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Introduction

Fix a finitely generated Coxeter system (W,S) in a suitable reflection represen-
tation on a finite-dimensional real vector space V , and let S denote the symmetric
algebra of V with natural W -action. Kostant and Kumar [26] have associated to
this data a graded S-algebra Λ (the dual nil Hecke ring) on which W acts as a
group of graded S-algebra automorphisms; let ΛL (resp., SL) denote the ring of
WL-invariants of Λ (resp., S), for any standard parabolic subgroup WL of W . The
definition of Λ was motivated by geometric questions; if W is the Weyl group of a
suitable Kac-Moody group G, ΛL⊗S R is isomorphic to the cohomology ring of the
generalized flag variety G/PL for a standard parabolic subgroup PL corresponding
to WL (see also [1]). This paper studies properties of ΛL, and particularly some
ΛL-modules, which play an important role in the study of certain representation
theories associated to the W -action on V .

These representation theories are defined for each suitable (finite here, for sim-
plicity) interval ΓL of minimal WL-coset representatives in orders on W analogous
to Chevalley (Bruhat) order. For finite Weyl groups, some of them are known
via [32, 4] to be essentially blocks of Harish-Chandra bimodules for a semisimple
complex Lie group or blocks of O for the corresponding semisimple complex Lie
algebra, and they are conjecturally closely analogous in general. A construction of
one category associated to ΓL has been sketched in [21]. First, for RL = SL ⊗R S
(if WL is finite) or RL = ΛL (in general), one constructs an exact (in the sense of
Quillen) category CL of graded RL-modules, with filtrations of a prescribed type
having in particular certain RL-modules NL

x for x ∈ ΓL as successive subquotients.
The category PL of “projective” objects of CL is equivalent to the category of
finitely generated graded projective modules for a graded RL-algebra AL. The al-
gebra AL and its module category are the objects of basic interest. Some of their
properties can be established using “translation functors” between categories CL

and C∅, induced by the usual restriction and extension of scalars between RL-mod
and R∅-mod.

The first goal of this paper is to provide proofs for a number of results stated
without proof in [21], and used in an essential way in the theory surveyed there.
First, for construction of the categories CL, one needs to compute Ext1RL(NL

x , N
L
y )

for x 6= y in ΓL. Actually, we shall obtain more general results on Ext-groups which
imply that CL and PL can be given a combinatorial description using the posets
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(with edges labelled by roots) studied in [18]. To define translation functors, one
needs to know that for finiteWL, R := R∅ is free overRL and that HomRL(R,RL) ∼=
R as R-module up to degree shift (these last facts are well-known for RL = SL⊗S).
The proof of compatibility of the two definitions of CL and the translation functors
for finite WL (using SL⊗S or ΛL in the definition) requires the fact S⊗SL ΛL ∼= Λ,
together with a main result of Kostant-Kumar’s on the structure of the nil Hecke
ring, for which we provide a simpler proof suggested by the Ext-computations.

The most important open question about the representation categories discussed
above is the Kazhdan-Lusztig conjecture for them. According to this, graded char-
acters of “Verma-modules” in AL-mod are characterized by invariance under a
combinatorially defined involution on the module of formal characters, together
with some degree and support conditions. For finite WL, these properties would
follow from existence of suitable dualities (contravariant self-equivalences) of the
categories PL, compatible with translation functors, together with some degree con-
ditions on the projective indecomposable objects of PL (with suitably normalized
gradations). In this paper, we construct for each ΓL an RL-module ML (actually in
CL) which conjecturally functions as a “dualizing object” for PL, in the sense that
HomRL(?,ML) should be the desired contravariant equivalence on PL. Compati-
bility of these dualities with translation functors would then follow using the result
Λ⊗ΛL ML ∼= M∅ proved in this paper. The appropriate degree normalization of the
projective indecomposables would simply be the one requiring them to be fixed un-
der the duality. A much stronger conjecture concerning ML (asserting roughly that
all objects in PL may be obtained by iterating extensions which “come from” ML)
receives some support from results here which imply that it is true after localizing
at any height one prime of S.

In this paper, we study mainly modules for RL = ΛL and for RL = SL ⊗R S;
the categories PL, CL and ring AL are not even defined here and will be studied
elsewhere (though we do describe here in a general setting a few simple properties
of objects of CL regarded just as RL-modules). For crystallographic groups W ,
our main results all hold as well for an integral form ΛZ of Λ (essentially, the
graded ring of the filtered equivariant K-theory ring Ω of the flag variety of an
associated Kac-Moody group). This gives rise to canonically associated highest
weight representation theories (and others more akin to blocks of Harish-Chandra
bimodules) over arbitrary fields, for instance, reducing to the ones from ΛL for the
field R. A sequel to this paper will give the analogous results for Ω, needed for the
definition and study of (probably closely related) integral representation theories
which may be constructed from Ω itself (see [21]) For crystallographic groups W ,
several representation theories obtained from those mentioned above are known or
conjectured to be closely related to more familiar representation theories arising in
Lie theory; also, it seems likely that for such W , many of the objects constructed in
this paper and its sequel have geometric significance in relation to the generalized
Bruhat decompositions and Schubert-like varieties defined in [6].

We now describe the contents of this paper in some detail. Section 1 gives,
mainly without proofs, a listing of some of the (mostly well known) properties of
Coxeter groups and root systems used in this paper. We also recall from [16, 17]
the definitions of the orders ≤A on W used in subsequent constructions; they gen-
eralize and are closely analogous to Chevalley order and its reverse. The class of
reflection representations of Coxeter groups used is a natural one which includes
those of Weyl groups of Kac-Moody Lie algebras and the standard reflection rep-
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resentations in [7] (more generally, also those from “root bases” in [28]). For a
given non-crystallographic reflection representation of W , it may not be possible to
choose a corresponding “reduced” root system. This phenomenon arises for reasons
similar to those for existence of non-symmetrizeable generalized Cartan matices; it
substantially complicates the statements and proofs of results, so in subsequent
sections we work with reduced root systems and at one point briefly indicate how
the main results can be extended to non-reduced ones.

The main results of the paper are given in Sections 2–6, where we study a fixed
order ≤A on W , and a suitable subset Γ of W in the order ≤A, with WLΓ ⊆ Γ.
Let Q be the quotient field of S. In Section 2, we consider for J ⊆ L (essentially)
the ring HJ of functions Q→ Q generated by left multiplications by elements of S
and the BGG-Demazure operators q 7→ α−1(sα(q)− q) for simple roots α with the
reflection sα ∈ J (HJ is (anti)isomorphic to the “nil Hecke ring” of WJ as defined in
[26]). We construct a HJ -module MΓ which, in the case Γ = W in Chevalley order
and WJ = W , reduces to the left regular module for H := HS . There is a similar
result for suitable reflection subgroups W ′

K of W (associated to the order ≤A) with
ΓW ′

K ⊆ Γ. Actually, in Section 2, many of the results have analogues replacing the
BGG-Demazure operators by operators q 7→ Xα−1(sα(q)−q)+Y sα(q) (for suitable
scalars X,Y in R) arising in Lusztig’s study [30, 31] of graded Hecke algebras (I
wish to thank George Lusztig for suggesting this possibility). The arguments in
Section 2 are given in a form that applies simultaneously to both situations.

In Section 3, we recall Kostant-Kumar’s “dualization” of H to obtain the dual
nil Hecke ring Λ with its operators from H, and then give a similar dualization of
MΓ to obtain a graded Λ-module ΛΓ with operators from HL. In particular, one
has an action of WL on Λ and ΛΓ satisfying w(ψψ′) = w(ψ)w(ψ′) for w ∈ WL,
ψ ∈ Λ and ψ′ ∈ ΛΓ. If Γ = W in Chevalley order, ΛΓ reduces to the left regular
module for Λ; many of the formulae we give for ΛΓ are formally obtained simply by
replacing Chevalley order by ≤A in the corresponding formulae for Λ as obtained
in [26].

In Section 4, we describe a formalism suggested by the well-known Schubert
calculus, and use it to obtain a number of previously mentioned results concerning
the ring ΛL and the ΛL-module (ΛΓ)L of WL invariants (for finite posets, (ΛΓ)L is
the candidate “dualizing object” ML).

Section 5 gives a “local” characterization of the nil Hecke ring, which is used first
to give a simple proof of another description of H from [26]. The local description
of H is then extended to some closely related situations, and applied to give the
computation 5.7 of the previously mentioned Ext-groups Ext1(NL

x , N
L
y ) for the

rings RL = ΛL and, for finite WL, RL = SL ⊗R S. We also give a basic technical
fact 5.8 concerning the candidate dualizing object ML.

In Section 6, we study a homomorphism from the Iwahori-Hecke algebra of W
to the split Grothendieck group of a category of (Λ,Λ)-bimodules; the results here
do not extend in this form to ΛZ or to the equivariant K-theory ring Ω discussed
in the sequel to this paper. Much of Sections 5 and 6 depends only on properties
of the nil Hecke ring and its dual proved in [26] and the first part of Section 4.

A brief Section 7, which also is largely independent of earlier sections, discusses
the analogues for modules associated to polyhedral cones of some of the main results
from Sections 2–5 (again, these are needed in the study of representation categories
[21] which are not discussed here).
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Some of the arguments used in Sections 2–7 require some easy general properties
of modules with filtrations of a certain type; modules in the categories CL previously
mentioned (but not defined) are examples. These arguments have been collected
together and given at a general commutative algebra level in Section 8; they do not
depend on the previous sections at all. Some of the problems considered in this
paper for Coxeter groups have also been formulated in a more general context in
Section 8.

Sections 9–10 are appendixes to the paper. Section 9 discusses an extension
of Matsumoto’s well-known monoid lemma for Coxeter groups; it is useful in con-
structing versions associated to orders ≤A of standard objects parametrized by W .
Using this result, we indicate a possible more conceptual approach to the construc-
tion of the modules from Section 2; unfortunately, this approach contains a gap
which can at present only be filled in special cases.

In Section 10, we quote some general facts from commutative algebra and de-
scribe some results in the invariant theory of finite pseudoreflection groups arising
as special cases. Though these results are not new (especially for Coxeter groups,
in which case some of them may also be easily obtained using the Schubert calculus
formalism as in Section 4), it seems difficult to find an explicit reference for them
in the literature.

