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HW 10.9.5 Find an approximation to the solution of the annulus probleg '
(10.9.1)-(10.9.3) with R; = 0.5, F(r,6) = exp(r)sin2r8 for (r,6) € Ry
f1(0) = sind8, f2(6) = sin 36, 6 € [0,2x]. Use difference scheme (10.9, dl
(10.9.11), M, = 100, My = 100, and the optimal SOR scheme with _SE,
the difference of successive iterates and the residual as a stopping criteri
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HW 10.9.6 (a) Find an approximate solution of the disk problem (10.9.4}~ &
(10.9.5) with F(r,6) = 0 for all (r,6) € R4 and FAS =sin26, 6 € [0,2x], T

Use difference scheme (10.9.12)-(10.9.16), M, = 20, My = 20, m.b.m the

Jacobi scheme with the residual as a stopping criterion. : ...a,. 1
(b) Repeat the solution in part (a) using the optimal SOR scheme Sn_. o
the difference of successive iterates as a stopping criterion. 4 .m,
& -
L

HW 10.9.7 Find an approximate solution of the disk problem Gom&l ;
(10.9.5) with F(r,0) = cosnrcos2nf for (r,0) € Rq and fo(6) = sindd,
8 € [0, 2x]. Use difference scheme (10.9.12)-(10.9.16), M, = 100, My = 100,
and optimal SOR with the difference between successive iterates and :6 pe
residual as a stopping criterion. ...“.
HW 10.9.8 Resolve the problem m?mc in HW10.9.7 using the Qw:ﬂ. a3

B L

Seidel scheme &83_% on equation (10.9.17). B
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10.10.1 Introduction | .
In Section 10.5.1 we mentioned that in this section we would take mhswng -} h
of the fact that the components of the error associated with the small =8

eigenvalues were eliminated quickly, and most of the work we did with
residual correction schemes was to eliminate the components of the error &
associated with the large eigenvalues. The basic idea behind multigrid isto
eliminate the high frequency components of the error quickly on a fine'grid. =
To accomplish this, the high frequency components of the error will have =
to correspond to the smallest eigenvalues of the iteration matrix. We then =
transfer the problem to a coarser grid where high frequency components of
the error correspond to some of the lower frequency errors on the previous
grid. We can then eliminate these high frequency components of the error
on this coarse grid quickly. This process is repeated on yet coarser grids,
and the result is finally transferred back to the fine grid. The savings in
computational costs are due to both the fact that we are eliminating the
errors quickly on the appropriate grid and the fact that the coarse grids

. where wP? p s =
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are cheaper to work on. Maybe the most amazing statement about the

‘wnogacnm described above is that it works, and it works well.

~In this section we will give an introduction to multigrid. We will include
one multigrid algorithm and try to use some computations along with some

graphics to illustrate how and why the procedure described above works.

For a more in-depth description of the multigrid algorithm and awmoau see

refs. [8], [20] and [43]

Model Problem
" As a part of our discussion, we will return to model problem (10.2.3)-

(10.2.7). For convenience, we will set Az = Ay and choose My = My, =M
50 that M = 27. Obviously, the latter condition restricts our choice of M. It

is not a requirement, but as we will see, it is a very convenient assumption.

_'We will consider the model problem both as given in (10.2.3)—(10.2.7) and
‘as the matrix problem Au = f as described in equation (10.4.1).

‘Model Computational Problem

. When we use computations to illustrate different aspects of the multigrid
“scheme, we will use a special case of model problem (10.2.3)-(10.2.7) where
“‘we set fijx = 0 and Fjx = 0 for all j and k, and choose M = 2t =
16. Obviously, the homogeneous difference equation has the unique zero
“golution and is the approximation to the homogeneous boundary-value

problem (10.2.1)-(10.2.2) that will have the unique zero solution. Hence,

“we see that in our computations, we do not have to be concerned with

truncation error. We will concentrate on the convergence of the multigrid

- scheme. So as to illustrate our point clearly, we will use an initial guess of

15 156

w=y Yy wh (10.10.1)

s=1p=1

,15 are the eigenvectors of A. We note that by
using such an initial guess, all eigencomponents of the error are present

