a handler for exceptions of
//type out_of_range defined in the standard library (in <stdexcept>);
void f(Vector& v)
{

//…
try{// exceptions here are handled by the handler defined below

v.[v.size()] = 7; // try to access beyond the end of v
}
catch (out_of_range){ // … handle range error
}

}
// put the code for which we are interested in handling exceptions
// into a try-block.
// See: https://isocpp.org/wiki/faq/exceptions

65

Friends

An ordinary member function declaration specifies
three things:

1) The function can access the private part of the class.
2) The function is in the scope of the class.
3) The function must be invoked on an object (has a this

pointer).
By declaring a nonmember function a friend, we can
give it the first property only.

66

Example. Consider to do multiplication of a Matrix by a Vector.
However, the multiplication routine cannot be a member of both.
Also we do not want to provide low-level access functions to allow
user to both read and write the complete representation of both
Matrix and Vector. To avoid this, we declare the operator* a friend of
both.

67

class Matrix;

class Vector{
double *v;
friend Vector operator*(const Matrix&, const Vector&);

};
class Matrix{

double **elem;
friend Vector operator*(const Matrix&, const Vector&);

};
// Now operator*() can reach into the implementation of both Vector and Matrix.
Vector* operator*(const Matrix& m, const Vector& v)
{

Vector *r=new Vector(Mat.size_row());
for(int I = 0; I< 4; I++)
{

(*r)[I]=0;
for(int J = 0; J< 4; J++)
{

(*r)[I] +=m(I,J)*v[J];
}

}
return r;

}

• Check ~zxu2/Public/C++_mat_vec_multi for
an implementation which uses dynamic
memory allocation.

68

Copy constructors
//Consider the example at zxu2/Public/C++_sample_vec_2
// what happens to the following piece of code.

int main()
{

Vector v(10);
Vector v2 = v;
int i;
v[4] = 2.0;

}

//output of run:
*** glibc detected *** ./vec: double free or corruption (fasttop):
0x0000000001023010 ***
======= Backtrace: =========

69

• First, if a copy constructor “X(const X&)” is not declared, the
compiler gives one implicitly. The implicit copy constructor does
a member-wise copy of the source object.

• For example:

70

class MyClass { public:
int x;
char c;
std::string s;

};

//the compiler-provided copy constructor is exactly equivalent to:
MyClass::MyClass(const MyClass& other) :

x(other.x), c(other.c), s(other.s) {}

main()
{

Myclass my1;
my1.x = 2;
Myclass my2 = my1; // the member x of my2 is 2 now.

}

• The most common reason the default copy constructor is not sufficient is
because the object contains raw pointers and a "deep" copy of the
pointer is needed. That is, instead of copying the pointer itself, copy what
the pointer points to.

• An overloading operator= can solve the previous problem in
~zxu2/Public/C++_sample_vec_2.

71

class Vector{
…
Vector& operator=(const Vector&); // assignment

};

Vector& Vector::operator=(const Vector& a)
{

if(this != &a)
delete [] elem;

elem = new double [a.size()];
sz = a.size();
for(int I = 0; I < sz; I++)

elem[I] = a.elem[I] ;

return *this;
}

// the previous overloaded “=“ make the following code safe
main(){

Vector v1(10), v2(20);
v1 = v2;

}

72

// the previous overloaded “=“ does not make the following code safe
main(){

Vector v1(10);
Vector v2 = v1; // we need initialization here, not assignment.

}
// A copy constructor is needed to resolve this situation.

class Vector{
Vector(int s); // constructor: acquire resources and create objects
Vector& operator=(const Vector&); // assignment
Vector(const Vector&); // copy constructor. It takes care of initialization

// by an object of the same type Vector.
};

Vector& Vector::operator=(const Vector& a){
if(this != &a)

delete elem;
elem = new double [a.size()];
sz = a.size();
for(int I = 0; I < sz; I++) elem[I] = a.elem[I] ;
return *this;

}

Vector::Vector(const Vector& a) {
elem = new double [a.size()];
sz = a.size();
for(int I = 0; I < sz; I++)

elem[I] = a.elem[I] ;
} 73

// Now this is safe code with previous overloaded
// “=” and copy constructor
int main()
{

Vector v(3);
v[1] = 2.0;
Vector v2= v; // this is initialization

}

74

Abstraction Mechanisms

• C++ supports for abstraction and resource
management without going into details.