1. Root systems and orders on Coxeter groups

In this section, we summarize, with only occasional indications of proof, some
basic properties of Coxeter groups and root systems, and facts we shall require on
certain partial orders on Coxeter groups which generalize the well-known Chevalley
(Bruhat) order on W and its reverse. As general references on Coxeter groups, one
has [7] and [22]; for the standard Chevalley order, see [10].

1.1. Let k denote R or Z. We say that a subset X of a free k-module V is pointed
if there exists φ ∈ V ∗ := Homk(V, k) with φ(α) > 0 for all α ∈ X. We say that X
is reduced if mα = nβ for α, β ∈ X and m,n ∈ k≥0 implies m = n.

Now fix two free k-modules V and V ′ with a given k-bilinear map 〈−,−〉:V ×
V ′ → k, and pointed, reduced subsets Π ⊆ V , Π∨ ⊆ V ′ with a given bijection
α 7→ α∨: Π → Π∨ satisfying

(i) 〈α, α∨〉 = 2 for all α ∈ Π.

For α ∈ Π, define sα: v 7→ v− 〈v, α∨〉α in GL(V ), S = {sα}α∈Π, and W = 〈S〉 (the
subgroup of GL(V ) generated by S). Define Φ = {w(α) | α ∈ Π, w ∈ W } and
Φ+ = { γ ∈ Φ | γ ∈

∑
α∈Π k≥0α }. Dually, define sα∨ ∈ S′ ⊆ W ′ in GL(V ′) and

Φ∨+ ⊆ Φ∨ ⊆ V ′. For α 6= β ∈ Π, let cα,β := 〈α, β∨〉〈β, α∨〉 ∈ k.

Lemma. In the above situation, one has Φ = Φ+ ∪ (−Φ+) iff (ii)–(iii) below hold;
(ii) for α 6= β ∈ Π, 〈α, β∨〉 ≤ 0. Further, 〈β, α∨〉 = 0 if 〈α, β∨〉 = 0.
(iii) for α 6= β ∈ Π, either cα,β ≥ 4 (in which case we set mα,β = ∞) or cα,β =
4 cos2 π

mα,β
for some mα,β ∈ N≥2.

Proof. The proof is very similar to that of the special case [13, 4.11], by reduction
to rank two as in [12].
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1.2. If the conditions (i)-(iii) of the previous section hold (and Π, Π∨ are pointed
and reduced), as we now assume, we call (V,Π,Φ) and (V ′,Π∨,Φ∨) (dual) based
root systems over k. One calls elements of Φ, Φ+ and Π roots, positive roots and
simple roots respectively. Elements of S are called simple reflections.

For integral dual based root systems (i.e. ones with k = Z), we call V the weight
lattice. From such integral root systems, one obtains dual based root system over
R (and a natural identification of their corresponding groups W , W ′) by extension
of scalars to R (i.e. regarding V ⊆ V ⊗Z R and similarly for V ′).

Though we mainly consider dual based root systems (V,Π,Φ) and (V ′,Π∨,Φ∨)
over k = R in this paper, we sometimes assume they arise by extension of scalars
from integral systems as above, and refer to their weight lattice (which is regarded
as a lattice in V ).

1.3. Consider fixed dual based root systems as above. Let l′:W → N be the
standard length function of (W,S), defined by l′(w) = n if w = r1 . . . rn for some
ri ∈ S with n minimal; then r1 . . . rn is called a reduced expression for w. For
r, s ∈ S, define nr,s := ord(rs) ∈ N∪{∞}. For any monoid M , a family of elements
{xs}s∈S of M is said to satisfy the braid relations for W if for each r 6= s ∈ S
such that nr,s 6= ∞, one has xr1 . . . xrn

= xr0 . . . xrn−1 where n = nr,s and ri = r
for even i and ri = s for odd i. Let T be the set of W -conjugates of elements of
S (the set of reflections of (W,S)) and regard the power set P(T ) as an abelian
group under symmetric difference A+ B = (A ∪ B) \ (A ∩ B). For w ∈ W , define
N(w) = { t ∈ T | l′(tw) < l′(w) } ∈ P(T ).

Lemma. (a) For α, β ∈ Π, nsα,sβ
is equal to 1 if α = β and to mα,β otherwise.

(b) (W,S) is a Coxeter system i.e.

W ∼= 〈S | (rs)nr,s = 1 for all r, s ∈ S with nr,s 6= ∞〉

naturally.
(c) The map S → S′ given by sα 7→ sα∨ extends to a (unique) isomorphism W →
W ′ which we use to identify W ′ with W . Then 〈w(v), v′〉 = 〈v, w−1(v′)〉 for w ∈W ,
v ∈ V and v′ ∈ V ′.
(d) The bijection Π → Π∨ extends to a W -equivariant bijection Φ → Φ∨. Define
sα: v 7→ v − 〈v, α∨〉α in GL(V ) for α ∈ Φ. Then for any w ∈ W and α ∈ Φ,
wsαw

−1 = sw(α).
(e) The “reflection cocycle” N :W → P(T ) is characterized by N(s) = {s} for s ∈ S
and N(xy) = N(x) + xN(y)x−1 for x, y ∈ W . For w ∈ W , ](N(w)) = l′(w) and
N(w) = { sα | α ∈ Φ+ ∩ w(−Φ+) }
(f) (Monoid Lemma) Suppose elements xr of a monoid M , for r ∈ S, satisfy the
braid relations of (W,S). Then there is a unique family of elements {xw}w∈W of
M such that xw = xr1 . . . xrn

for any reduced expression w = r1 . . . rn.
(g) For any J ⊆ S, let WJ be the standard parabolic subgroup of W generated by
J , let ΠJ = {α ∈ Π | sα ∈ J } and let ΦJ = {w(α) | α ∈ ΠJ , w ∈ WJ }. Then
(V,ΠJ ,ΦJ), and the obvious dual (V ′,Π′

J ,Φ
′
J), are dual based root system with

associated Coxeter system (WJ , J).
(h) Φ (or equivalently Φ∨) is reduced (in the sense of 1.1) iff for all α 6= β ∈ Π with
mα,β finite and odd, 〈α, β∨〉 = 〈β, α∨〉. In that case, the map α 7→ sα is a bijection
Φ+ → T , and if w = sα1 . . . sαn

, αi ∈ Π, is a reduced expression for w ∈ W , then
Φ+ ∩ w(−Φ+) = {β1, . . . , βn} where βi := sα1 . . . sαi−1(αi).
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Proof. The proofs of these facts from the decomposition Φ = Φ+ ∪ (−Φ+) of the
root system into positive and negative roots are well known [35, 12] if the root
system is reduced. In general, one can prove the following two claims together by
induction on n;
(i) for α, αi, β ∈ Π with sα1 . . . sαn

(α) = cβ for some c ∈ R>0 and with sα1 . . . sαn

reduced, one has sα∨1
. . . sα∨n (α∨) = c−1(β∨)

(ii) any reduced expression of an element w of W can be converted to any other
reduced expression for w by successive application of the braid relations, if l′(w) ≤
n.
For each n, one first proves (i) by a reduction to the dihedral case similar to that
in the proof of Lemma 1.1, and then proves (ii) essentially by the usual proof of
the monoid lemma. Once (i) and (ii) are proved, the rest of the proof is standard.

Remarks. The W -conjugates of the subgroups WJ in (g) are called parabolic sub-
groups of W . Note that Φ is necessarily reduced (in the sense of 1.1) if k = Z, by
(h).

1.4. Define the “fundamental chambers” C = { v ∈ V | 〈v, α∨〉 ≥ 0 for all α ∈ Π }
and C ′ = { v′ ∈ V ′ | 〈α, v′〉 ≥ 0 for all α ∈ Π } of W on V and V ′. A standard
argument [23, 3.12] shows that
(1) each W -orbit on the “Tit’s cone” ∪w∈Ww(C) contains a unique point of C, and
the stabilizer in W of v ∈ C is generated by the reflections sα which fix v.
By (1), no non-trivial element of W fixes C elementwise iff
(i) for each α ∈ Π, there exists φ ∈ C with 〈φ, α∨〉 > 0.
If (i) holds, we say C is sufficiently large. If V is of finite dimension over k = R and
Π is finite, C is sufficiently large iff the interior of C (in the Euclidean topology) is
non-empty.

An element w of W is called a pseudoreflection if (1−w)(V ) is a free k-module
of rank one. The following sufficient conditions (b) for all pseudoreflections in W to
be reflections (i.e. of the form sα for α ∈ Φ+) are implicit in [26, 4.8], from which
the following proof is adapted.

Lemma. (a) Any pseudoreflection w ∈ W of order 2 is a reflection i.e. equal to
sα for some α ∈ Φ+.
(b) If the fundamental chamber of W on V is sufficiently large, then every pseu-
doreflection of W on V is a reflection.

Proof. The case k = Z follows from the case k = R, so we assume k = R. In general,
it is known ([33], [11]) that any involution w in a Coxeter group can be expressed as
a product of commuting reflections, say w = sβ1 . . . sβn for βi ∈ Φ+. One must have
〈βi, β

∨
j 〉 = 0 for i 6= j, hence (1−w)(V ) = ⊕iRβi. This makes (a) obvious. For (b),

note that there is no loss of generality in assuming that the fundamental chamber
on V ′ is sufficiently large (see the remark below). It is enough by (a) to show that
if w ∈ W is pseudoreflection, then w2 = e. Write w = sα1 . . . sαn

with αi ∈ Π.
The standard parabolic subgroup of W generated by the sαi acts faithfully on the
R-subspace U of V spanned by the αi (using 1.2(e), for instance). On U , w has
determinant (−1)n and fixes a hyperplane pointwise, so, considering the Jordan
form of w (on U), either w2 = e or (w − e)2 = 0. Suppose for a contradiction
that e − w = −(e − w−1). By assumption, there exist φ ∈ C and φ′ ∈ C ′ with
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〈αi, φ
′〉 > 0 and 〈φ, α∨i 〉 > 0 for i = 1, . . . , n. A standard argument [23, 3.12] shows

that (e−w)(φ) and (e−w−1)(φ) are expressible as non-zero non-negative R-linear
combinations of the αi so 0 < 〈(e− w)φ, φ′〉 = −〈(e− w−1)φ, φ′〉 < 0.

