Lecture 6: Parallel Matrix
Algorithms (part 2)

Column-wise Block-Striped Decomposition

Summary of algorithm for computing ¢ = Ab

 Column-wise 1D block partition is used to distribute matrix.

e LetA =J[ay,a,,..,a,],b=1[by by, .., b, andc =
[cq,Cpp s)T

* Assume each task i has column a;, b; and ¢; (Assume a fine-
grained decomposition for convenience)

column-wise distribution

Py 7 0 Py Py P e Iy

1. Read in matrix stored in row-major manner and distribute by
column-wise mapping

2. Eachtaski compute b;a; to result in a vector of partial
result.

3. An all-to-all communication is used to transfer partial result:
every partial result element j on task i must be transferred
to task J.

4. At the end of computation, task i only has a single element
of the result ¢; by adding gathered partial results.

= Qg

dy0
ds 0
ds3 g
ds0

0
%0
%0
0

Do

s S e S

+—F+ =

N
18y, Dy 713893 03
+1a;, D, a3 03
+1a,, Dy H1ay 3 03
+183, 0, k1833 03
18y, D) 1,3 03

_

_

-/

O

A4
a4
A 4

b3,4

Ay 4

\ Proc 4’s init.
Proc 3’s Init. comput

Proc 2’s init. comput

Processor 1’s initial computation

Processor 0’s initial computation

After All-to-All Communication

/—\

dy0 by a; o by a,, by as,0 b a0 by
0o, b, a, b, a,, b, as, b, a,, b,
0y, b, a,,b, a,,b, as, b, ay, b,
a3 bs a3 bs a,;bs as;b; ay 3 b;
a,.b, a, . b, a,,b, bs;, b, a,,b,
| o
__
Proc3 Proc 4

Proc 2

Proc O Proc 1

Reading a Column-wise Block-Striped Matrix

read_col_striped matrix()
— Read from a file a matrix stored in row-major order and distribute it
among processes in column-wise fashion.

— Each row of matrix must be scattered among all of processes.

read_col_striped_matrix()

{

// figure out how a row of the matrix should be distributed
create_mixed_xfer_arrays(id,p, *n, &send_count, &send_disp);
// go through each row of the matrix
for(i=0;i< *m; i++)
{
if(id == (p-1)) fread(buffer,datum_size, *n, infileptr);
MPI_Scatterv(...);

int MPI_Scatterv(void *sendbuf, int *sendcnts, int *displs,
MPI_Datatype sendtype, void *recvbuf, int recvcnt, MP|_Datatype
recvtype, int root, MPI_Comm comm)

LI
7

MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a
varying count of data to be sent to each process.
sendbuf: address of send buffer

sendcnts: an integer array specifying the number of elements to send to
each processor

displs: an integer array. Entry i specifies the displacement (relative to
sendbuf from which to take the outgoing data to process i

lo /
stride[1]

sendbuf http://www.mpi-forum.org/docs/mpi-11-
html/node72.html

150

all process

http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html

Printing a Colum-wise Block-Striped Matrix

print_col_striped _matrix()
— A single process print all values

— To print a single row, the process responsible for printing must gather
together the elements of that row from entire set of processes

print_col_striped_matrix()

{

create_mixed_ xfer_arrays(id, p, n, &rec_count, &rec_disp);
// go through rows
for(i =0; i < m; i++)
{
MPI_Gatherv(al[i], BLOCK_SIZE(id,p,n), dtype, buffer,
rec_count, rec_disp, dtype, 0, comm);

* int MPIl_Gatherv(void *sendbuf, int sendcnt, MP|_Datatype
sendtype, void *recvbuf, int *recvcnts, int *displs, MP|_Datatype
recvtype, int root, MPI_Comm comm)

— Gathers into specified locations from all processes in a group.

— sendbuf: address of send buffer

— sendcnt: the number of elements in send buffer

— recvbuf: address of receive buffer (choice, significant only at root)

— recvcounts: integer array (of length group size) containing the number of
elements that are received from each process (significant only atroot)

— displs: integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from
process i (significant only at root)

150 150 150

100 I 100 I 100 I all process

at root

Distributing Partial Results

* C; = boai,o ~+ blai’l + bzai’z + -+ bnai,n

* Each process need to distribute n — 1 terms to other processes

and gather n — 1 terms from them (assume fine-grained

decomposition).

