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0 mssEn.
The right-haud side on R is computed by

I

Jm T ffm (]XA m = 1.2.3.

< K

Nore that m and n ave the local numbers of the three vertices of .. while 7
and j used in (1.23} are the global numbers of vertices in K.

To assemble the global matrix A = {a;;) and the right-hand side £ = (f;).
one loops over all triangles Ky and successively adds the contributions from
diffevent A s:

For k= 1.2...... M. compute
_ IS
AZ b o — SeElmakl 2 Ay
: _ ok o
faimp = Fzimen+ Foe mon=1.2.3.

The approach used is el ment-oricpted: that is. we loop over elements (ie.. tri-
aneles). Experience shows that this approach is move efficient than the node-
oriented approach (i.e.. looping over all nodes): the latter approach wastes

too mucl time in repeated computations of A and £

1.1.4.3 Solution of a Linear System

The solution of the linear svstemn Ap = £ can be performed via a direct
method (Ganssian elimination) or an iterative method {e.g.. the conjugate
aradient method). which will e disenssed in Seer. 110, Here we just mention
that in use of these two methods. it is not necessary to exploit an array
AN o store the stiffness matrix AL Instead. since A is sparse and
usttally o bawd matrix. onlv the nonzero entries of A need to he stored. <ayv.
in an one-dimensional array.

1.2 Sobolev Spaces

In the previous section. an introductory finite element method was developed
for two siniple model problems. To present the finite elemwent method in a
general formulation. we need to use function spaces. This section i devoted to
the development of the function spaces that ave slightlv more general than the
spaces of continuous functions with piecewise continuous derivatives utilized
in the previous section. We establish the small fraction of these spaces that is
sufficient to develop the foundarion of the finite element method as studied
in this book.
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1.2.1 Lebesgue Spaces

In this section, we assume that € is an open subset of R%, 1 < d < 3, with
piecewise smooth boundary. For a real-valued function v on Q, we use the

notation
/ v(x) dx
o

to denote the integral of f in the sense of Lebesgue (Rudin, 1987). For 1 <
q < 00, define
1/q
oy = [ oot ax)

[l Loe () = ess sup{fo(x)} : x € 0},

[

For ¢ = o0, set

where ess sup denotes the essential supremum. Now, for 1 < g < oo, we
define the Lebesgue spaces

LYQ) = {v: v is defined on @ and {|v||p4(q) < oo} .

For q = 2, for example, L*(Q) consists of all square integrable functions on
Q0 (in the sense of Lebesgue). To avoid trivial differences, we identify two
functions u and v whenever [ju — vl|Leq) = 0; ie., u(x) = v(x) for x € Q.
except on a set of measure zero.

Given a linear (vector) space V', a normin V. || - ||, is a function from V
to IR such that

e [v|l >0 VYweV;|v|]=0Iif and only if v = 0.
o jlcvf] =lc] v YeeR, veV,
o lutv| <lul| + vl Yu, v eV (the triangle inequality).

A linear space V endowed with a norm || - || is called a normed linear
space. V is termed complete if every Cauchy sequence {v;} in V has a limit v
that is an element of V. The Cauchy sequence {v;} means that |[v; —v;|| — 0
as 1,j — oo, and completeness says that ||v; — v|| — 0 as ¢ — oo. A normed
linear space (V.| -||) is called a Banach space if it is complete with respect to
the norm || - ||. For 1 < ¢ < oc, the space L4(f2) is a Banach space (Adams,
1975).

There are several useful inequalities that hold for functions in L9(Q2). We
state them without proof (Adams, 1975).

Holder’s inequality: For 1 < q,q' < oo such that 1/¢ + 1/¢' = 1, it holds
that

luvllso) < fullzo@ vl gy Vo€ LI, ve L9(@) . (129)

When ¢ = ¢’ = 2, this inequality is also called Cauchy’s or Schwarz’s inequal-
ity
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luvliziqy < lulleylivlicze  Vu, v e L) (1.30)

The triangle inequality applied to LI(§2) is referred to as Minkowski’s in-
equality:

lu+vllpay < llullpa) + vlizaey  Yu. v e LY(Q) . (1.31)

1.2.2 Weak Derivatives

We introduce the notation

dlely
D%y = , ,
h Az ozy? - Ot
where & = (a1. g, ..., q) is a multi-index (called a d-tuple), with a1, a2, ...,

g nonnegative integers, and ja| = a1 +az + ... +aq is the length of . This
notation indicates a partial derivative of v. For example, as d = 2, a second
partial derivative can be written as D% with o = (2,0), @ = (1,1), or
a=(0.2).