Remark. Note that if U , U ′ are free k-submodules of V containing Π, Π∨ respec-
tively, one gets dual based root systems (U,Π,Φ) and (U ′,Π∨,Φ∨), with associated
Coxeter system naturally identified with that of the original root systems (by restric-
tion of W -action to U and U ′). Call the new dual based root systems restrictions
of the original ones. The following observation is useful.
(2) any dual based root systems (U,Π,Φ) and (U ′,Π∨,Φ∨) may be regarded as
restrictions of dual based root systems (V,Π,Φ) and (U ′,Π∨,Φ∨) such that the
fundamental chamber on V is sufficiently large. In fact, one may take V := U ⊕ kφ
for any φ ∈ Homk(U ′, k) with 〈φ,Π∨〉 ⊆ k>0.

1.5. We now recall from [16,17] the main facts we shall need concerning certain
partial orders ≤A on W . Fix an “initial section of a reflection order” A ⊆ T , where
T is the set of reflections; we don’t repeat the definition here, but mention that the
basic example is A = { sα | α ∈ Φ+ ∩ P } where P is the cone of positive elements
of some vector space total ordering of V (if k = R). We let lA:W → Z denote the
length function defined by lA(w) = l′(w) − 2](N(w−1) ∩ A). Let ≤A denote the
associated order on W as in [16]; thus, ≤A is the partial order on W generated by
the relations

(1) x ≤A sαx if x ∈W, α ∈ Φ+ and lA(x) < lA(sαx).

For A = ∅ (resp., A = T ), ≤A is Chevalley order on W (resp., its reverse).
Let PA be the set of non-empty, finite, closed intervals [u, v] := {x ∈ W | u ≤A

x ≤A v } in W in the order ≤A such that the open interval [u, v] \ {u, v} has a
combinatorial sphere as its order complex (if it is non-empty). Any interval in PA

is finite and all of its non-empty closed subintervals are also in PA. In this paper,
we use mainly the recursive characterization of PA given by (d) of the following
proposition.

Proposition. (a) For x ≤A w, there is a chain x = x0 ≤A . . . ≤A xn = w with
lA(xn) = lA(x) + n.
(b) For x ∈W , s ∈ S, one has lA(sx) = lA(x)± 1
(c) (the “Z-property”) for x, y ∈ X and s ∈ S with sx <A x, sy <A y one has
sx ≤A sy iff x ≤A y iff sx ≤A y.
(d) PA is the smallest set of non-empty closed intervals in W in the order ≤A which
contains [e, e] and satisfies [sx, sy] ∈ PA ⇐⇒ [x, y] ∈ PA =⇒ [sx, y] ∈ PA for all
s ∈ S, x, y ∈W with sx <A x, sy <A y (see [16, 2.5]).

Remark. It is known that for some A (e.g. A = WK ∩ T for some K ⊆ S) every
closed interval in W in the order ≤A is in PA. In particular, this holds for Chevalley
order and its reverse.

1.6. We define a spherical poset in the order ≤A to be a subset Γ of W in the order
≤A such that (i) below holds:
(i) for any u ≤A v in Γ, one has [u, v] ⊆ Γ and [u, v] ∈ PA.
For any Γ ⊆W and any standard parabolic subgroup WL of W , define ΓL = {w ∈
Γ | lA(sw) ≥ lA(w) for all s ∈ J }.

7



Lemma. Let Γ ⊆W be spherical in the order ≤A, and fix L ⊆ S.
(a) For any any w ∈ ΓL, the map x 7→ xw is an order-isomorphism between WL

(in Chevalley order) and WLw (in the order induced by ≤A) satisfying lA(xw) =
l′(x) + lA(w) for all x ∈WL. Moreover, WLΓL is spherical.
(b) If WLΓL ⊆ ΓL and either WL is finite or A = ∅, then WLΓL = Γ
(c) For K ⊆ L, any x ∈WLΓL may be uniquely written x = xKx

K where xK ∈WK

and xK ∈ ΓK .

Remark. These results apply in particular to Chevalley order, where they are well
known. We write W J for {w ∈W | l′(xw) = l′(x) + l′(w) for all x ∈WJ }.

2. Modules for the nil Hecke ring

In this section, we construct some modules for Kostant-Kumar’s nil Hecke ring
(case 2.2(i) below); these play an important role in the rest of the paper. We
also obtain by the same procedure modules for (the analogue for general Coxeter
systems of) Lusztig’s graded affine Hecke algebra (case 2.2(ii) below), but these are
not used subsequently in this paper.

2.1. Throughout this paper, we fix dual based root systems (V,Π,Φ), (V ′,Π∨,Φ∨)
over R with associated Coxeter system (W,S). Unless otherwise stated, we assume
that V and V ′ are finite-dimensional, that S is finite and that Φ (and hence Φ∨) is
reduced. Let S =

∑
n∈N Sn denote the symmetric algebra of V over R, graded so

S0 = R and S2 = V ; thus, S is non-canonically isomorphic to a graded polynomial
ring over R, in dimV indeterminates of degree 2. If our based root system arises
by extension of scalars from an integral based root system, we define SZ to be the
the symmetric algebra over Z of the weight lattice, naturally regarded as a graded
subring of S.

Fix a partial order ≤A on W associated to an initial section of a reflection order.
We sometimes denote lA(w) − lA(v) by lA(v, w). Write γA(u,w) (resp., u

γ→A w
to indicate that γ ∈ Φ+, u <A w ∈ W and u = sγw (resp., that γA(u,w) and
v lA w, where v lA w means v ≤ w and lA(v) = lA(w) − 1). If we need to
make dependence of some object or relation on the “parameter” A explicit, we will
attatch a subscript or superscript A. If there is no danger of confusion, we may
omit the subscript or superscript when referring to ≤A. In particular, we write ≤
for ≤A and l for lA; standard Chevalley order will be denoted ≤∅ or ≤′, and the
standard length function is l′ = l∅.

2.2. Fix elements {Xα}α∈Φ and X in the subalgebra of S generated by W -invariant
elements of V , such that for α ∈ Φ, one has Xα = Xwα for all w ∈ W , and such
that either (i) or (ii) below holds.
(i) X = 0 and all Xα = 1. In this case, let θ:V → V be the identity map.
(ii) X 6= 0 and there is a direct sum decomposition V = U1 ⊕ U2 ⊕ RX such that
Π ⊆ U1, the distinct Xα form a basis of U2, and 〈U2 ⊕ RX,Φ∨〉 = 0. In this case,
let θ:V → V be the R-linear map fixing U1 ⊕ U2 pointwise and with θ(X) = −X.

In situation (ii), one regards U1 as given and the Xα, X as indeterminates over
the symmetric algebra of U1. Given the reflection representation of W on U1, one
could for instance extend it to one on a suitable V as above so that Xα = Xβ iff
α, β are in the same W -orbit on Φ.
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2.3. Let Q denote the quotient field of S. There is a natural action of W as a
group of R-algebra automorphisms of S and of Q extending the natural action on
V . This action fixes X and all Xα for α ∈ Φ. We also extend θ to a R-algebra
automorphism θ of S and of Q. Note that in either case 2.2(i)–(ii), θ commutes
with each element of W on Q, fixes each simple root, fixes the Xα with α ∈ Φ, and
satisfies θ(X) = −X. We let R[Xα, X] denote the R-subalgebra of S generated by
X and all the Xα with α ∈ Φ.

2.4. Define elements Sx = SA
x of Q for x ∈W by

(1) SA
x =

∏
α∈Φ+∩x(−Φ+)

(
εA(α, x)α

Xα + εA(α, x)αX

)εA(α,x)

where εA(α, x) denotes 1 if x <A sαx and −1 otherwise. Then using 1.3(h),

(2) SA
sαx =

Xα − αX

−α
sα(SA

x ) if α ∈ Π and sαx >A x,

(3) (SA
x )−1 = (−1)l′(x)θ(ST\A

x ).

2.5. We now define elements Sx,w = SA
x,w of Q for [x,w] ∈ PA.

Lemma. There is a unique family of elements SA
x,w ∈ Q, defined for [x,w] ∈ PA,

such that SA
x,w = SA

x if x = w, and such that for any χ ∈ V ,

(1) (χ− xw−1(χ))SA
x,w = −

∑
γA(u,w)

〈χ | γ∨〉X lA(u,w)−1XγS
A
x,u

if x <A w. Here and later, any term SA
x,u with x �A u is interpreted as zero, and

we interpret X0 as 1 if X = 0 (i.e. in case 2.2(i)).

Proof. Fix a point χe ∈ V with no W -isotropy, and set χw = w(χe) for all w ∈W .
Then v(χw) 6= χw for all v 6= e and w in W . There is obviously a unique family of
elements Sx,w defined for [x,w] ∈ P such that Sx,x = Sx and

Sx,w = −
∑

γ(u,w)

〈χw | γ∨ 〉(χw − xw−1(χw))−1XγX
l(u,w)−1Sx,u

if x < w. For example,

(2) Sx,w = −XγSx/γ if x
γ→ w.

Fix x ∈ W and r ∈ S with rx ≥ x, say r = sα with α ∈ Π. We will show by
induction on l(u) that for u ≥ x in W with ru > u and [x, u] ∈ P, one has

(3) XαSx′,u + (Xα − αX)r(Srx′,u) = −αSx′,ru if x′ ∈ {x, rx}.
9



Now if l(u) = l(x), then u = x and (3) follows from (2) and 2.4(2). Suppose that
w > x, rw > w, [x,w] ∈ P and (3) holds for all u with x ≤ u < w and ru > u. It
follows that

(4) XαSx′,ru + (Xα − αX)r(Srx′,ru) = −αX2Sx′,u if x′ ∈ {x, rx}

for such u. Note that for r ∈ S, w ∈W with rw >A w, the map

{ (u, γ) | ru >A u, γ(u,w) } → { (v, β) | v 6= w, β(v, rw) }

given by (u, γ) → (ru, r(γ)) is a bijection. Set χ = χw. Then(
r(χ)− x′w−1(χ)

) (
XαSx′,w + (Xα − αX)r(Srx′,w)

)
=(rχ− χ)XαSx′,w +

(
χ− x′w−1(χ)

)
XαSx′,w

+ (Xα − αX)r
[(
χ− rx′w−1(χ)

)
Srx′,w

]
=− 〈χ | α∨ 〉αXαSx′,w

−
∑

γ(u,w)

〈χ | γ∨〉XγX
l(u,w)−1

(
XαSx′,u + (Xα − αX)r(Srx′,u)

)
=α

(
〈 r(χ) | α∨ 〉XαSx′,w

+
∑

γ(u,w)

〈 r(χ) | r(γ∨) 〉XγX
l(ru,w)Sx′,ru)

)
by (3), (4)

=α
∑

β(v,rw)

〈 r(χ) | β∨ 〉XβX
l(v,rw)−1Sx′,v from above

=− α
(
r(χ)− x′(rw)−1r(χ)

)
Sx′,rw since χrw = r(χ)

which proves (3) for u = w since r(χ)− x′w−1(χ) 6= 0.
Note that by (3), (4) we have now established the recurrence formula

(5) XαS
A
x′,w + (Xα − αX)r(SA

rx′,w) =

{
−αSA

x′,rw if rw >A w

−αX2SA
x′,rw if rw <A w

which holds for α ∈ Π, r = sα, [x,w] ∈ PA with rx >A x and x′ ∈ {x, rx}. It
follows using 1.5(d) that for [x,w] ∈ P the value of Sx,w ∈ Q is uniquely determined
by this recurrence equation and the initial condition Se,e = 1. In particular Sx,w

is independent of the initial choice of χe. As one varies χe over the points in V
with no W -isotropy, χw = w(χe) ranges over a dense (in the Euclidean toplology)
subset of V . The equation (1) holds if χ = χw, and both sides are linear in χ, so
(1) holds for all χ ∈ V as required.