• Concrete classes, abstract classes, class hierarchies.
• Templates are introduced as a mechanism for

parameterizing types and algorithms with (other)
types and algorithms.

75

Concrete Types

• Basic idea of concrete classes is that they behave
like build-in types. Representations of concrete
classes are part of definition of the class.

• Concrete classes allow to:
1. Place objects of concrete classes on the stack, and

in other objects.
2. Refer to objects directly (and not just through

pointers and references).
3. Initialize objects immediately and completely; and

copy objects.

76

• Example. An Arithmetic Type
class complex{

double re, im; //represention: two doubles
Public:

complex(double r, double i) :re{r}, im{i}{}
complex() : re{0}, im{0}{} //default constructor
double real() const {return re;}
double image() const {return im;}
complex& operator +=(complex z){

re+=z.re; im +=z.im; return *this;
} // add to re and im and return the result

};
// const specifier on the functions indicate that these functions
// do not modify the object for which they are called.
// multiple constructors are allowed.

77

• Example. A container
• A container is an object holding a collection of elements.

class Vector{
private:

double* elem;
int sz;

public:
Vector(int s);
~Vector(){delete[] elem;}

double& operator[](int);
int size() const;

};

78

Abstract Types
• An abstract type is a type that decouple interface and

representation.
• Since the representation of an abstract type is not known,

objects must be allocated on the free store and access them
through references or pointers.

• A concrete type can be derived from an abstract type.

79

class Container {
public:

virtual double& operator[](int) =0; // pure virtual function
virtual int size() const = 0; // const member function
virtual ~Container(){}

};
// a function declared “virtual” is called a virtual function. A class derived from
// Container provides an implementation for the container interface.
// “=0” syntax says that the function is pure virtual. A class derived from Container
// must define the function.
// A class with pure virtual function is called an abstract class.

Virtual function is an inheritable and overriddable function, and gives
programmer capability to call member function of different class by a
same function call depending upon different context.

• A container (concrete type) that implements the functions
required by the interface defined by the abstract class
Container could use the concrete class Vector.

80

class Vector_container: public Container {
Vector v;

public:
Vector_container(int s):v(s){} // Vector of s elements
~Vector_container(){}
double & operator[](int i) {return v[i];}
int size() const {return v.size(); }

};
// : public can be read as “is derived from”. Vector_container is derived
// from class Container. Container is said to be a base of class Vector_container.
// members operator[] and size() are said to override
// the corresponding members in the base.

C++ Inheritance
• Any class type may be declared as derived from one or more

base classes which, in turn, may be derived from their own base
classes, forming an inheritance hierarchy.

• Syntax: class derived-class: access-specifier base-class

81

// Base class
class Shape {

public:
void setWidth(int w) { width = w; }
void setHeight(int h) { height = h; }

protected: // derived class can access the protected data in base class.
int width;
int height;

};

// Derived class
class Rectangle: public Shape{

public:
int getArea() { return (width * height); }

};

// Container can be used like:
void use(Container& c){

const int sz = c.size();
for(int i=0; i<sz; i++)

cout<<c[i]<<“\n”;
}
void g(){

Vector_container vc(10); //ten elements
use(vc);

}
82

83

class List_container: public Container {
std::list<double> ld; // (standard-library) list of doubles

public:
List_container(initializer_list<double> s):ld(s){}
~List_container(){}
double & operator[](int i);
int size() const {return v.size(); }

};

double& List_container::operator[](int i){
for(auto&x : ld){ //read as: for each x in ld. Range-based for loop introduced since C++11

if(i==0)return x; --i;
}

}
void h(){

List_container lc={1, 2, 3, 4, 5};
use(lc);

}

Virtual Functions
• When h() calls use(), List_container’s operator[]() must be called. When g()

calls use(), Vector_container’s operator[]() must be called. How to resolve?
• Vtbl: virtual function table
• Compiler converts name of virtual functions into an index into a table (vtbl)

of pointers to functions. Each class with virtual functions has its own vtbl.