In calculus, derivatives of a function are defined pointwise. The variational
formulation in the finite element method is given globally, i.e., in terms of
integrals on 2. Pointwise values of derivatives are not needed; only derivatives
that can be interpreted as functions in Lebesgue spaces are used. Hence it
is natural to introduce a global definition of derivative more suitable to the
Lebesgue spaces.

For a continuous function v defined on Q. the support of v is the closure
of the (open) set {v : v(x) # 0,x € Q}. If this set is compact (i.e., bounded),
then v is called to have compact support in . When 2 is bounded, it is
equivalent to saying that v vanishes in a neighborhood of the boundary I
of Q.

For @ c IRY, indicate by D(Q) or C5°(Q) the subset of C>°(Q) (the lin-
ear space of functions infinitely differentiable) functions that have compact
support in 2. We use the space D(€2) to introduce the concept of weak (gen-
eralized) derivatives. For this, we need the following function space:

L (Q) = {v:ve L'(K) for any compact K inside Q} .

Note that L} () contains all of C?(Q) (continuons functions.in(2). Functions

in L},.(Q) can behave arbitrarily badly near-the boundary. With dist(x,T)
denoting the distance from x to I', the function et/ ¢ L} (%), for

example.
A function v € L}, () is said to have a weak derivative. Dy v. if there is
a function u € L, (§2) such that
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/u(x)g@(x) dx:(—l)fo"/v(x)Daap(x) dx  VeeD(O).
Q Q

If such a function u does exist, we write D%v = u.

For any multi-index o, if v € C1*/(Q), then the weak derivative D&%
exists and equals D%v (cf. Exercise 1.13). Consequently, we will ignore the
difference in the definition of D¢ and D®. Namely, if classical derivatives do
not exist, the differentiation symbol D® will refer to weak derivatives.

Ezxample. We consider a simple example with d = 1 and § = (—1,1). Let
v(x) =1 — |z|. Then D'y exists and is given by

(z) = -1 ifx>0,
WE =3 ifz<0.

In fact, for ¢ € D(2), an application of integration by parts yields

/_1 v(l‘){;—(’;(z) dz

1
0 . 1 w
:/ v(r)j—:(x) da:+/0 v(r)j—;(m) dx

il

0 1
- {wﬁll - [ 10t do+ il - | et aa
= —/‘ u(z)p(z) dr |

1
since v is continuous at 0.
Note that v is not differentiable at 0 in the classical sense. However, its
first weak derivative exists. One can show that its higher order derivative Din
does not exist for 7 > 2 (cf. Exercise 1.14).

1.2.3 Sobolev Spaces

We now use weak derivatives to generalize the Lebesgue spaces introduced
in Sect. 1.2.1.

For r=1,2,... and v € L] (), assume that the weak derivatives D%

exist for all |a| < r. We define the Sobolev norm

1/q

“UHWW(Q) = Z HDaU“%q(Q)

el <
if 1 < ¢ < cc. For ¢ = oo, define

lvllwroerqy = s [D%v]| Lo @y -
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The Sobolev spaces are defined by
Wr(Q) = {v € L) : [olwragy <20},  1<g<oo.

One can check that ||-|yyr.q(q) is a norm; moreover, the Sobolev space W74((2)
is a Banach space (Adams, 1975).

We denote by Wy q(Q) the completion of D QQLyj}Q,;ﬁsgect to_the norm
I llwrag)- T T .

“For © ¢ R? with smooth boundary and v € Wha(Q), the restriction
to the boundary T', v|r, can be interpreted as a function in L¢(I") (Adams,
1975), 1 < ¢ < oo. This does not assert that pointwise values of v on I" make
sense. For g = 2, for example, v|r is only square integrable on I'. Using this
property, the space W;*?(2) can be characterized as

W5i(Q) = {v e WHYQ) : D*|p =0 in L3(D), |a| < r} .