2.6. In the situation 2.2(i), for Chevalley order and its reverse, the following result
was proved in [19].
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Proposition. Fix [x,w] ∈ PA. Then
(a) SA

x,w = (−1)lA(x,w)SA
x h

A
x,w/g

A
x,w for some hA

x,w, g
A
x,w ∈ S expressible as non-zero

linear combinations (with positive real coefficients) of products of elements from
Π ∪ {Xα, X}; in particular, SA

x,w 6= 0.

(b) There exist elements fA
x,w ∈ S such that SA

x,w = SA
x f

A
x,w

(∏
α∈Φ+

x<Asαx≤Aw

α
)−1

(c) In (a), hA
x,w, gA

x,w may be chosen so as to have expressions as homogeneous
real polynomials in elements of Π∪ {Xα} ∪ {X} (with respect to the grading giving
elements of Π degree 2, the Xα degree 0 and, in case 2.2(ii), X degree −2), with
degrees satisfying deg

(
gA

x,w

)
− deg

(
hA

x,w

)
= 2lA(x,w).

Proof. For the proof, one may assume without loss of generality that the funda-
mental chamber for W on V is sufficiently large, by 1.4(2). Parts (a) and (c) are
proved by induction on lA(x,w) by considering 2.5(1) for points χ ∈ V taken in
the interior of the fundamental chamber on V . A proof of a more general version
of (b) is given in 8.14 (cf. also 7.5). We omit the details, which are esentially the
same as in [19].

2.7. Comparing degrees in the two expressions for SA
x,w in this proposition in case

2.2(i) immediately gives the following. For A = ∅, it reduces to a conjecture of
Deodhar proved in [19].

Corollary. For any [v, w] ∈ PA, ]{α ∈ Φ+ | v <A sαv ≤A w } ≥ lA(v, w).

2.8. Define the ring QW as in [26, (4.1)]. Then QW is a free right Q-module with
basis {δw}w∈W and the multiplication is determined by

(δvqv)(δwqw) = δvw(w−1qv)qw for v, w ∈W and qv, qw ∈ Q.

The δw are also a basis of QW in the left Q-module structure q(δwqw) = δw(w−1q)qw
of QW . We identify Q with the subring Qδe = δeQ of QW . Note that Q is not
central in QW but X and the Xα are central. For J ⊆ S, define the subring
QWJ

:=
∑

w∈WJ
δwQ of QW . Also define Q̃W to be the set of unrestricted formal

linear combinations
∑

w∈W δwqw with all qw ∈ Q. This may be naturally regarded
as a (QW , QW )-bimodule.

2.9. For a poset X, Xop denotes the opposite poset of X. An upper ray in X is a
set {x ∈ X | x ≥ y } for some fixed y ∈ X. A (finitely generated) coideal of X is
a (finite) union of upper rays. Lower rays and (finitely generated) ideals of X are
defined dually, replacing ≥ by ≤. Frequently, we consider formal sums

∑
x∈X ax of

elements of a module where the support of ax (i.e. the set of x ∈ X with ax 6= 0)
is required to be a subset of some finitely generated coideal (resp., ideal) of X (we
say the ax, or the sum, is supported on a finitely generated coideal (resp., ideal);
similarly, we define functions from Γ to the module which are supported on a finitely
generated coideal (resp., ideal)). A sum as above will be written

∑↑
x∈X ax (resp.,∑↓

x∈X ax) to indicate the assumed condition on its support. To obviate the need
for case-by-case discussions of convergence, we introduce in the next subsection a
topology on the most frequently occurring (in this paper) spaces of such formal
sums.
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2.10. For the remainder of this paper, unless otherwise stated, we fix a (non-empty)
spherical subset Γ of W and some L ⊆ S with WLΓ ⊆ Γ. In referring to this fixed Γ,
we write γA(u,w) or γ(u,w) to indicate that u,w ∈ Γ, γ ∈ Φ+ and u <A w = sγu

(previously we allowed u,w ∈W ), and similarly for u
γ→A w.

For any commutative ring B and any symbol D, introduce formal symbols Dw

for w ∈ Γ and define the right B-module KB(Γ, D) of formal B-linear combinations∑
w∈ΓDwbw with all bw ∈ B. This has a B-submodule K = K↓

B(Γ, D) consisting
of those sums

∑↓
w∈Γ dwbw in KB(Γ, D) supported in a finitely generated ideal of Γ.

For a finitely generated coideal X of Γ, let KX denote the B-submodule of elements∑↓
w∈Γ Dwbw in K such that bw = 0 if w ∈ X. Then K/KX is a free B-module

(with basis consisting of the cosets Dx + KX for x ∈ X). Give K = K↓
B(Γ, D)

the linear topology in which the sets KX , for finitely generated coideals X, form
a basis of neighbourhoods of 0. For instance, if Γ is finitely generated as ideal (in
particular, in the case A = ∅ of Chevalley order on Γ = W ), then K has the discrete
topology and the elements Dw for w ∈W form a right B-module basis of K. Note
that if φ:K↓

B(Γ, D) → K↓
B(Γ, D) is a continuous B-linear map, then

(1) φ

(∑↓

w

Dwbw

)
=

∑↓

w

φ(Dw)bw

in the sense that the (countable) sum on the right hand side converges to the left
hand side (in any order). For example,

(2) for u ∈WL, there is a continuous B-linear map K → K given by
∑↓

w Dwbw 7→∑↓
w Dwbuw.

Indeed, it is enough to check this when u ∈ L, when it follows easily using the
Z-property of the order ≤A.

For use later, we also define the topological right B-module K↑
B(Γ, E) by setting

it equal to K↓
B(Γop, E) for any formal symbol E. If B is given the discrete topology,

there is a bilinear map K↑
B(Γ, E)×K↓

B(Γ, D) → B given by

(3) (
∑↑

w

Ewbw,
∑↓

w

Dwb
′
w) 7→

∑
w

bwb
′
w

which is readily checked to induce an isomorphism of B-modules

(4) K↑
B(Γ, E) → Homcont. B(K↓

B(Γ, D), B),

where on the right we have the continuous B-module homorphisms. We define
K↓

B(ΓJ , D) and K↑
B(ΓJ , E) similarly for any standard parabolic subgroup WJ with

WJΓ ⊆ Γ.

2.11. For α ∈ Π, define

(1) tα = −Xαα
−1(δsα + δe) +Xδsα ∈ QW ,

where e is the identity of W , and note that t2α = X2δe. For any J ⊆ S, let HJ be
the subring of QWJ

generated by S and the tα such that sα ∈ J . Regard all the
HJ , in particular H := HS , as topological rings with the discrete topology. Also,
define the topological right S-module M = MΓ := K↓

S(Γ,mA) of formal S-linear
combinations

∑↓
w∈Γm

A
wqw of symbols mA

w for w ∈ Γ.
12



Proposition. The map
∑↓

w∈Γm
A
wqw 7→

∑
x∈Γ δx

(∑
w∈Γ
w≥x

qwx
−1(SA

x,w)
)

gives an

injective homomorphism M → Q̃W of right S-modules, the image of which is a
(HL,S)-subbimodule of Q̃W . Identifying M with its image, the resulting (HL,S)-
bimodule structure on M makes M a topological HL-module (i.e. the elements of
HL act continuously on M) satisfying

(2) χmA
w = mA

w(w−1χ)−
∑

γA(u,w)

mA
u 〈χ | γ∨〉XγX

lA(u,w)−1,

(3) trm
A
w =

{
mA

rw if rw >A w

mA
rwX

2 if rw <A w.

for all r ∈ L, w ∈ Γ and χ ∈ V .

Proof. First, there is an obvious continuous inclusion K↓
S(Γ,mA) → K↓

Q(Γ,mA) of
right S-modules. Next, let δ be a formal symbol. Then the map

∑↓

w∈Γ

mA
wqw 7→

∑↓

x∈Γ

δx

(∑
w∈Γ
w≥x

qwx
−1(SA

x,w)
)

gives an isomorphism K↓
Q(Γ,mA) → K↓

Q(Γ, δ) of topological right Q-modules, since
SA

x,y = 0 unless x ≤A y and SA
x 6= 0, for x, y ∈ Γ. Finally, we may naturally regard

K↓
Q(Γ, δ) as a right Q-submodule of Q̃W . The composite of these maps gives the

injective right S-module map M → Q̃W as in the statement of the proposition.
Now K↓

Q(Γ, δ) ⊆ Q̃W is stable under left multiplication by elements of QWL
, in

particular by all elements of HL, and the left multiplications by elements of QWL

on K↓
Q(Γ, δ) are continuous; it is enough to check continuity of left multiplication

by elements q ∈ Q, which is clear, and by elements δw for w ∈ WL, which is just
2.10(2). Now regarding M ⊆ K↓

Q(Γ, δ) ⊆ Q̃W , the recurrence formulae 2.5(1) and
2.5(5) are respectively seen to be equivalent to (2) (cf. 8.10) and (3) above. The
continuity of left multiplications by the elements of HL now implies that M is a
left HL-submodule of K↓

Q(Γ, δ) ⊆ Q̃W , and the proposition is completely proved.