84

/* Example to demonstrate the working of virtual function in C++ programming. */
#include <iostream>
using namespace std;
class B {

public:
virtual void display() /* Virtual function */ { cout<<"Content of base class.\n"; }

};
class D1 : public B {

public:
void display() { cout<<"Content of first derived class.\n"; }

};
class D2 : public B{

public:
void display() { cout<<"Content of second derived class.\n"; }

};

int main()
{

B *b; D1 d1; D2 d2;

/* b->display(); // You cannot use this code here because the function of base class is virtual. */
b = &d1;
b->display(); /* calls display() of class derived D1 */
b = &d2;
b->display(); /* calls display() of class derived D2 */
return 0;

} 85

Operator Overloading

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

86

Overloadable operators

87

// complex.h //see ~zxu2/Public/complex_class
class complex{
private:

double real, image;
public:

complex operator+(const complex&);
complex& operator+=(complex);
complex& operator=(const complex&);
complex(double a, double b) { real = a; image = b; };

};
Remark:
A binary operator (e.g. a+b, a-b, a*b) can be defined by either a non-static member
function taking one argument or a nonmember function taking two arguments. For any
binary operators @, aa@bb is aa.operator@(bb), or operator@(aa,bb).

A unary operator can be defined by either a non-static member function taking no
arguments or a nonmember function taking one argument. For any prefix unary operator
(e.g. –x, &(y)) @, @aa can be interpreted as either aa.operator@() or operator@(aa). For
any post unary operator (e.g. a--) @, aa@ can be interpreted as either aa.operator@(int)
or operator@(aa,int).

A non-static member function is a function that is declared in a member specification of
a class without a static or friend specifier.

mailto:aa.operator@(bb)
mailto:operator@(aa,bb)
mailto:aa.operator@()
mailto:aa.operator@(int)

• Operators [], (), ->, ++, --, new, delete are special operators.
struct Assoc{

vector<pair<string,int>> vec; // vector of (name, value) pairs
int& operator[](const string&);

};

int& Assoc::operator[](const string& s)
{

for(auto x:vec) if(s == x.first) return x.second;
vec.push_back({s,0}); // initial value: 0
return vec.back().second; // return last element.

}

int main()
{

Assoc values;
string buf;
while(cin>>buf) ++values[buf];
for(auto x: values.vec) cout<<‘{‘ <<x.first <<‘,’<<x.second <<“}\n”;

}

88

C++ Template
• C++ templates (or parameterized types) enable users to define a family of

functions or classes that can operate on different types of information. See also
http://www.cplusplus.com/doc/oldtutorial/templates/

• Templates provides direct support for generic programming.

89

// min for ints
int min_i(int a, int b) {

return (a < b) ? a : b;
}

// min for longs
long min_l(long a, long b) {

return (a < b) ? a : b;
}

// min for chars
char min_c(char a, char b) {

return (a < b) ? a : b;
}

//a single function template implementation
template <typename T> T min(T a, T b) {

return (a < b) ? a : b;
}

int main()
{

min<double>(2, 3.0);
}

See Public/ACMS40212/C++_template_function

http://www.cplusplus.com/doc/oldtutorial/templates/

Class template
// declare template
template<typename C> class String{
private:

static const int short_max = 15;
int sz;
char *ptr;
union{

int space;
C ch[short_max+1];

};
public:

String ();
C& operator [](int n) {return ptr[n]};
String& operator +=(C c);

};
90

// define template
Template<typename C>
String<C>::String() //String<C>’s constructor
:sz{0},ptr{ch}
{

ch[0]={};
}
Template<typename C>
C& String<C>::operator+=(C c)
{
// … add c to the end of this string

return *this;
}

91

Remark: keyword this is a pointer to the object for which the
function was invoked. In a non-const member function of class X, the
type of this is X*.

// template instantiation
…
String<char> cs;
String<unsigned char> us;
Struct Jchar{…}; //Japanese character
String <Jchar> js;

92

Stacks
• A stack is a container of objects that are

inserted and removed according to the last-
in first-out (LIFO) principle. In the
pushdown stacks only two operations are
allowed: push the item into the stack, and
pop the item out of the stack.

93

template <typename T>
class stack {

T* v;
T* p;
int sz;

public:
stack (int s) {v = p = new T[sz = s];}
~stack() {delete[] v;}
void push (T a) { *p = a; p++;}
T pop() {return *--p;}
int size() const {return p-v;}

};

stack <char> sc(200); // stack of characters

Remark:
The template <typename T> prefix
specifies that a template is being
declared and that an argument T
of type type will be used in the
declaration. After its introduction,
T is used exactly like other type
names. The scope of T extends to
the end of the declaration that
template <typename T> prefixes.