— MPI_Alltoallv() is used to do this all-to-all exchange

Before After

1 i BR Ay
"I__j -4 . - E
y Alltoallv
BarE L NER 1————-:: T11

T 1
1P 1- f
2 r,-', - l - - | | l |
- E A 3 I- i i1 1)

Figure 8,13 Function MpT_al1toallv allows every MPI
process to gather data items from all the processes in the
communicator. The simpler function MPT_A11toall should be
used in the case where all of the groups of data items being

transferred from one process to another have the same number
of elements.

Processes

10

int MPI_Alltoallv(void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int
*rdispls, MP1_Datatype recvtype, MPl_Comm comm);

e sendbuf: starting address of send buffer (choice)

e sendcounts: integer array equal to the group size specifying
the number of elements to send to each processor

* sdispls: integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf) from which to take the
outgoing data destined for process j

* recvbuf: address of receive buffer (choice)

e recvcounts: integer array equal to the group size specifying
the maximum number of elements that can be received from
each processor

* Rdispls: integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf at which to place the
incoming data from process i

Send of MPI_Alltoallv()

Each node in parallel
community has

send buffer send displacement
send count array
array
([A dnmr N
1 B - 1 |) 5
2 0 3 0 1
2 C 5 J 5 9
3 D 3 2 3 K 3 3 3 R 2
4 E 2 5 4 L 1 6 4 S 4
5 F 5 M 5 T
6 G 6 N R y

proc O proc 1 proc 2

Process O Sends to Process O

m | m| OO

o o1 | bW DN || O

G

index —f

Proc O send buffer

this chunk
of send
buffer
goes to
receive

buffer of

send to receive
buffer of proc
with same rank
as index

proc 0

2 5

index —f

sendcount

Array sdispl Array

Process O Sends to Process 1

0 A
1
2
3
4
5 F
6 G

index —f

Proc O send buffer

send to receive
buffer of proc 1

2

index —f

sendcount

Array

sdispl Array

Process O Sends to Process 2

O A send to receive
buffer of proc 2
1 B
5 C o 2 0
3] b 1| 3 2
4 E
5
) Zer:;j;ount sdispl Array

index —f

Proc O send buffer

RE
CE

VE

Receive of MPI_Alltoallv()

proc O

~

rc

= m +h —Hh c o S

pl
210
312
115

oI N[OOI |BM~]J]W|IN]|F|[O

proc 1

~

~

310
313
216

O N|OO|JOAA | PSR W]|IDN]|PF|O

O N|]OOJOA | PA|W|IDN]|PF|O

proc 2

proc 1

proc O

~

SE

=z

()]

proc O

Parallel Run Time Analysis (Column-wise)

* Assume that the # of processes p is less than n

* Assume that we run the program on a parallel machine adopting
hypercube interconnection network (Table 4.1 lists communication
times of various communication schemes)

1. Each process is responsible for n/p columns of matrix. The complexity
of the dot production portion of the parallel algorithm is @(n?/p)

2. After all-to-all personalized communication, each processor sums the
partial vectors. There are p partial vectors, each of size n/p . The
complexity of the summation is @(n).

3. Parallel communication time for all-to-all personalized broadcast
communication:

— Each process needs to send p messages of size n/p each to all processes.
teomm = (ts + ty, (g))(p — 1). Assume p is large, then
Lcomm = ts(p - 1) + t,n.

2
* The parallel run time: T, = % +n+t,(p—1)+t,yn

2D Block Decomposition

Summary of algorithm for computing y = Ab

2D block partition is used to distribute matrix.

let A = [aij]l b = [bl' b2' Y bn]Tl and y = [yl' Y2, "')yn]T
Assume each task is responsible for computing d;; = a;;b;
(assume a fine-grained decomposition for convenience of

analysis).
Theny; = Z}f‘;(} d;;: for each row i, we add all the d;; to
produce the ith element of y.

Pl P: Py

19

. Read in matrix stored in row-major manner and
distribute by 2D block mapping. Also distribute b so
that each task has the correct portion of b.

. Each task computes a matrix-vector multiplication using
its portion of A and b.

. Tasks in each row of the task grid perform a sum-
reduction on their portion of y.

. After the sum-reduction, y is distributed by blocks
among the tasks in the first column of the task grid.

Distributing b

* |nitially, b is divided among tasks in the first
column of the task grid.
* Step 1:
— If p square
* First column/first row processes send/receive
portions of b

— If p not square
e Gather b on process 0, O
* Process 0, O broadcasts to first row processes

e Step 2: First row processes scatter b within columns

Broadcast
blocks of'b

SendRecv
blocks of' b

When p is a square number

(a)

Broadcast
blocks of b

Scatter b

Gatherb

When p is not a square number

HEEEE

L1 I1]

R R —

22

(b)