" at a significant level and must be eliminated. The initial error is given by

- ey = —uy, but for convenience, when we are discussing the error, we will

_often plot —eg = ug. Recall from (10.5.29) that the eigenvalues of A are
* given by

I SN g (10.10.2)

Ups = MMMA - oOm cos .10.
4 3 3 8T
= — e — 10.10.3
DHMAmE w?s._ymE 537 ( )

and the components of the associated eigenvectors are given by

w ‘
leaﬁmms@m. jk=1,...,15, ps=1,...,15. (10.10.4)
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We note that these eigenvectors are orthogonal (this makes some of our test

computations a bit easier). We emphasize that from the computational point
of view, initial guess (10.10.1) is a terrible initial guess. A little thought

(and/or a plot of ug or its analytic analogue) will reveal that this function
i8 a terrible approzimation to the solution of our model problem. We uge

this initial guess for the convenience of having all of the modes present. -
We notice that the first and last eigenvectors are given by

:|— il - Es.mbms. mmuhmwuﬁ mSm.Hmm:u.l
e e T T S TR - 16" 16 16 16
157 . 15mT
= 8in 10.10.
sin g sn 7 | ( oe
and
witl = ﬁ EHlmHmmbE mwbﬁmgwéma mmummmg.llllwm.pma
B 16 16 16 16 5 16
2-157 , 157 15-15m _ 15-15mT
in ———sin — --- si i , 10.10.
sin —— sin — sin —— sin —— _ ( c&

respectively. We should understand that eigenvectors (10.10.5) and (10.10. 6)
are analogues of the functions sin 7z sin 7y and sin 157z sin 157y, respec-
tively. All of the other eigenvectors can be written similarly, and they all
have analytic analogues. Inspecting the vectors w'! and w515 carefully (it
may be easier to.look at the analytic analogues) shows that w!! is slowly
varying and w'®15 ig highly oscillatory. The pattern seen here is generally
the case for all of the eigenvectors: The eigenvectors wP*® where p and s
are small change slowly, whereas when p or ¢ are large, the eigenvector
is oscillatory. We will generally refer to the slowly varying eigenvectors as
smooth or low frequency vectors and to the highly oscillatory <mnS..u
as oscillatory or high frequency vectors.

If we were to consider a grid with M; = My, = M/2 (M, = M, = m in
our example), we see that the highest frequency eigenvector is given V%

wi? = TENHmS...H mEMHmEm..; mwblqamgq.qa
- 8 8 8 8 8 8 ,,
2w | Tn LT T7-TmT h
s ) mEI@I <+ Sl 3 s 8 g uAHO.HO.-c

i.e., analogous to the analytic function sin 77z sin 77y. It should be clear
that the frequency of the highest frequency eigenvector on the M/2-grid is
a mid-range frequency on the M-grid. The difference between these “high
frequencies” on the two grids is what we will exploit in deriving the BEn_.
grid iterative scheme.

Model One Dimensional Problem

There are some aspects of multigrid that we felt are just too gross or im-
possible to illustrate with two dimensional problems. Hence, we will Oonw.
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sionally consider the one dimensional problem analogous to our two dimen-
sional model computational problem. We will consider the boundary-value
problem

" =0, z€(0,1) (10.10.8)
v(0) = v(1) =0, (10.10.9)

along with the difference m@:uﬁon approximation to boundary-value prob-
lem (10.10.8)—(10.10.9).

1 2 1
~ AUkl T Aot~ Atk =0, k=1...,M-1 (10.10.10)

up = upy = 0. (10.10.11)

When we use this example, we will either use a general value of M or set
M=38.