Non template version of stack of characteristics

94

class stack_char {
char* v;
char* p;
int sz;

public:
stack_char (int s) {v = p = new char[sz = s];}
~stack_char() {delete[] v;}
void push (char a) { *p = a; p++;}
char pop() {return *--p;}
int size() const {return p-v;}

};

stack_char sc(200); // stack of characters

C++ STL
• STL consists of the iterator, container, algorithm and function object parts of

the standard library.
• A container holds a sequence of objects.

– Sequence container:
vector<T,A> // a contiguously allocated sequence of Ts
list<T,A> //a doubly-linked list of T
forward_list<T,A> // singly-linked list of T
Remark: A template argument is the allocator that the container uses to acquire
and release memory
– Associative container:
map<K,V,C,A> // an ordered map from K to V. Implemented as binary tree
unordered_map<K,V,H,E,A> // an unordered map from K to V

// implemented as hash tables with linked overflow
Container adaptor:
queue<T,C> //Queue of Ts with push() and pop()
stack<T,C> //Stack of Ts with push() and pop()
– Almost container:
array<T,N> // a fixed-size array N contiguous Ts.
string

95

96

#include <iostream>
#include <vector>
using namespace std;
int main()
{ // create a vector to store int

vector<int> vec; int i;
// display the original size of vec
cout << "vector size = " << vec.size() << endl;
// push 5 values into the vector

for(i = 0; i < 5; i++){
vec.push_back(i);

}
// display extended size of vec
cout << "extended vector size = " << vec.size() << endl;
// access 5 values from the vector
for(i = 0; i < 5; i++){

cout << "value of vec [" << i << "] = " << vec[i] << endl;
}
// use iterator to access the values
vector<int>::iterator v = vec.begin();
while(v != vec.end()) {

cout << "value of v = " << *v << endl; v++;
}
vec.erase(vec.begin()+2); // delete the 3rd element in the vec.
return 0;

} // http://www.tutorialspoint.com/cplusplus/cpp_stl_tutorial.htm

STL Iterators
An iterator is akin to a pointer in that it provides operations for
indirect access and for moving to point to a new element. A
sequence is defined by a pair of iterators defining a half-open
range [begin:end), i.e., never read from or write to *end.
Iterator can be incremented with ++, dereferenced with *, and
compared against another iterator with !=.

97

// look for x in v
auto p = find(v.begin(),v.end(),x);
if(p != v.end()){

// x found at p
}
else {

// x not found in [v.begin():v.end())
}

// use iterator to access the values
vector<int>::iterator v = vec.begin();
while(v != vec.end()) {
cout << "value of v = " << *v << endl;
v++;

}

• Operators
– Operator * returns the element of the current position.
– Operator ++ lets the iterator step forward to the next element.
– Operator == and != returns whether two iterators represent the same

position
– Operator = assigns an iterator.

• begin() returns an iterator that represents the beginning of the
element in the container

• end() returns an iterator that represents the position behind the
last element.

• container::iterator is provided to iterate over elements in
read/write mode

• container::const_iterator in read-only mode
• container::iterator{first} of (unordered) maps and multimaps

yields the second part of key/value pair.
• container::iterator{second} of (unordered) maps and multimaps

yields the key.

98

//Public/ACMS40212/C++_STL_samples/map_by_hash.cpp. Use intel icc ver14 to compile
#include <unordered_map>
#include <iostream>
#include <string>
using namespace std;
int main ()
{
std::unordered_map<std::string,double> mymap = {

{"mom",5.4}, {"dad",6.1}, {"bro",5.9} };

std::cout << "mymap contains:";
for (auto it = mymap.begin(); it != mymap.end(); ++it)

std::cout << " " << it->first << ":" << it->second;
std::cout << std::endl;

std::string input;
std::cout << "who? ";
getline (std::cin,input);

std::unordered_map<std::string,double>::const_iterator got = mymap.find (input);
if (got == mymap.end())

std::cout << "not found";
else

std::cout << got->first << " is " << got->second;
std::cout << std::endl;
return 0;