Remark. It is possible to reverse the order of development of this section by first
proving the above theorem and then using it to define the SA

x,w and establish the
recurrence formulae for them. The main point is then to give an independent
construction of the MΓ as (S,S)-bimodules. In the situation 2.2(i), this was done
in [20]. Using properties [14, 3.4] and [16, 2.6] of spherical intervals, essentially
the same reduction to dihedral groups can also be used to get the (S,S)-bimodule
structure on MΓ in case 2.2(ii).

2.12. In general, we always regard MΓ as a (HL,S)-subbimodule of Q̃W , via the
embedding given by Proposition 2.11. Suppose in this subsection only that A = ∅,
Γ = W and L = S; thus, Γ is W in Chevalley order. Recall the notation H = HS .

Proposition. Suppose A = ∅, Γ = W and L = S. As left H-module, M∅ is just
the left regular module for H. Write tw := m∅

w. Then the elements {tw}w∈W form
13



a basis of H as left S-module (and also as right S-module), and tw = tα1 . . . tαn for
any reduced expression w = sα1 . . . sαn

(and te = δe).
Moreover, for J ⊆ S, the elements {tw}w∈W form a left (and right) S-module

basis of HJ .

Proof. As observed in 2.10, the elements tw defined in the statement of the propo-
sition are a right S basis of M∅ since e is the minimum element of W in Chevalley
order. From 2.11(2), it follows that they form a left S-module basis of M∅ as
well. Note te = δe is the identity element of H. The relations 2.11(3) now implies
tw = tα1 . . . tαn

for any reduced expression w = sα1 . . . sαn
, and hence that M∅ is

generated as H-module by te, hence M∅ = H. The final assertion in the proposition
follows easily.

Remark. In case 2.2(i), the ring H is (anti-isomorphic to) the nil Hecke ring defined
in [26,(4.12)]; the elements tw here are the xw there. In the situation 2.2(ii), with
W a finite Weyl group, the ring H can be specialized to Lusztig’s graded affine
Hecke algebra, as defined in [30, 0.1] (see also [31]).

2.13. The following gives a presentation by generators and relations for HJ as
R-algebra, for J ⊆ S.

Corollary. The ring HJ is generated as R-algebra with identity te by generators
tr with r ∈ J and χ with χ ∈ V subject to the following relations:

(a) the linear relations on V and χ1χ2 = χ2χ1 for χ1, χ2 ∈ V .
(b) t2r = X2te
(c) χtr = trr(χ)− 〈χ, α∨〉Xαte
(d) the braid relations of (W,S) on the tr.

Proof. Consider the ring H ′
J generated by elements t′r (r ∈ J), χ (χ ∈ V ) and

identity t′e subject to relations as above. Let S ′ denote the (commutative) subring of
H ′

J generated by t′e and V . There is a (surjective) ring homomorphism φ:H ′
J → HJ

mapping χ 7→ χ, t′r 7→ tr, t′e 7→ te. By the monoid lemma 1.3(f), the braid
relations imply that there are well-defined elements t′w of H ′

J , for w ∈ WJ , with
t′w = t′r1

. . . t′rn
whenever r1 . . . rn is a reduced expression for w; one must have

φ(t′w) = tw for w ∈ WJ . For r ∈ J , t′rt
′
w = t′rw if l′(rw) > l′(w) and t′rt

′
w = t′rwX

2

otherwise, using (b). Now using (c), one sees that the tw span H ′
J as right S ′-

module. Since φ(S ′) ⊆ S and the tw are a right S-basis of HJ , it is now easily seen
that φ is an isomorphism.

Remark. It follows from the corollary that there is a ring anti-involution of H fixing
S elementwise and mapping tw to tw−1 for w ∈ W ; it is the restriction of the ring
anti-involution of QW which fixes Q elementwise and maps δr to δr

αX+Xα

αX−Xα
for

α ∈ Π, r = sα.

2.14. We describe the inverse of the (in general infinite) upper triangular matrix(
x−1(SA

x,w)
)
x,w∈Γ

associated to ≤A in terms of the matrix
(
x−1(ST\A

x,w )
)
x,w∈Γ

asso-
ciated to the reverse order ≤T\A.

Proposition. For any x, z ∈ Γ,
∑

y∈[z,x](−1)l′(y)y−1
(
SA

y,xθ(S
T\A
y,z )

)
= δx,z
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Proof. Since SA
x,y = 0 unless x ≤A y and SA

x 6= 0, it is enough to show that

(1) δx =
∑
v∈Γ

mA
v (−1)l′(x)x−1

(
θ(ST\A

x,v )
)
.

One may even assume without loss of generality that Γ is finite. The result now
follows for general reasons (see 8.13 and 8.10) from 2.4(3).

Remark. The involution θ of Q fixes all elements SA
x,w/S

A
x with x,w ∈ Γ.

2.15. Note that if A = ∅ and Γ = W , then MΓ = H has, as well as the left H-
module structure, also a right H-module structure; we now establish the analogous
result in general. It will not be used anywhere else in this paper.

For B ∈ P(T ) and w ∈ W , write w · B = N(w) + wBw−1 ∈ P(T ). Let
S′ := { r ∈ T | r · A = A + {r} } and let W ′ be the reflection subgroup of W
generated by S′.

Lemma. (a) (W ′, S′) is a Coxeter system with reflection cocycle N ′:W ′ →W ′∩T
given by N ′(w) = w · A + A for w ∈ W ′. For K ⊆ S′, let W ′

K be the parabolic
subgroup of W ′ generated by K, and let l′′:W ′ → N denote the standard length
function of (W ′, S′).
(b) For any r ∈ S′ and w ∈W , one has lA(wr) = lA(w)± 1.
(c) if v, w ∈W and t ∈ S′ with wt >A w and vt >A v, then v ≤A w iff v ≤A wt iff
vt ≤A wt (the “right Z-property”)
(d) if K ⊆ S′ and w ∈ W with lA(wr) ≤ lA(w) for all r ∈ K, then the map
x 7→ wx:W ′

K → wW ′
K gives an isomorphism between W ′

K (in the order acquired as
a subset of (W ′, S′) in its Chevalley order) and the spherical subset xW ′

K of W in
the order ≤A, with lA(wx) = lA(w) + l′′(x).

Proof. Parts (a)–(c) are all in [16, 1.8]. For ](K ′) = 2, which is the only case
required in this paper, it is easy to prove (d) by an ad hoc argument using (b) and
(c).

Remark. Much more general facts will be proved in another paper which requires
a systematic study of shortest (WJ ,W

′
K) double coset representatives in the orders

≤A. In general, S′ may be empty, and it is likely there are also examples with S
finite and S′ infinite.

2.16. For each r ∈ S′, define the element

(1) δ′r := δr
∏

α∈Φ+∩r(−Φ+)
sα 6=r

(
−εA(α, e)α

Xα − εA(α, e)αX

)εA(α,e)

of QW , where εA(α, x) is defined in 2.4. Also, for γ ∈ Φ+ with r = sγ ∈ S′, set

(2) t′γ = δ′r
Xγ + γX

γ
− εA(γ, e) δe

Xγ

γ
.

For K ⊆ S′, let H ′
K denote the subalgebra of QW generated by the elements δeχ

for χ ∈ S and t′γ for γ ∈ Φ+ with sγ ∈ K. Regard H ′
K as a topological ring with

discrete topology. Also, define H ′ := H ′
S′ .
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Proposition. (a) If K ⊆ S′ with ΓK ⊆ Γ, then MΓ ⊆ Q̃W is a topological
(HL,H

′
K)-bimodule. For γ ∈ Φ+ and w ∈ Γ with r = sγ ∈ K,

mA
wt

′
γ =

{
mA

wr if wr >A w

mA
wrX

2 if wr <A w.

(b) The R-subalgebra H ′ of QW has a basis { t′w }w∈W ′ as left (or right) S-module
such that t′e = δe and for w ∈W and r = sγ ∈ S′ with γ ∈ Φ+,

t′γt
′
w =

{
t′rw if l′′(rw) > l′′(w)
t′rwX

2 if l′′(rw) < l′′(w).

Proof. Fix r and γ as in (a). One easily sees that

(3) χt′γ = t′γr(χ)− εA(γ, e)〈χ, γ∨〉Xγδe

(4) t′2γ = X2δe.

A somewhat more tedious calculation using 1.3(e) shows that

(5) δyy
−1(Sy) = δxx

−1(Sx) δ′r
Xγ + γX

γ
for all x <A xr = y ∈W.

Now we prove (a) (the proof is very similar to that of [26, 4.2]). Recall MΓ ⊆
K↓

Q(Γ, δ) ⊆ Q̃W is certainly stable under right multiplication by elements of S. As
before, right multiplication by an element

∑
w∈W ′

K
δwqw in QW is continuous on

K↓
Q(Γ, δ), using the right Z-property. To prove (a), it remains only to establish the

formula there in the case wr >A w (the other case then follows immediately by
(4)).

Fix w ∈ Γ with wr >A w. Write mA
wt

′
γ =

∑
v δvv

−1(S′v,wr). Note S′v,wr = 0
unless v ≤ wr, by the right Z-property. To prove (a) in this case, one has to show
that Sv,wr = S′v,wr for v ≤ wr, and for this, it is sufficient to consider the case that
Γ is a finite spherical interval Γ = [y, wr] where yr >A y (since v is contained in
such an interval). Now by induction we may assume that (a) holds with w replaced
by any w′ ∈ Γ except perhaps w′ = w or w′ = wr. We calculate using (3) and
2.11(2) that for χ ∈ V ,

χmA
wt

′
γ = mA

ww
−1(χ)t′γ −

∑
α(u,w)

〈χ, α∨〉XαX
lA(u,w)−1mA

u t
′
γ

= mA
wt

′
γ(wr)−1(χ)− εA(γ, e)〈w−1(χ), γ∨〉Xγm

A
w

−
∑

α(u,w)

〈χ, α∨〉XαX
lA(u,w)−1X1+lA(ru,u)mA

ur

= mA
wt

′
γ(wr)−1(χ)−

∑
β(x,wr)

〈χ, β∨〉XβX
lA(x,wr)−1mA

x .
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We have also used here the fact that α(u,wt) iff either α(ut, w), or u = w and α is
the positive root in ±wγ. Now this calculation gives that for z ∈ [y, wr],

(χ− z(wr)−1χ)S′z,wr = −
∑

β(x,wr)

〈χ, β∨〉XβX
lA(x,wr)−1SA

z,x.

