Lecture 6: Parallel Matrix
Algorithms (part 3)

A Simple Parallel Dense Matrix-Matrix Multiplication

Let A = [a;j]nxn and B = [b;;]xn be n X n matrices. Compute C =
AB

« Computational complexity of sequential algorithm: 0 (n?>)

* Partition A and B into p square blocks 4; jand B; ; (0 < i,j </p)
of size (n/4/p) X (n//p) each.

* Use Cartesian topology to set up process grid. Process P; ; initially

stores A; ; and B; ; and computes block ; ; of the result matrix.

* Remark: Computing submatrix C; ; requires all submatrices A; j and
Byjfor0 <k <./p.

e Algorithm:

— Perform all-to-all broadcast of blocks of A in each row of
processes

— Perform all-to-all broadcast of blocks of B in each column
of processes

— Each process P; j perform C; ; = Z‘m 1Alk By

Performance Analysis

\/p rows of all-to-all broadcasts, each is among a group of /p
2
processes. A message size is %, communication time: tglog+/p +

n2
tw™ (VP — 1)
\/p columns of all-to-all broadcasts, communication time:

nZ
ts10gP + tw = (VP —1)
Computation time: \/p X (n/{p)>=n/p

Parallel time: T}, = n?i + 2 (tslog\/ﬁ + twn?i(\/ﬁ — 1))

Memory Efficiency of the Simple Parallel Algorithm

* Not memory efficient
— Each process P; j has 2./p blocks of 4; ; and By, ;
— Each process needs O(n?/,/p) memory

— Total memory over all the processes is O(n? X /p),
.e., \/p times the memory of the sequential
algorithm.

Cannon’s Algorithm of Matrix-Matrix Multiplication

Goal: to improve the memory efficiency.

Let A = [a;j]nxn and B = [b;;]4xn be n X n matrices. Compute C =
AB

* Partition A and B into p square blocks A; ;j and B; ; (0 < i,j <./p)

of size (n/+/p) X (n//p) each.

e Use Cartesian topology to set up process grid. Process P; initially
stores A; ; and B; ; and computes block C; ; of the result matrix.

* Remark: Computing submatrix C; ; requires all submatrices A; j and
Byjfor0 <k <.p.
* The contention-free formula:

p—1
Z\/— i (i+j+k)%\/5B(i+j+k)%\/ﬁf

Cannon’s Algorithm

// make initial alignment
fori,j:=Oto./p—1 do
Send block 4; ; to process (i, (j — i + /D)mod+/p) and block B; ; to process
((i —j+ \/ﬁ)mod\/ﬁj);
endfor;
Process P; ; multiply received submatrices together and add the result to C; ;;
// compute-and-shift. A sequence of one-step shifts pairs up A4; ; and By ;
// on process P,j. Cij=C;j+A;xBy;
for step:=1to./p —1do

Shift A; ; one step left (with wraparound) and B; ; one step up (with
wraparound);

Process P; ; multiply received submatrices together and add the result to (; ;;
Endfor;

Remark: In the initial alignment, the send operation is to: shift A; ; to the left (with
wraparound) by i steps, and shift B; ; to the up (with wraparound) by j steps.

Cannon’s Algorithm for 3 X 3 Matrices

A0, A0, 1| A0,2) A0,0)| A0, 1) A(D,2) A(0,1)| A(0,2)| A0,0) A0.2)| A0,0)| Ao, 1)

A(LD) A(1.2) AL AL AL A0 A{L,0) A{1.2)

AR Az A22) Ay Az Ay A0 Az |A22) A A2 Az

B(0,0)| B(0,1)| B(0,2) B(0,0)| B(L,1)| B(2.2) B(1,0)| B(2,1)| B(0,2) B(2,0)| B(0,1)

B(1,0)| B(L,1) B(1,0)| B(2,1)| B(0,2) B(2,0)| B(0,1) B(0,0)| B(1,1)| B(2.2)

B(2,0)| B(2,1)| B(2.2) B(2,0)| B(0,1) B(0,0)| B(1,1)| B(2.2) B(L,0)| B(2,1)| B(0,2)
Initial A, B A, B initial A, B after A, B after

alignment shift step 1 shift step 2

Performance Analysis

In the initial alighnment step, the maximum distance
over which block shiftsis \/p — 1

— The circular shift operations in row and column
tyyn?
)
Each of the /p single-step shifts in the compute-

tyn?
p

° ° . ° n n
—_— X —_—
Multiplying \/p submatrices of size (p) (p)
takes time: n3 /p.

directions take time: t.,mm = 2(ts +

and-shift phase takes time: t; A

3 2 2
Parallel time: T, = % + 2/p (ts + twpn) + 2(ts + twpn)

int MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPl_Comm comm, MPI_Status *status);

* Execute a blocking send and receive. The same buffer is
used both for the send and for the receive, so that the
message sent is replaced by the message received.

