Lecture 8: Fast Linear Solvers
(Part 5)



Conjugate Gradient (CG) Method

* Solve Ax = b with A being an n X n symmetric
positive definite matrix.
— proposed by Hestenes and Stiefel in 1951

* Define the quadratic function

1
d(x) = ExTAx —x'b

Suppose x minimizes ¢(x), x is the solution to Ax = b.

¢ V) = (52, .., 55) = Ax— b

ox,’ T 0xy
* The iteration takes form x(+1 = x(k) 4 o, ()
where v(®) is the search direction and a;, is the

step size.
e Define r® = b — Ax") to be the residual vector.



 Letxandv #0 ¢(x + av) be fixed vectors and a a real number
variable.

Define:
h(a)=¢dp(x+av) =¢p(x)+a<v,Ax—b > +%a2 < v Av >
h(a) has a minimum when h'(a) = 0. This occurs when
v (b — Ax)
vidv

~ 1 (vT (b—Ax))?
So h(@) = ¢p(x) — g(v (,,T A,,x)) :

Suppose x* is a vector that minimizes ¢ (x). So ¢ (x + av) = ¢p(x*).
This implies vT (b — Ax*) = 0. Therefore b — Ax* = 0.

a =




* Foranyv # 0, ¢p(x + av) > ¢(x) unless
T . vT (b—Ax)
v' (b — Ax) = 0 witha = ——.
v Av
* How to choose the search direction v?

— Method of steepest descent: v =1r = —V¢p(x)
* Remark: Slow convergence for linear systems

Algorithm.
Let x(9) be initial guess.
fork =1,2,...
) = p — Axk-1)
<v®) (b—Aax(k-1))>

<v(&) Ap(K)>
x(k) — x(k_l) -|- akv(k)

dp =

end



Amax .

is large

Steepest descent method when

Amin

e Consider tosolve Ax = b with A = [ ]
0 A,/

b = ’/12] and the start vector v = [_1].

Reduction of [|Ax() — b||, < 107%.
—With A, =1, 4, = 2, it takes about 10 iterations
— With 4, = 1, 4, = 10, it takes about 40 iterations



e Second approach to choose the search direction v?

— A-orthogonal approach: use a set of nonzero direction
vectors {vV, ..., (M} that satisfy < v, AvD) > = 0, if
i # j.Theset{vV, ..., ¥(M} is called A-orthogonal.

e Theorem. Let {v(l), . v(")} be an A-orthogonal
set of nonzero vectors associated with the

symmetric, positive definite matrix 4, and let x(%
<v®) (b—Ax*=1))>
<v(K) Av(K)>
xF) = x(k=1) 4 o p&) for k = 1,2 ...n. Then

Ax™ = b when arithmetic is exact.

be arbitrary. Define a;, = and



Conjugate Gradient Method

The conjugate gradient method of Hestenes and Stiefel.

Main idea: Construct {v'V, v(?) .} during iteration so
that {vP, v ..} are A-orthogonal.

Define:

Ki(4,79) = span{r©®, 4r(®), 42r) | Ak-140),
Lemma (Kelly). Let A be spd and let {x*)} be CG
iterates, thenri.r; = Oforall 0 < I < k.

— Remark: let {x(®)} be CG iterates. r; € K, forall | < k.
Lemma (Kellyl.) Let A be spd and let {x(¥)} be CG

iterates. If xU9) # x*, then x**D = x(K) 1 o, pk+D)
and v** 1) js determined up to a scalar multiple by the
conditions v**tD € K, .1, (WETINTAE = 0 for all

¢ € K.

— Remark: This implies v*+D = (&) 4 () with wk) € K,



* Theorem (Kelly). Let A be spd and assume that
r&) = 0. Define v(© = 0. Then v+D = () 4
B+ 1% for some Br.1 and k > 0.

— Remark (1):v&+D . Ark—1D = g = p(k) . gp(k-1) 4
B 105 . Ark—1)

— Remark (2): xk*D = x4 o, »EFD) implies
rk+D = () _ o, Av*+D which leads to
() . A4 = () (0 g



 Lemma (Kelly). Let A be spd and assume that

r®) = 0. Then

< T(k_l), y(k=1) >

dp =

And

< k) Aplk) >

< r(k), r(k) >

br = < rk=1) pk-1) >

* Fact: Since x(K+1) = x(®)

k+1
ak+1v( );

pk+1) = p() _ g ApktD),



Algorithm of CG Method

Let x(9) be initial guess.
fork =1,2, ...
<r (kD) k-1,
<v() Av(K)>
x(k) — x(k_l) -|- akv(k)
r) = =1 — o, Av®)  // construct residual
pk =< r(k), r(k) >
if \/p;, < € exit. //convergence test
<r(k)’r(k)>
< (k=1 (kD>
pE+D = () 4 5 »(F) // construct new search direction
end

dp =

S =



Remarks

Constructed {vV, v»(?) ...} are pair-wise A-
orthogonal.

Eac
mu
mu

n iteration, there are one matrix-vector
tiplication, two dot products and three scalar

tiplications.

Due to round-off errors, in practice, we need more
than n iterations to get the solution.

If the matrix 4 is ill-conditioned, the CG method is
sensitive to round-off errors (CG is not good as
Gaussian elimination with pivoting).

Main usage of CG is as iterative method applied to
bettered conditioned system.



CG as Krylov Subspace Method

Theorem. x(5) of the CG method minimizes the
function ¢ (x) with respect to the subspace

Ki(4,70) =
span{r®, Ar(® A240) Ak=13(0)1
l.e.
P (x®) = min., ¢(x©@ + X c;Ar®)

The subspace K, (A, r(O)) is called Krylov subspace.