For later applications, the seminorms will be used:

1/q
olwraoy = Y IDwll¢, . 1<g<oc,
laj=r
ll'iWﬂx(Q) = ‘Igfg HD%ULx(Q) .

Furthermore, for ¢ = 2, we will utilize the symbols
HY(Q) = W"(Q), Hj(Q) = WI3(Q), r=1.2,....

That is, the functions in H7((2), together with their derivatives D%v of order
lov] <1, are square integrable in Q2. Note that H%(Q) = L?(Q).

The Sobolev spaces W™2({2) have a number of important properties.
Given the indices defining these spaces, it is natural that there are inclu-
sion relations to provide some type of ordering among them. We list a couple
of inclusion relations; see Exercise 1.15.

For nonnegative integers r and k such that r < k, it holds that

wkaQ) ¢ Wre(Q), 1<g<eo. (1.32)
In addition, when € is bounded,
W) c W), 1<q<q <oo, (1.33)

forr=1,2,....

1.2.4 Poincaré’s Inequality

We show an important inequality which will be heavily used in this book,
Poincaré’s inequality. It is sometimes called Poincaré-Friedrichs’ inequality
or simply Friedrichs’ inequality.
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Before introducing this inequality in its general form, we first consider
one dimension. For any v € C§5°(I) (I = (0.1), the unit interval). because

v(0) = 0, we see that
T dv(y)
u(x) :/ d
o dy Y

Consequently, by Cauchy’s inequality (1.10), we have

e [ 580 ()" ([ (5"

1/2

1/2

which, by squaring and integrating over I, yields
”U“p([) < Pleng -
Because C§°(1) is dense in H}(I), we see that

ol ey < lvlagy YeeV=HAI). (1.34)

This is Poincaré’s inequality in one dimension.
We can extend this argument to the case where Q is a d-dimensional
cube: Q = {(x1,29,...,24) : 0 < 2; <[, i = 1.2....,d}, where | > 0 is a

real number. Again, since C5°(9) is dense in H}(Q), it is sufficient to prove
Poincaré’s inequality for v € C3*(2). Then we see that

L1 8
v(zy.zo,. .., zq) =v(0,z9...., Zq) +/ ! (y.xa. ..., xq) dy
0 61’1
Because the boundary term vanishes, it follows from Cauchy’s inequality
(1.10) that ‘
= ) v )
[zr(x)12§/ dy/ = (y,@2,..., zq)| d
A A 8:Cl(y, 2:---.24)| dy
! 2
du
<{ —(y. 20, . ... ' .
< /0 v (y.22,....24)| dy
Integrating over (2 implies
leligsay < ol Vo € HY(Q). (1.35)

For a general open set Q C IR? with piecewise smooth boundary, if v €
H(Q) vanishes on a part of the boundary I' with this part having positive
(d — 1)-dimensional measure, then there is a positive constant ¢ , depending
only on €, such that (Adams, 1975)

1.2 Sobolev Spaces 25
SKUHLQ(Q) S C E/U‘HI(Q) 5 (136)

If Q is bounded. this inequality implies that the seminorm | - | Hi(g) is equiv-
alent to the norm || - [ g1(q) in H (). In general, an induction argument can
be used to show that |-| g+ (o is equivalent to || || gr(qy in HJ(Q). 7 =1,2.....

1.2.5 Duality and Negative Norms

Let V be a Banach space. A mapping L : V — IR is called a linear functional
if
L{au+ 3v) = aL(u)+ 3L(v), a, 3R, u, veV.

We say that L is bounded in the norm || - ||y if there is a constant L > 0 such

that

L)l < Lielly  YeeV.

The set of bounded linear functionals on V is termed the dual space of V,
and is denoted by V.

A bounded linear functional L is actually Lipschitz continuous (and thus
continuous); i.e..

IL(v) = L(w)| = |[L(v — w)! < Lllv — wlily Yo, w eV,

Conversely. a continuous linear functional is also bounded. In fact, if it is not
bounded. there is a sequence {v;} in V such that {L(v;)l/||villy > 4. Setting
wy = v/ (Clvg]]v). we see that [L(w;)! > 1 and |Jw; iy = 1/¢. Then w; — 0 as
i — oc. which. together with continuity of L. implies L(w;) — 0 as i — .
This contradicts with |L(uy)! > 1.

