Lecture 6: Parallel Matrix
Algorithms (part 2)



Column-wise Block-Striped Decomposition

Summary of algorithm for computing ¢ = Ab

 Column-wise 1D block partition is used to distribute matrix.

e LetA =J[ay,a,,..,a,],b=1[by by, .., b, andc =
[cq,Cpp s )T

* Assume each task i has column a;, b; and ¢; (Assume a fine-
grained decomposition for convenience )

column-wise distribution
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1. Read in matrix stored in row-major manner and distribute by
column-wise mapping

2. Eachtaski compute b;a; to result in a vector of partial
result.

3. An all-to-all communication is used to transfer partial result:
every partial result element j on task i must be transferred
to task J.

4. At the end of computation, task i only has a single element
of the result ¢; by adding gathered partial results.
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After All-to-All Communication
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Reading a Column-wise Block-Striped Matrix

read_col_striped matrix()
— Read from a file a matrix stored in row-major order and distribute it
among processes in column-wise fashion.

— Each row of matrix must be scattered among all of processes.

read_col_striped_matrix()

{

// figure out how a row of the matrix should be distributed
create_mixed_xfer_arrays(id,p, *n, &send_count, &send_disp);
// go through each row of the matrix
for(i=0;i< *m; i++)
{
if(id == (p-1)) fread(buffer,datum_size, *n, infileptr);
MPI_Scatterv(...);



int MPI_Scatterv( void *sendbuf, int *sendcnts, int *displs,
MPI_Datatype sendtype, void *recvbuf, int recvcnt, MP|_Datatype
recvtype, int root, MPI_Comm comm)
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MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a
varying count of data to be sent to each process.
sendbuf: address of send buffer

sendcnts: an integer array specifying the number of elements to send to
each processor

displs: an integer array. Entry i specifies the displacement (relative to
sendbuf from which to take the outgoing data to process i
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Printing a Colum-wise Block-Striped Matrix

print_col_striped _matrix()
— A single process print all values

— To print a single row, the process responsible for printing must gather
together the elements of that row from entire set of processes

print_col_striped_matrix()

{

create_mixed_ xfer_arrays(id, p, n, &rec_count, &rec_disp);
// go through rows
for(i =0; i < m; i++)
{
MPI_Gatherv(al[i], BLOCK_SIZE(id,p,n), dtype, buffer,
rec_count, rec_disp, dtype, 0, comm);



* int MPIl_Gatherv( void *sendbuf, int sendcnt, MP|_Datatype
sendtype, void *recvbuf, int *recvcnts, int *displs, MP|_Datatype
recvtype, int root, MPI_Comm comm )

— Gathers into specified locations from all processes in a group.

— sendbuf: address of send buffer

— sendcnt: the number of elements in send buffer

— recvbuf: address of receive buffer (choice, significant only at root)

— recvcounts: integer array (of length group size) containing the number of
elements that are received from each process (significant only atroot)

— displs: integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from
process i (significant only at root)
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Distributing Partial Results

* C; = boai,o ~+ blai’l + bzai’z + -+ bnai,n

* Each process need to distribute n — 1 terms to other processes

and gather n — 1 terms from them (assume fine-grained

decomposition).

— MPI_Alltoallv() is used to do this all-to-all exchange
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Figure 8,13 Function MpT_al1toallv allows every MPI
process to gather data items from all the processes in the
communicator. The simpler function MPT_A11toall should be
used in the case where all of the groups of data items being

transferred from one process to another have the same number
of elements.

Processes
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int MPI_Alltoallv( void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int
*rdispls, MP1_Datatype recvtype, MPl_Comm comm );

e sendbuf: starting address of send buffer (choice)

e sendcounts: integer array equal to the group size specifying
the number of elements to send to each processor

* sdispls: integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf) from which to take the
outgoing data destined for process j

* recvbuf: address of receive buffer (choice)

e recvcounts: integer array equal to the group size specifying
the maximum number of elements that can be received from
each processor

* Rdispls: integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf at which to place the
incoming data from process i



Send of MPI_Alltoallv()
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Process O Sends to Process O
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Process O Sends to Process 1

0 A
1
2
3
4
5 F
6 G

index —f

Proc O send buffer

send to receive
buffer of proc 1

2

index —f

sendcount

Array

sdispl Array



Process O Sends to Process 2
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Parallel Run Time Analysis (Column-wise)

* Assume that the # of processes p is less than n

* Assume that we run the program on a parallel machine adopting
hypercube interconnection network (Table 4.1 lists communication
times of various communication schemes)

1. Each process is responsible for n/p columns of matrix. The complexity
of the dot production portion of the parallel algorithm is @(n?/p)

2. After all-to-all personalized communication, each processor sums the
partial vectors. There are p partial vectors, each of size n/p . The
complexity of the summation is @(n).

3. Parallel communication time for all-to-all personalized broadcast
communication:

— Each process needs to send p messages of size n/p each to all processes.
teomm = (ts + ty, (g))(p — 1). Assume p is large, then
Lcomm = ts(p - 1) + t,n.

2
* The parallel run time: T, = % +n+t,(p—1)+t,yn



2D Block Decomposition

Summary of algorithm for computing y = Ab

2D block partition is used to distribute matrix.

let A = [aij]l b = [bl' b2' Y bn]Tl and y = [yl' Y2, "')yn]T
Assume each task is responsible for computing d;; = a;;b;
(assume a fine-grained decomposition for convenience of

analysis).
Theny; = Z}f‘;(} d;;: for each row i, we add all the d;; to
produce the ith element of y.
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. Read in matrix stored in row-major manner and
distribute by 2D block mapping. Also distribute b so
that each task has the correct portion of b.

. Each task computes a matrix-vector multiplication using
its portion of A and b.

. Tasks in each row of the task grid perform a sum-
reduction on their portion of y.

. After the sum-reduction, y is distributed by blocks
among the tasks in the first column of the task grid.



Distributing b

* |nitially, b is divided among tasks in the first
column of the task grid.
* Step 1:
— If p square
* First column/first row processes send/receive
portions of b

— If p not square
e Gather b on process 0, O
* Process 0, O broadcasts to first row processes

e Step 2: First row processes scatter b within columns
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