Error Estimate

* Define an energy norm || - || 4 of vector u with
respect to matrix 4: ||u||4, = (u” Au)1/?

« Define the (algebraic) error e®) = x(F) — x*
where x™ is the exact solution.

e Theorem.
k(4)—1

K) — »*[], <
”x x”A—Z(m_I_l

kK(A) = cond(4) = 1’:‘;;&1)) > 1.

Remark: Convergence is fast if matrix A is well-
conditioned.

Ve [x(9 — x*|| 4 with




Preconditioning

Let the symmetric positive definite matrix M be a
preconditioner for A and LL" = M be its Cholesky
factorization. M~ 1A is better conditioned than A (and not
necessarily symmetric).

The preconditioned system of equations is
M~ tAx =M~1'b

or

L "L ' Ax=L""L"'b
where L7T = (L)~
Multiply with LT to obtain

L7*AL"L"x =L"h
Define: A = L AL T: ¥ =L"x:b=L"1h
Now apply CG to AX = b.



Preconditioned CG for M~ 1Ax = M~ 1b

* Definition: Let A, M be spd. The M-inner product <:,->,, is
saidtobe < x,y >y=< Mx,y >= x'My.
Fact:

1. M~ 1Ais symmetric with respect to <-,->,,, i.e.,
<M lAx,y >y=<x, M 1Ay >,

2. M™1A s positive definite with respect to <-,>,, i.e.,
< M 1Ax,x >,,> 0forallx = 0.

* We can apply the CG algorithm to M~ 1Ax = M~ 1p,

replacing the standard inner product by the M-inner
product.

e letr=b—Ax.z=M'r. Then< z,z >,,=<r,Z > and
< M Av,v >, =< Av,v >

* Reference. Y. Saad. lterative Methods for Sparse Linear Systems



Preconditioned CG Method

« Define z¥) = M~1r(®) to be the preconditioned residual.
Let x(9 be initial guess.

Set r(® = p — Ax9): Solve Mz(®) = (O for z(0)

Set v = z(0)

fork =1,2, ...

<z(k=1) (k=15
<v(K) Ap(K)>

x(0) = xk=1) 4 g pO

r® = &= _ g, Av®

solve Mz(K) = (&) for z(K)

pr =< r(k),r(k) >

if \/px < € exit. //convergence test

<z () >
Sk T LD p(k-D>
pk+D) = Z(0 4 g pO

end

dp =




Split Preconditioner CG for AX = b

* M is a Cholesky product.

e Define D) = [Tp(B) % = [Tx, #(0) = [T 7z(k) —
L 1r®) A =1714L7T,

* Fact:
— < r®) 72K 5 =< k) [-T[-1pk) 5 =< p(R) p(K) >
— < Av®) p() > = < ALTTHB) [7THE) > =< ) ) >
— With new variables, the preconditioned CG method

solves AX = b.



Split Preconditioner CG

Let x(9) be initial guess.
Set T(O) = b — Ax(o), 1’,‘.(0) — L_lr(o) and v(l) — L—T?(O)
fork =1,2, ...
k1) flk-1)s
Y = 00 ap0>
x(k) — x(k_l) -|_ akv(k)
) = pe=1) — o, 71 4Ap ()

pk =< r(k), r(k) >
if \/p, < € exit. //convergence test

<) p(l)>
Sk = Fk-D p(k-D>
v(k'l'l) — L_Tf'(k) + Skv(k)

end



Incomplete Cholesky Factorization

 Assume A is symmetric and positive definite. A is sparse.
e FactorA =LLT + R, R # 0.L has similar sparse structure as

A.
fork=1,..,n
lkk:\/a_kk
fori=k+1,..,n

l __ Qi
ik =7 -
kk

forj=k+1,..,n

if a;; = 0 then
lij — 0
else
a;; = a;; — Lyl
endif
endfor
endfor

endfor




Jacobi Preconditioning

In diagonal or Jacobi preconditioning

M = diag(A)

* Jacobi preconditioning is cheap if it works, i.e.
solving Mz(F) = () for z(K) almost cost nothing.

References
* CT. Kelley. lterative Methods for Linear and Nonlinear Equations

 T.F Chanand H. A. van der Vorst, Approximate and incomplete factorizations, D.
E. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Parallel Numerical Algorithms,
pp. 167-202, Kluwer, 1997

M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate
inverses, SIAM J. Sci. Comput. 18:838-853, 1997

* Y. Saad, Highly parallel preconditioners for general sparse matrices, G. Golub, A.
Greenbaum, and M. Luskin, eds., Recent Advances in Iterative Methods, pp. 165-
199, Springer-Verlag, 1994

* H. A.van der Vorst, High performance preconditioning, SIAM J. Sci. Stat.
Comput. 10:1174-1185, 1989



Parallel CG Algorithm

 Assume a row-wise block-striped decomposition of matrix A and partition all vectors
uniformly among tasks.

Let x(%) be initial guess.
Set r(® = p — Ax(©): solve Mz(® = y(® for z(0)
Set v(D = z(0)
fork =1,2, ...
g = Av® // parallel matrix-vector multiplication
zr =< zK=D k=1 5 //parallel dot product by MPI_Allreduce

a, = @(Zk—;g> // parallel dot product by MPI_Allreduce

200 = x6D g p®

r = &1 _q, g //

solve Mz(®) = ) for z(K) // Solve matrix system, can involve additional complexity
pr =< rik) ) > // MPI_Allreduce

if \/pr < € exit. //convergence test

Zr, =< z() ) // parallel dot product

S = =

zr
v(k‘l'l) = r(k) + Skv(k)

end