The same formula holds if S′z,wr is replaced by SA
z,wr; if z 6= wr, choosing χ so

z(wr)−1(χ) 6= χ shows S′z,wr = SA
z,wr. On the other hand, for z = wr this last

equality follows from (5). This completes the proof of (a).
Next, we show that the t′γ satisfy the braid relations of (W ′, S′). Choose positive

roots β 6= γ with sγ = r ∈ S′, sβ = s ∈ S′ such that rs has finite order n, say.
Let γi denote β for even i and γ for odd i. Let W ′

r,s be the parabolic subgroup
of W ′ generated by r and s, with longest element ω = sγ1 . . . sγn = sγ2 . . . sγn+1 .
As a finite subset of W in the order ≤A, W ′

r,s has an element u of minimal length
lA(u) with respect to lA. By 2.15(d), the map w′ 7→ uw′ is an isomorphism W ′

r,s →
Γ′ := [u, uω] of posets satisfying lA(uw′) = lA(u) + l′′(w′), where W ′

rs has the
usual Chevalley order as a finite dihedral group with generators r, s and Γ′ is
the indicated interval of W in the order ≤A. In particular, Γ′ is spherical and
Γ′W ′

r,s = Γ′. Assume temporarily that Γ = Γ′. Now part (a) applied to Γ = Γ′

implies that
mA

u t
′
γ1
. . . t′γn

= mA
uω = mA

u t
′
γ2
. . . t′γn+1

and the braid relation for r and s follows since (for Γ = Γ′) mA
u = SA

u δu is a unit
in QW . The monoid lemma now gives elements t′w of QW for w ∈ W ′, satisfying
t′sγ
t′w = t′sγw for w ∈ W ′′, γ ∈ Φ+ with sγ ∈ S′ and l′′(sγw) > l′′(w). By (3),

t′sγ
t′w = t′sγwX

2 if l′′(sγw) < l′′(w), so the right S-module H ′′ spanned by the t′w
for w ∈W ′ is closed under left multiplication by the t′γ . One easily sees

t′w ∈ δwQ• +
∑

v∈W ′

l′′(v)<l′′(w)

δvQ,

(where in general R• denotes the unit group of a ring R), so the tw for w ∈ W ′

are right (or left) Q-linearly independent. From (3), H ′′ is also closed under left
multiplication by elements of V , so H ′′ = H ′. This completes the proof of (b), and
hence of the proposition.

2.17. The proof of the following result, showing the very close similarity between
H ′ and H, is essentially the same as that of 2.13, and is therefore omitted.

Corollary. For any parabolic subgroup (W ′
K ,K) of (W ′, S′),

∑
w∈W ′

K
t′wS is a

subring of H ′. It may be identified with the R-algebra generated by (identity element
t′e and) the elements t′r for r ∈ K, χt′e for χ ∈ V subject to the following relations:

(a) the linear relations on V , and χχ′ = χ′χ for χ, χ′ ∈ V
(b) t′2r = X2t′e
(c) χt′r = t′rr(χ)− εA(γ, e)〈χ, γ∨〉Xγt

′
e for r = sγ ∈ K, γ ∈ Φ+

(d) the braid relations for (W ′
K ,K) on the t′r.
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2.18. In this subsection, we briefly indicate the changes necessary in case 2.2(i) if
one works with non-reduced root systems. First, in that case one may still define tα
as before. Note that a rank two root system (in our sense) can always be replaced
by a reduced rank two root system, without changing the action of W on V or
V ′, simply by multiplying all roots in one W -orbit by a suitable c ∈ R>0 and
multiplying the corresponding coroots by c−1. It follows that (in the non-reduced
case) the tα satisfy the braid relations up to multiplication of one side by a positive
scalar. Hence one obtains a (left or right) S-basis tw of H with tw ∈ R>0tr1 . . . trn

for any reduced expression w = r1 . . . rn. To get 2.11 for non-reduced root systems,
one can first show that there is at most one (up to isomorphism) (S,S)-bimodule
structure on the right S-module MΓ := K↓

S(Γ,mA) (with continuous left S-action)
such that

(1) χmA
w = mA

w(w−1χ)−
∑

u
γ−→Aw

mA
u cu,w〈χ | γ∨〉

for some non-zero scalars cu,w (the proof of this can be reduced to its special case in
which Γ is a length two spherical interval and ](S) = 2, where it is easily checked).
Moreover, using 8.8, one can show that if such a module MΓ exists, it has an
embedding as a (S,S)-subbimodule of Q̃W . Using the uniqueness, one can prove
existence of such a module MΓ, with all cu,w > 0, satisfying in addition

(2) trm
A
w =

{
dr,wm

A
rw if rw >A w

0 if rw <A w

for r ∈ S with rΓ ⊆ Γ, for some scalars dr,w > 0 in R. First, one builds a
suitable (S,S)-bimoduleM = M[x,y] of Q̃W recursively by 1.5(d), for finite spherical
intervals [x, y], as follows. Suppose r ∈ S, rx > x, ry < y and [x, y] ∈ PA. If
M[x,ry] ⊆ Q̃W is already defined, one sets mA

w = trm
A
rw for w ∈ [x, y] \ [x, ry] and

M[x,y] =
∑

w∈[x,y]m
A
wS for Γ = [x, y], and defines M[rx,y] as the quotient of M[x,y]

by its subbimodule
∑

z∈[x,y]\[rx,y]m
A
z S. If instead M[rx,y] is defined, one can first

dualize (see 8.13), apply the preceeding argument for the reverse order ≤T\A and
then dualize again to get M[x,y] and M[x,ry]. The construction of MΓ for general Γ
reduces easily to the case of finite intervals Γ just sketched.

With similar changes (insertion of positive unit factors from R in appropriate
places in the statements, and generally more complicated proofs), all results proved
in this paper for reduced root systems (except those in the situation 2.2(ii)) can be
extended to non-reduced root systems.

3. Modules for the dual nil Hecke ring

In this section, we dualize the modules for the nil Hecke ring defined in the
previous section to obtain a family of modules ΛΓ for the dual nil Hecke ring Λ.

3.1. We use the following conventions for graded modules M = ⊕n∈ZMn, N over
a positively graded, commutative ring R = ⊕n∈NRn. We denote M with degrees
shifted up by p ∈ Z as M〈p〉, so (M〈p〉)n = Mn−p. We give M ⊗R N the natural
structure of graded R-module so that its homogeneous component of degree i is
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spanned by elements m⊗n with m ∈Mp, n ∈ Nq and p+q = i. If M is in addition
finitely generated over R, HomR(M,N) has a natural structure of graded R-module
with HomR(M,N)p = { f ∈ HomR(M,N) | f(Mn) ⊆ Nn+p for all n ∈ Z }.

3.2. For the remainder of the paper, unless otherwise specified, all notations used
from Section 1 will refer to the situation 2.2(i), for a fixed spherical poset Γ in
the order ≤A and fixed L ⊆ S with WLΓ ⊆ Γ. Any finite standard parabolic
subgroup WK of W , has a unique “longest element” which will always be denoted
ωK ; it is characterized by the condition l′(ωK) ≥ l′(w) for all w ∈ WK . Define
Φ+

K = {α ∈ Φ+ | sα ∈WK }, and write SK = { f ∈ S | w(f) = f for all w ∈WK }
for the ring of WK-invariant elements of S.

We give some additional properties of the elements SA
x,w which are special to the

situation 2.2(i). First, note that the field automorphism θ of Q is now the identity,
and the recurrence formula 2.5(5) simplifies to

(1) SA
x′,w + r(SA

rx′,w) =
{ −αSA

x′,rw if rw >A w

0 if rw <A w.

This shows in particular that if [y, z] ∈ PA and sz < z for all s ∈ J ⊆ S, then

(2) (−1)l′(xy)(xy)−1
(
SA

xy,z

)
= (−1)l′(y)y−1

(
SA

y,z

)
for all x ∈WJ .

From the definition 2.4(1),

(3) ST
x =

∏
α∈Φ+∩x(−Φ+)

α, S∅x = (−1)l′(x)
∏

α∈Φ+∩x(−Φ+)

α−1

and combining this with (2),

(4) S∅x,ωK
= (−1)l′(ωK)

∏
α∈Φ+

K

α−1 if x ∈WK

for any finite standard parabolic subgroup WK of W . Recall the ring H, defined
in 2.11 as a subring of QW generated by S and all elements tα = −α−1(δsα + δe)
for α ∈ Π. In the situation of (4), one has

(5) tωK
=

∑
w∈WK

δw(−1)l′(ωK)−l′(w)
∏

α∈Φ+
K

α−1.

It follows that for J ⊆ L and [x,w] ∈ PA that

∑
v∈WJ

(vx)−1(SA
vx,w)

=

{
0 if w 6∈ ΓJ and WJx ∩ ΓJ 6= ∅
(−1)l′(ωJ )x−1(SA

x,ωJw

∏
α∈Φ+

J
α) if w ∈ ΓJ and ](WJ) <∞.

(6)
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Indeed, for w 6∈ ΓJ , (6) follows from (1) and in the other case, (6) follows from
(5) since tωJ

mA
w = mA

ωJw. In general, the standard basis elements δw of QW , with
w ∈W , are in H since δsα

= tαα+ δe ∈ H, and so by 2.11 and 2.14(1),

(7) ST
x,y ∈ S for all x, y ∈W.

From (1), one computes ST
x,y for l′(y) ≤ 1 explicitly as (8)–(9) below:

(8) ST
x,e = (−1)l′(x) for x ∈W

(9) For a simple reflection r ∈ S, define σ(r):W → V by σ(r)(w) = (−1)l′(w)ST
w,r.

Then σ(r) ∈ Z1(W,V ) (i.e. σ(r) is a 1-cocycle of W on V ) with σ(r)(s) = 0 for
simple s 6= r, and σ(r)(r) = −α, where α ∈ Π has sα = r. If there exists an element
χα ∈ V with 〈χα, β

∨ 〉 = δα,β for all β ∈ Π, then ST
w,r = (−1)l′(w)(w(χα)− χα).