If we return to our description of the multigrid algorithm given in the

first paragraph of this section, it should be reasonably clear that what we
must do is
(i) develop an iterative scheme so that on any given grid, the scheme will
eliminate the components of the error associated with the high frequency
modes, and
(ii) develop grid transfers so that the (p,s) component of the error on
the M-grid is transferred to the (p, s) component of the grid on the M/2-
grid, and the results can be passed from the M/2-grid back to the M-grid
without introducing new error.
As we shall see, the first step is relatively easy (because we should know
quite a bit about iterative schemes by this time), and the second step is
not so easy. We are able, however, to complete the second step sufficiently
well to develop a very useful multigrid iterative scheme.

10.10.2 Smoothers

We begin by mentioning that we title this section “smoothers” because that
is what we really want out of our iterative scheme. We want the iterative
scheme to smoothen the error function, i.e., eliminate the oscillatory modes.
We begin with an obvious approach by trying some of our favorite schemes.
We consider our model computational problem with the initial guess given
by ug, (10.10.1). We should realize that if we were to plot the coefficients
of the initial error expanded with respect to the eigenvalues of A, by our
definition of up we would get a constant “one” function (actually a minus
one, but we have eliminated the minus sign for convenience).

In Figure 10.10.1 we plot the coefficients of the error for our compu-
tational model problem expanded with respect to the eigenvectors w??,
p,s =1,...,15. This plot represents the error after two Jacobi steps with
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ug, (10.10.1), as our initial guess. It should be pretty clear that the Jacobj
scheme is eliminating the middle frequency components, not the high fre.
quency components. This should not surprise us, since the eigenvalues of
the Jacobi iteration matrix Ry are :

AP = WASmNEA:,TSmmv

and the associated eigenvectors are wP®, p,s = 1,... ,M. See GS.EUF
(10.5.1). The error components associated with the smallest eigenvalues of
the iteration matrix get smashed down. The smallest eigenvalues of the
Jacobi iteration matrix are associated with the mid-range values of p and
s. Hence, the oscillatory components of the error do not get eliminated by
the Jacobi iteration scheme.

EOCNMS.E.H._u_O».o:raogm._owmn_..mo:rmwﬂo_.p@magduwoovmm»mvm !Eu
ug, (10.10.1), as the starting guess. ‘

Before we proceed with our next candidate, it might be helpful to make
it clear how we generate the plot given in Figure 10.10.1. We begin by
using a Jacobi scheme where we set uold equal to the value defined by ug
in (10.10.1). After we have performed two Jacobi iterations, we have ug
and want ap,, p,s =1,...,15, such that

15 15

Imunnunm M ap, WP,

a=1 p=1

This is not difficult, since the vectors w?? are orthogonal, i.e., we «www_&o
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- dot product of both sides with w0 % and get

uy - who %o
wPo 8o . wPoso’

Qvo 80 —

- Figure 10.10.1 is a plot of the function a,,, for p,s=1,...,15. -

In HW10.5.16 we introduced the weighted Jacobi scheme. We introduced

- the weighted Jacobi scheme as the Jacobi analogue to the SOR scheme,
" ie., the weighted Jacobi is to the Jacobi scheme as the SOR scheme is
~ to the Gauss-Seidel scheme. In HW10.5.16 we found that we could not
_ overrelax the Jacobi scheme. For convergence, we could only underrelax
- the scheme, i.e., the weighted Jacobi scheme converges for 0 < w < 1.
- Probably at that time, there appeared to be no redeeming characteristics of
* the weighted Jacobi scheme. In Figure 10.10.2 we plot the coefficients of the
- error expanded with respect to the eigenvectors wP?®, p,s =1,...,15. The
- error plotted is after three weighted Jacobi steps with w = 2, beginning
- again with initial guess ug, (10.10.1). We see in Figure 10.10.2 that the

weighted Jacobi scheme eliminates the high frequency components of the

- Error.

* FIGURE 10.10.2. Plot of the coefficients of the error after three weighted Jacobi
_ steps with up, (10.10.1), as the starting guess.