For L € V', define

L{v
IL|jy» = sup "(;1) .
oseev UiV

Since L is bounded, this quantity is always finite. In fact, it induces a norm
on V', called the dual norm (cf. Exercise 1.16), and V’ is a Banach space
with respect to it (Adams. 1975).

Let us consider the dual space of L¥(). 1 < ¢ < c. For f € L7 (Q).
where 1/g +1/¢ = 1. set

L(v) = / F(x)e(x) dx. v e L) .
Q
It follows from Hélder’s inequality (1.29) that L is bounded in the L%norm:
L(v)| < HfHLu'(Q)H'UHL'J(Q)« ve LiQ) .

Thus every function f € L7 () can be viewed as a bounded linear functional
on LI(Q). Due to the Riesz Representation Theorem (cf. Sect. 1.3.1). all
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bounded linear functionals on L9(Q) arise in this form, so L% (Q) can be
viewed as the dual space of LY(Q2). The number ¢’ is often termed the dual
index of g.

For 1 < g < oo and a positive integer r, the dual space of the Sobolev
space W™4((2) is indicated by W="4(Q), where ¢’ is the dual index of ¢. The
norm on W79 (Q) is defined via duality:

L{v)

Wl o= swp e LeWT(@).
ozvewra(q) [Iv[lwra)

1.3 Abstract Variational Formulation

The introductory finite element method discussed in Sect. 1.1 will be written
in an abstract formulation in this section. We first provide this formulation
and its theoretical analysis, and then give several concrete examples. These
examples will utilize the Sobolev spaces introduced in Sect. 1.2, particularly,
the spaces H™(Q2), r =0,1,2,....

1.3.1 An Abstract Formulation

A linear space V', together with an inner product (-, -) defined on it, is called
an inner product space and is represented by (V5 (- )) . With the inner product
(+,-), there is an associated norm defined on V:

loll = V(v,v),  weV.

Hence an inner product space can be always made to be a normed linear
space. If the corresponding normed linear space (V, - H) is complete, then
(V, (-,-)) is termed a Hilbert space.

The space H™(Q)) (r = 1,2,...), with the inner product

(U, 0)prr (o) = Z /QDO‘u(x)Dav(x) dx, u, ve H'(Q)

o <
and the corresponding norm || - || gr(qy. is a Hilbert space (Adams, 1975).
Suppose that V is a Hilbert space with the scalar product (-,-) and the
corresponding norm || - [y Let a(+,-) : V x V — IR be a bilinear form in the
sense that

a(u,av + Bw) = aalu.v) + falu, w) ,
alow + fr,w) = aalu, w) + Balv,w) ,

for o, 3 € R, u,v,w € V. Also, assume that L : V — IR is a linear functional.
We define the functional F': V — R by

F(v) = %a(v,y) ~ L), weV.
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We now consider the abstract minimization problem
Find p € V such that F(p) < F(v) Yee V., - (1.37)
and the abstract variational problem
Find p € V such that a(p,v) = L(v) YoeV. {1.38)

To analyze (1.37) and (1.38), we need some properties of a and L:

e a-.-) is symmetric if
a(u.v) = alv,u) Yu, v €V . (1.39)
e a(-.-) is continuous or bounded in the norm | - ||y if there is a constant
a* > 0 such that
la(u,v)| < a*jullvielly  Vu, veV. (1.40)

o a(-,-) is V-elliptic or coercive if there exists a constant a, > 0 such that

la(v.v)] > a. ]|} Yee V. (1.41)
¢ L is bounded in the norm | - |v:
L) < Lilv]ly YoeV. (1.42)

The following theorem: is needed in the proof of Theorem 1.1 below
(Conway, 1985).

Theorem (Riesz Representation Theorem). Let H be a Hilbert space with
the scalar product (-.-)g. Then, for any continuous linear functional £ on H
there is a unique u € H such that

E(”) = (U, U)H .

We now prove the next theorem.

Theorem 1.1 (Lax-Milgram). Under assumptions (1.39)-(1.42), problem
(1.38) has a unique solution p € V. which satisfies the bound

pllv < aL— : (1.43)

*

Proof. Since the bilinear form a is symmetric and V-elliptic, it induces a
scalar product in V:

[u, o] = a(u,v). u, veV.
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