3.3. Let x 7→ x denote the involutory ring anti-isomorphism of QW defined by
δwq 7→ δw−1w(q), and let H (resp., HJ for J ⊆ S) denote the subring of QW into
which H (resp., HJ) is mapped by this involution. Give Q the left QW -module
structure with (δwq) · q′ = w(qq′) for w ∈W , q, q′ ∈ Q. Then

(1) x · S ⊆ S if x ∈ H.

In fact, H is generated as ring by S and the elements tα = −(δsα
+ δe) 1

α for α ∈ Π.
Now one need only check that 1

α (s(f)− f) ∈ S for f ∈ S, which is immediate since
S = Ssα + αSsα .

3.4. For any positive root β ∈ Φ+, let S(β) = S[γ−1 | γ ∈ Φ+ \ {β}] denote the
localization of S at the multiplicative subset generated by the positive roots other
than β.

Lemma. Let v ∈ W , β ∈ Φ+ be such that v <A w := vsβ and [v, w] ∈ PA. Then
there exists a unit u of S(β) such that v−1(SA

v,w/S
A
v ) ≡ uβ−1 (mod S(β)).

Proof. For any [x, y] ∈ PA, define S′x,y = x−1(SA
x,y/S

A
x ). From the above proposi-

tion

(1) S′x,y ∈
(∏

α∈Φ+

x<xsα≤y

α
)−1S.

Suppose α ∈ Π and r = sα ∈ S satisfy rx >A x and ry <A y. From 2.5(5),

(2) S′x,y = − 1
x−1(α)

S′rx,y,

(3) S′x,ry = − 1
x−1(α)

S′rx,ry + S′rx,y.

Now consider β ∈ Φ+. If ry = xsβ , then y = rxsβ , the first term on the right of (3)
is in S(β) by (1) and so the lemma holds for the pair [v, w] = [x, ry] iff it holds for
[v, w] = [rx, y]. Similarly, if y = xsβ , then ry = rxsβ and [rx, ry] ∈ PA unless rx �
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ry i.e. unless y = rx. If y 6= rx, (1) and S′x,y = −(x−1α)−1S′x,ry−
(
x−1(α)

)−2
S′rx,ry

show that the lemma holds for [v, w] = [x, y] iff it holds for [v, w] = [rx, ry]. Using
1.5(d), the lemma is therefore true if it holds for intervals [v, w] = [x, y] with y = xsβ

such that y = sαx for some α ∈ Π. But then S′x,y = − 1
x−1(α) = ± 1

β by (2). This
completes the proof of the lemma.

Remark. Suppose that the root system arises by extension of scalars from an inte-
gral root system in which the roots are indivisible elements of the weight lattice.
Recall that SZ denotes the symmetric algebra over Z of the weight lattice, regarded
as a subring of S. The recurrence formulae above shows that SA

x,y and S′x,y are
elements of the localization of SZ at its multiplicative subset generated by Φ+. It
follows that (1), and hence also the lemma, remains true if the symmetric algebra
S is replaced everywhere by SZ.

3.5. Let M = MΓ be the left HL-module associated to Γ in the previous section.
Let QW ⊗Q QW denote the tensor product with both sides considered as right

Q-modules. Define the diagonal map ∆:QW → QW ⊗Q QW by

∆(δwq) = δwq ⊗ δw = δw ⊗ δwq for w ∈W and q ∈ Q.

Then ∆ is associative and commutative with a counit ε:QW → Q defined by
ε(δwq) = q. There is an associative product structure � on QW ⊗QQW , defined by

(δx ⊗ δyqy)� (δz ⊗ δwqw) = δzw−1xw ⊗ δyw(w−1qy)qw,

such that ∆ is a ring homomorphism. If Γ is finitely generated as a coideal (in
particular, if Γ is finite or Γ = W in Chevalley order), one has

∆
(
mA

w

)
= ∆

(∑
y∈Γ

δyy
−1(SA

y,w)
)

=
∑
y∈Γ

δy ⊗ δyy
−1(SA

y,w)

=
∑
z∈Γ

ΩA
z,w ⊗mA

z =
∑
z∈Γ
v∈W

tv ⊗mA
z p

w,A
v,z

where by 2.14

(1) ΩA
z,w =

∑
y∈Γ

(−1)l′(y)δyy
−1

(
ST\A

y,z SA
y,w

)
,

(2) pw,A
v,z =

∑
y∈Γ

y−1

(
ST

y,vS
T\A
y,z SA

y,w

)

(with the assumed condition on Γ, all the sums above have only finitely many
non-zero terms).

3.6. In general, for any v, w, z ∈ W with [z, w] ∈ PA define elements pw,A
v,z ∈ Q

and ΩA
z,w ∈ QW by 3.5(1) and (2) (note that these sums involve only finitely many

non-zero terms, even if Γ is not a finitely generated coideal). Also, set Pw
v,z = pw,∅

v,z .
We record the following.
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Lemma. Assume [z, w] ∈ PA and v ∈W Then
(a) ΩA

z,w = 0 unless z ≤A w, and pw,A
v,z = 0 unless v ≤∅ y for some y with z ≤A

y ≤A w
(b) ΩA

w,w = δw and pw,A
v,w = (−1)l′(w)w−1(ST

w,v), independent of A

(c) ΩA
z,w = ΩT\A

w,z and pw,A
v,z = p

z,T\A
v,w .

(d) pw,A
e,v = δv,w, independent of A

(e) if z
γ→A w, r = sα where α ∈ Π, and an element χα ∈ V exists as in 3.2(9),

then pw,A
r,z = 〈χα, γ

∨ 〉
(f) (w−1χ− z−1χ)pw,A

v,z =
∑

x
γ→Aw

〈χ | γ∨〉px,A
v,z −

∑
z

γ→Au
〈χ | γ∨〉pw,A

v,u for χ ∈ V .
(g) px,A

y,x = P z
y,z if y ∈W J , x ∈W and z ∈WJx

Proof. Parts (a)-(c) are immediate consequences of the definitions, and (d) follows
from 3.2(8) and 2.14. Part (e) follows from 3.2(9) (the more general result when χα

doesn’t exist is left to the reader). Part (f) (and an equivalent formula involving
ΩA

z,w) follows easily using 2.5(1) for A and T \ A, while (g) follows from (b) and
3.2(2).

3.7. Part (a) of the following lemma provides the basis for the subsequent “dual-
ization” of H and M .

Lemma. Fix v, z, w ∈W with [z, w] ∈ PA. Then
(a) pw,A

v,z ∈ S2(l′(v)−lA(z,w)), and in particular, pw,A
v,z = 0 unless lA(z, w) ≤ l′(v).

(b) ΩA
z,w ∈ H and ΩA

z,w · S ⊆ S
(c) if u, v, w ∈W J , β ∈ Φ+ with u ∈WJwsβ, then β | (Pw

v,w − Pu
v,u).

Proof. First, we show that if [z, w] ∈ PA and r = sα for some α ∈ Π satisfy sαz > z
and sαw < w, then

ΩA
z,w =trΩA

rz,w

ΩA
z,rw =δrΩA

rz,w + trΩA
rz,rw.

(1)

To prove the formula for ΩA
z,w, for example, one calculates (using 3.2(1) repeatedly)

that

ΩA
z,w =

∑
y∈Γ

(−1)l′(y)δyy
−1

(
ST\A

y,z SA
y,w

)
=

∑
y∈Γ

(−1)l′(y)δyy
−1(ST\A

y,z )
y−1(SA

y,rw) + (ry)−1(SA
ry,rw)

−y−1(α)

= − 1
α

∑
y∈Γ

(−1)l′(y)δy

(
y−1(ST\A

y,z SA
y,rw)− (ry)−1(ST\A

ry,z S
A
ry,rw)

)
= − 1

α
(Ωz,rw + δrΩz,rw)

= trΩz,rw.

The second part of (1) can be proved in a similar way. Note δr ∈ H and tr ∈ H.
Since ΩA

e,e = δe ∈ H, one sees from (1) and 1.5(d) that ΩA
z,w ∈ H for [z, w] ∈ PA.

The second part of (b) then follows by 3.3(1). Since ΩA
z,w =

∑
v∈Γ tvp

w,A
v,z , it follows

22



that pw,A
v,z ∈ S. Using 2.6 and 3.5(2), pw,A

v,z is expressible as a quotient f/g of
homogeneous elements f, g of S satisfying deg(f) − deg(g) = 2

(
l′(v)− lA(z, w)

)
,

giving the remaining part of (a).
Finally, for (c), write β = x(α) with x ∈W and α ∈ Π. Then for w ∈W ,

(δw − δwsβ
)
1
β

= δwx(δe − δsα)
1
α
δx−1 ∈ H

since all δy ∈ H. But

(δw − δwsβ
)
1
β

=
∑
v∈W

tv(Pw
v,w − P

wsβ
v,wsβ )

1
β

by 2.14(1) and 3.6(b), so β | (Pw
v,w − P

wsβ
v,wsβ ) by 2.12. The result now follows by

3.6(g).

Remark. The fact that ΩA
z,w · S ⊆ S is true for general reasons, see 8.10–8.11.

3.8. Following [26], we dualize H to obtain the “dual nil Hecke ring” Λ. Let QW

denote the set of all functions W → Q, endowed with the structure of commu-
tative Q-algebra with pointwise addition, multiplication and scalar multiplication.
Identify QW and HomQ(QW , Q), regarding QW as a right Q-module, by setting
f(

∑
w∈W δwqw) =

∑
w qwf(w) for any f ∈ QW . Then the algebra structure on QW

is the one obtained by dualizing the Q-linear comultiplication in QW (see 3.5).
Define a left QW -module structure on H by

(1) (x · ψ)(y) = ψ(xy) for x, y ∈ QW and ψ ∈ QW .

Now define the dual nil Hecke ring Λ to be the set of ψ ∈ QW such that ψ(H) ⊆ S
and ψ(tw) = 0 for almost all w ∈ W . For w ∈ W , let ξw be the element of QW

defined by

(2) ξw(tv) = δv,w, i.e. ξw(y) = P y
w,y = (−1)l′(y)y−1(ST

y,w) for y, v, w ∈W.

The elements {ξw}w∈W then form a right S-module basis of Λ, and we give Λ the
unique graded S-module structure so that ξw ∈ Λ2l′(w).

Proposition. (a) Λ is a S-subalgebra of QW , with identity element ξe, and is even
a graded S-algebra in the grading defined above.
(b) Λ is stable under the left action of H ⊆ QW .