It is not difficult to see why the weighted Jacobi scheme eliminates the

~ high frequency components of the error. Using the results of HW10.5.16,
_we see that the eigenvalues of the iteration matrix for the weighted Jacobi
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scheme are given by

M =1-w+wh) (N is the eigenvalue of the Jacobi iteration matrix)

HHIE+WA8mmH+8mMHv

2 M M ‘
ol T e S, pose -
=1 EAmE 8§+m5 wgv. ps=1,...,M -1 Copcé

The eigenvalues get smaller as p and s get larger.
When we choose an iterative scheme to use with multigrid, we really want
more than the scheme to eliminate some of the high frequency error miodes,
During the second step of multigrid, we will work on a grid with M, =
M, = M/2. On this grid we will have only the modes analogous to:the
analytic modes sinrzsinmy, sin2rzsinwy, ..., sin(M/2)rzsin(M/2)ry,
For this reason, on the M-grid we would really like to eliminate all of the
error associated with the modes from M/2 to M — 1 (or at least eliminate
most of the error associated with these modes). It is not difficult to see that
the eigenvalues associated with the weighted Jacobi scheme get smaller ag
w gets larger. Also, the eigenvalues decrease monotonically with respect
to p and s, and for sufficiently large values of w, the eigenvalues become
negative for the larger values of p and s. Hence, we see that if we choose w
so that yﬁ“w = —AM we will damp the modes between M/2 and M — 1
as much as is possible by using the weighted Jacobi scheme. In HW10. 10.2
we see that »»&w = ~AM if w = Z (which, conveniently, is the value of w
that we used in the calculation given in Figure 10.10.2). We also see from
HW10.10.2 that when w = w. then |A2| < w. for p,s = M/2,... , M —1,
Hence, when we use w = w‘ each iteration reduces each high frequency
component of the error (the frequencies between M/2 and M — 1) by at
least a multiple of w In the above discussion and in HW10.10.2 we use
AM_ We should be clear that A}{ is not an eigenvalue. We use the logical
extension of the notation and definition for the eigenvalues to give wn.
which is a convenient bound. i
We must realize that there are other iterative schemes that are effective
smoothers. One very obvious choice to try is the Gauss-Seidel scheme: In
Figure 10.10.3 we give the plot of the coefficients of the error after two
Gauss-Seidel iterations. It is clear that Gauss-Seidel also eliminates the high
frequency components of the error. If we were to look at the eigenvalues of
the iteration matrix associated with the Gauss-Seidel scheme, it would not
be clear that the Gauss-Seidel scheme would eliminate the high frequency
components of the error. We saw in Example 10.5.2 that the eigenvalues of
the Gauss-Seidel iteration matrix are given by g
ST pr

w
A= AOOm@' +8m.@|v “anr..._glu

(the squares of the eigenvalues of the Jacobi iteration matrix), so it mrmcﬁ .

be clear that the mid-range eigenvalues are the smallest. The difference
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FIGURE 10.10.3. Plot of the coefficients of the error after two Gauss-Seidel steps

* with uo, (10.10.1), as the starting guess.

~ here is that the eigenvectors of the Gauss-Seidel iteration matrix are not
- the same as the eigenvectors of the matrix A. In fact, in Section 10.5.7
- we saw that the Gauss-Seidel iteration matrix does not have a full set
- of eigenvectors. It is just the case that the mid-range eigenvalues of the

" Gauss-Seidel iteration matrix (the smallest eigenvalues of the Gauss-Seidel
# jteration matrix) correspond to the high frequency components given with
* respect to the eigenvectors of A.

In most of our work on multigrid, we will use the weighted Jacobi scheme.
It is not that the weighted Jacobi scheme is the best. We will use it because

of the fact that it does work well and because it is very convenient that the
-eigenvectors of the iteration matrix of the weighted Jacobi scheme and the
- matrix A are the same.

1 HW 10.10.1 Consider the one dimensional model problem

—v" =0, z€(0,1) (10.10.13)
v(0) = v(1) =0 (10.10.14)
wum the finite difference approximation
1 2 1
l:DInﬂw&:&lw + mm.:» - |>|HM§»+H == Ov k= “_J ‘e v?ﬁ -1 AHOHOH.UV
ug = up = 0. (10.10.16)

“{a) Show that the eigenvalues and eigenvectors associated with the matrix
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