* buflin/out]: initial address of send and receive buffer

#include "mpi.h"
H#include <stdio.h>

int main(int argc, char *argv|[])
{
int myid, numprocs, left, right;
int buffer[10];
MPI_Request request;
MPI_Status status;

MPI Init(&argc,&argv);
MPI Comm _size(MPI_COMM_WORLD, &numprocs);
MPI Comm rank(MPI_COMM_WORLD, &myid);

right = (myid + 1) % numprocs;
left = myid - 1;
if (left < 0)

left = numprocs - 1;

MPI Sendrecv_replace(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD,

&status);

MPI Finalize();
return O;

}

11

http://mpi.deino.net/mpi_functions/MPI_Init.html
http://mpi.deino.net/mpi_functions/MPI_Comm_size.html
http://mpi.deino.net/mpi_functions/MPI_Comm_rank.html
http://mpi.deino.net/mpi_functions/MPI_Sendrecv_replace.html
http://mpi.deino.net/mpi_functions/MPI_Finalize.html

DNS Algorithm

* The algorithm is named after Dekel, Nassimi and Aahni
* Itis based on partitioning intermediate data

* It performs matrix multiplication in time O (logn) by using
0 (n3/logn) processes
The sequential algorithm forC = A X B
Cij =0
for(i=0;i<n;i++)
forGj=0;j<n;j++)
for(k =0k <n;k++)
Cij = Cij + Ay X By;j

Remark: The algorithm performs n> scalar multiplications

Assume that n3 processes are available for
multiplying two n X n matrices.

Then each of the n> processes is assigned a single
scalar multiplication.

The additions for all C;; can be carried out
simultaneously in logn steps each.

Arrange n3 processes in a three-dimensional
n X n X n logical array.

— The processes are labeled according to their location in the
array, and the multiplication A;; By jis assigned to process
Pli,j,k] (0 <i,j,k <n).

— After each process performs a single multiplication, the
contents of P|[i,j,0],Pli,j,1],...,P[i,j,n-1] are added to obtain

Cl]'

a
[]

=0

0.3] [[1.3] [[2.3]1 [[3.3]
[0.2] | [1.2] [[2.21 | 13.2]
0.1] | [1.1] | [2.11 | 3.1)
0.0] | [1.0] | [2.0] | [3.0]

(a) Initial distribution of A and B

14

A[0.3]

A[1.3]

A[2.3]

A[3.3]

AJ0.2]

A1.2]

A[2.2]

A[3.2]

AJ0.1]

A[1.1]

A[2.1]

A[3.1]

AJ0.0]

AJ1.0]

A[2.0]

A[3.0]

(b) After moving Al1.j] from P[1,0] to P[1.]

K=3

K=2

K=1

K=0

(b) After moving B[1,j] from P[1.;.0] to P[1.).1]

B[3.3]
B[3.2]
B[3.1]
B[3.0]
B[2.3]
B[2.2]
B[2.1]
B[2.0]
B[1.3]
B[1.2]
B[1.1]
B[1.0]
B[0.3]
B[0.2]
B[0.1]
B[0.0]

AJ0.3] [A[1.3] | Al2.3] | A[3.3] C[0,0] B[3.3] | B[3.3] | B[3.3] | B[3.3]
K=3 |A[03]]A[L3]] A[2.3]| A[3.3] — B[3.2] | B[3.2] | B[3.2] | B[3.2]
Af0.3) | A[1.3] | A[2.3] | A[3.3]| A[0.3]1xB[3.0] |B[3.1]| B[3.1] | B[3.1] | B[3.1]
A[1.3]| A[2.3] | A[3.3] B[3.0] | B[3.0] | B[3.0]
AJ02] [A[1.2] [A[2.2] | A[3.2] B[2.3] | B[2.3] | B[2.3] | B[2.3]
K=2 [A[0.2]]A[L2]]| A[2.2] | A[3.2] + B[2.2] | B[2.2] | B[2.2] | B[2.2]
AJ02) | A[1.2] | A[22] | A[3.2]| Af0.2]xB[2.0] [B[2.1]] B[2.1]| B[2.1] | B[2.1]
A[1.2] | A[2.2] | A[3.2] B[2.0] | B[2.0] | B[2.0]
AJ0.1] | A[L.1] [A[2.1] | A[3.1] B[1.3] | B[1.3] | B[1.3] | B[L.3]
K=1 |[A[01]]A[L1]]| A[2.1]] A[3.1] + B[1,2] | B[1,2] | B[1.2] | B[1.2]
A[0.1) [A[11] | A[2.1] [A[3.1]| A[0.1]xB[1,0] |B[L.1]|B[1.1] | B[1.1] | B[1.1]
A[L1]| A[2.1] | A[3.1] B[1.0] | B[1.0] | B[L0]
AJ0,0] [A[1.0] [A[2.0] [A[3.0] B[0.3] | B[0.3] | B[0.3] [B[0.3]
K=0 | A[0,0] | A[1.0]| A[2.0] | A[3.0] + B[0,2] | B[0.2] | B[0.2] | B[0.2]
A[0.0] | A[1.0] | A[2.0] | A[3.0]| A[0.0] x B[0.0] |B[0.1]| B[0.1] | B[0.1] | B[0.1]
A[1.0] [AR2.0] [A[3.0] B[0.0] | B[0.0] | B[0.0]
(¢) After broadeasting A[i,j] along j axis (d) Corresponding distribution of B

* The vertical column of processes PJi,j,*] computes
the dot product of row A;, and column B,;

 The DNS algorithm has three main
communication steps:

1. moving the rows of A and the columns of B to their
respective places,

2. performing one-to-all broadcast along the j axis for A
and along the i axis for B

3. all-to-one reduction along the k axis