} 99

//Public/ACMS40212/C++_basics/map_by_tree.cpp
#include <iostream>
#include <map>
#include <string>
using namespace std;

int main()
{

map<string, string> mascots;
mascots["Illinois"] = "Fighting Illini"; mascots["Indiana"] = "Hoosiers";
mascots["Iowa"] = "Hawkeyes"; mascots["Michigan"] = "Wolverines";
mascots["Michigan State"] = "Spartans"; mascots["Minnesota"] = "Golden Gophers";
mascots["Northwestern"] = "Wildcats"; mascots["Ohio State"] = "Buckeyes";
mascots["Penn State"] = "Nittany Lions"; mascots["Purdue"] = "Boilermakers";
mascots["Wisconsin"] = "Badgers";
for (;;)
{
cout << "\nTo look up a Big-10 mascot, enter the name " << "\n of a Big-10 school ('q' to quit): ";
string university;
getline(cin, university);
if (university == "q") break;
map<string, string>::iterator it = mascots.find(university);
if (it != mascots.end()) cout << "--> " << mascots[university] << endl;
else

cout << university << " is not a Big-10 school " << "(or is misspelled, not capitalized, etc?)" << endl;
}

} 100

• Using template to implement Matrix.
• See zxu2/Public/ACMS40212/C++template_matrix

driver_Mat.cpp Matrix.cpp Matrix.h

101

Modularity
• One way to design and implement the structured program is to

put relevant data type together to form aggregates.
• Clearly define interactions among parts of the program such as

functions, user-defined types and class hierarchies.
• Try to avoid using nonlocal variables.
• At language level, clearly distinguish between the interface

(declaration) to a part and its implementation (definition).
– Use header files to clarify modules
– See ~zxu2/Public/C++_sample_vec

• Use separate compilation
– Makefile can do this

• Error handling
– Let the return value of function be meaningful.

• See ~zxu2/Public/dyn_array.c
– Use Exceptions

• ~zxu2/Public/C++_sample_vec

102

Use of Headers
• Use “include guards” to avoid multiple inclusion of same

header
#ifndef _CALC_ERROR_H
#define _CALC_ERROR_H
…
#endif

• Things to be found in headers
– Include directives and compilation directives

#include <iostream>
#ifdef __cplusplus

– Type definitions
struct Point {double x, y;};
class my_class{};

– Template declarations and definitions
template template <typename T> class QSMatrix {};

– Function declarations
extern int my_mem_alloc(double**,int);

– Macro, Constant definitions
#define VERSION 10
const double PI = 3.141593 ; 103

Multiple Headers

• For large projects, multiple headers are
unavoidable.

• We need to:
– Have a clear logical organization of modules.
– Each .c or .cpp file has a corresponding .h file. .c or

.cpp file specifies definitions of declared types,
functions etc.

• See ~zxu2/Public/C++_mat_vec_multi for
example.

104

References:
• Tim Love, ANSI C for Programmers on UNIX

Systems
• http://www.tutorialspoint.com/cprogramming
• Bjarne Stroustrup, The C++ Programming

Language

105

	Short Notes on C/C++
	Slide Number 2
	Program Structure
	Variables and Literals
	Slide Number 5
	Constructions
	Slide Number 7
	Loops
	Slide Number 9
	Slide Number 10
	Preprocessor directives
	Slide Number 12
	Slide Number 13
	Functions
	Slide Number 15
	C Input/Output
	scanf() and printf() of C Language
	Slide Number 18
	C++ IO Streams
	C++ Standard Stream Objects for Console I/O
	Slide Number 21
	C++ Input/output with Files
	Pointers
	Slide Number 24
	Slide Number 25
	Pointers and Text Strings
	Slide Number 27
	Dynamic Memory Allocation in C/C++
	Stack vs Heap
	Memory Allocation/Free Functions in C
	Memory Allocation/Free Functions in C++
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Release Dynamic Memory
	References
	Slide Number 39
	Functions and passing arguments
	Slide Number 41
	Passing Arrays
	Returning Address of Dynamic Memory
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Singly Linked Lists
	Slide Number 49
	Slide Number 50
	Doubly Linked Lists
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Hash Table
	C++ Class
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Modularity
	Enumerations
	Namespaces
	Error Handling
	Friends
	Slide Number 67
	Slide Number 68
	Copy constructors
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Abstraction Mechanisms
	Concrete Types
	Slide Number 77
	Slide Number 78
	Abstract Types
	Slide Number 80
	C++ Inheritance
	Slide Number 82
	Slide Number 83
	Virtual Functions
	Slide Number 85
	Operator Overloading
	Slide Number 87
	Slide Number 88
	C++ Template
	Class template
	Slide Number 91
	Slide Number 92
	Stacks
	Non template version of stack of characteristics
	C++ STL
	Slide Number 96
	STL Iterators
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Modularity
	Use of Headers
	Multiple Headers
	Slide Number 105