Proof. First, the calculation in 3.5 (for Γ = W , A = ∅) implies that

(3) ξxξy =
∑

w∈W

Pw
x,yξ

w

where Pw
x,y := pw,∅

x,y was defined in 3.5(2). Together with 3.7(a) and 3.6(d), this
proves (a). Part (b) follows immediately from the definitions.

3.9. If Γ is finite, one can dualize the comodule MΓ for the coalgebra H (see 3.5
and 3.7(a)). In general, we now give a similar “dualization” of MΓ, to obtain a
graded Λ-module ΛΓ.
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Recall the ring HL with its discrete topology; we also give QW and its subring
Λ the discrete topology. Now let QΓ denote the set of all functions Γ → Q which
are supported in a finitely generated coideal of Γ. For any formal symbol D, the
map f 7→

∑
w∈ΓDwf(w) is a bijection QΓ → K↑

Q(Γ, D) which we use to give
QΓ the structure of topological (right) Q-module. From 2.10, we hence obtain
isomorphisms

(1) QΓ ∼= K↑
Q(Γ, D) ∼= Homcont. Q

(
K↓

Q(Γ, δ), Q
)

(2) K↑
B(Γ, ηA) ∼= Homcont. B

(
K↓

B(Γ,mA), B
)

for B = Q or B = S

of Q-modules (resp., B-modules), where ηA is a new formal symbol. Using the
isomorphism K↓

Q(Γ,mA) ∼= K↓
Q(Γ, δ) from the proof of 2.11, we have isomorphisms

of right Q-modules

(3) K↑
Q(Γ, ηA) ∼= Homcont. Q(K↓

Q(Γ, δ), Q) ∼= QΓ.

Now QΓ has a natural structure of topological QW -module, with

(4) (ΨΨ′)(w) = Ψ(w)Ψ′(w) for all Ψ ∈ QW , Ψ′ ∈ QΓ and w ∈ Γ.

Moreover, since K↓
Q(Γ, δ) has a natural structure of topological left QWL

-module,
we have a natural QWL

-module structure on Homcont. Q

(
K↓

Q(Γ, δ), Q
)
, given by

(5) (h · ψ′)(m) = ψ′(hm)

for h ∈ QWL
, ψ ∈ Homcont. Q

(
K↓

Q(Γ, δ), Q
)

and m ∈ K↓
Q(Γ, δ). Using (3), we

transfer the QWL
-module structure and QW -module structure to K↑

Q(Γ, ηA).

Proposition. For n ∈ Z, define Λ′n as the set of formal S-linear combinations∑↑
w∈Γ η

A
waw in K↑

S(Γ, ηA) with aw ∈ Sn−2lA(w) for all w ∈ Γ, and define the right
S-submodule ΛΓ = Λ′ := ⊕n∈ZΛ′n of K↑

S(Γ, ηA). Then the structures of QWL
-

module and QW -module defined above on K↑
Q(Γ, ηA) induce by restriction natural

structures of topological HL-module and graded topological Λ-module on ΛΓ.

Proof. Now from the definitions, for x, v ∈ Γ,

δx,v = ηA
v (mA

x ) =
↓∑

y∈Γ

ηA
v (δy)y−1(SA

y,x),

so inverting using 2.14,

(6) ηA
v (y) = ηA

v (δy) = (−1)l′(y)y−1(ST\A
y,v ) for y ∈ Γ

or equivalently,

(7) ηA
v =

∑↑

y∈Γ

Dy(−1)l(y)y−1(ST\A
y,v ).
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Now in (3), the first and last modules are actually topological Q-modules, and (7)
shows the isomorphism between them given by (3) is a homeomorphism; hence the
QW -module structure on K↑

Q(Γ, ηA) is continuous by its definition. Inverting (7)
again gives

(8) Dv =
∑↑

y∈Γ

ηA
y v

−1(SA
v,y).

Hence for any u ∈W and v ∈ Γ,

ξuηA
v =

∑
y∈Γ

Dyξ
u(y)ηA

v (y) =
∑
w∈Γ

ηA
wy

−1
(
SA

y,wS
T
y,uS

T\A
y,v ).

That is,

(9) ξuηA
v =

∑
w∈Γ

ηA
w p

w,A
u,v .

Since K↑
Q(Γ, ηA) is a topological Λ-module (by restiction of its topological QW -

module structure) and the ξu form a graded right S-basis of Λ, it follows from
3.7(a) that ΛnΛ′m ⊆ Λ′n+m and that ΛΓ := ⊕n∈ZΛ′n is a graded topological Λ-
module.

Now for the HL-module structure. First, the definitions give that

(10) (δw · ψ′)(v) = ψ′(w−1v) for w ∈WL, ψ
′ ∈ QΓ and v ∈ Γ

(11) (q · ψ′)(v) = v−1(q)ψ′(v) for q ∈ Q, ψ′ ∈ QΓ and v ∈ Γ,

from which (using the Z-property for (10)) the QWL
-module structure on QΓ (and

hence the one on K↑
Q(Γ, ηA)) is continuous. By dualizing 2.11(2)–(3), one obtains

(12) χ · ηA
w = ηA

ww
−1(χ)−

∑
w

γ→u

ηA
u 〈χ | γ∨ 〉 for χ ∈ V,

(13) tr · ηA
w =

{
ηA

rw if rw <A w

0 if rw >A w.

This and continuity shows that
(14) tr · Λ′n ⊆ Λ′n−2 and χ · Λ′n ⊆ Λ′n+2 for all χ ∈ V and r ∈ L.

Since V and elements tr, for r ∈ L generate HL, this completes the proof of the
proposition.

Remark. If Γ = W in Chevalley order, so A = ∅, then ΛΓ is the left regular Λ-
module ΛΛ and ηA

w = ξw. Also, taking L = S, the HL-module structure on ΛΓ

coincides with the H-module structure on Λ. Therefore, formulae involving ΛΓ

established so far or subsequently apply in particular to Λ.

3.10. Introduce the following notation. Write w(ψ) = δw ·ψ and ∆w(ψ) = tw−1 ·ψ
for w ∈ W and ψ ∈ Λ, or for ψ ∈ ΛΓ and w ∈ WL. There should be no confusion
between the notation ∆w and that for comultiplication. For χ ∈ S and m ∈ ΛΓ or
m ∈ Λ, we sometimes write χm in place of mχ. Note that in general, χ ·m 6= χm
for χ ∈ S (see 3.9(12)). The following lemma lists a number of additional facts
concerning Λ and the graded Λ-module Λ′ = ΛΓ.
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Lemma. Let ψ ∈ Λ, ψ′ ∈ ΛΓ, w ∈WL, u ∈ Γ and r = sα with α ∈ Π. Then
(a) the WL action on ΛΓ is as a group of graded S-module automorphisms satisfying
w(ψψ′) = w(ψ)w(ψ′). In particular, the W -action on Λ is as a group of graded
S-algebra automorphisms.
(b) ∆r(ψψ′) = ψ∆r(Ψ′) + ∆r(ψ)r(ψ′) = r(ψ)∆r(ψ′) + ∆r(ψ)ψ′ if r ∈ L
(c) ∆r

(
∆r(ψ)ψ′

)
= ∆r

(
ψ∆r(ψ′)

)
if r ∈ L

(d) ∆w(ηA
u ) equals ηA

wu if lA(u) = l′(w−1) + lA(wu) and is zero otherwise.
(e) w(ηA

u ) =
∑

z∈Γ η
A
z g

z,A
w,u where

gz,A
w,u =

∑
y∈Γ

(−1)l′(y)y−1(ST\A
y,u )(wy)−1(SA

wy,z) ∈ S2lA(z,u)

(f) if r ∈ L, r(ηA
u ) is equal to ηA

u + ηA
ruu

−1(α) −
∑

ru
γ→Ay

〈α | γ∨ 〉ηA
y if ru ≤A u

and to ηA
u if ru >A u.

(g) assuming for simplicity that there is an element χα ∈ V as in 3.2(9), one has

ξrηA
u u = ηA

u

(
χα − u−1(χα)

)
+

∑
u

γ→Az

ηA
z 〈χα | γ∨ 〉 for r ∈ L.

(h) for χ ∈ S, write χ ·mA
u =

∑
y∈Γm

A
y Ωy,u(χ) for some (unique) Ωy,u(χ) ∈ S.

Then χ · ηA
y =

∑
u∈Γ η

A
u Ωy,u(χ).

(j) χ · ψ′ = (χ · ξe)ψ′.

Proof. The formula in (f) follows from 3.9(12)–(13) on writing δr ·ψ′ = (αtr+δe)·ψ′,
and the claim in (a) that the WL-action preserves the grading follows from (f), for
instance. By 3.9(10), one has

(
w(ψ′)

)
(u) = ψ′(w−1u) and the analogous formula

for ψ, so the rest of (a) follows easily from the definition (ψψ′)(u) = ψ(u)ψ′(u) of
the Λ-module structure on ΛΓ. By 3.9(10)–(11),

(1)
(
∆r(ψ′)

)
(u) =

ψ′(ru)− ψ′(u)
u−1(α)

.

Then (b) follows by easy computations from (1) and the analogous formula for ψ,
and (c) follows from (b) noting ∆2

r = 0 since t2r = 0. Part (d) follows immediately
from 3.9(13) by induction on l′(w). Part (e) may be proved writing δw · ηA

u =∑
y∈ΓDwy(δw · ηA

u )(wy), using 3.9(10), (6) and (8) and noting gz,A
w,u ∈ S2lA(z,u)

since w is a graded S-module automorphism of ΛΓ. For (g), note by 3.7(a) that
py,A

r,u = 0 unless y ≥ u and l(u, y) ≤ 1, in which cases the value is given by 3.6(e), or
3.6(b) and 3.2(9). Finally, (h) and (j) are immediate consequences of the definitions.

Remarks. (a) In the terminology of [24], Λ equipped with operators ∆r for r ∈ L is
a ring with twisted derivations, and ΛΓ equipped with the ∆r for r ∈ L is a module
with twisted derivations over Λ.
(b) There may be infinitely many non-zero terms in the sums in 3.6(f)–(g).

3.11. Let Λ′ = ΛΓ and Λ′′ = ΛΓop be the graded Λ-modules with HL-module
structure associated to the poset Γ in the orders ≤A and ≤T\A respectively.
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Lemma. There is a bilinear pairing 〈·, ·〉: Λ′ × Λ′′ → S, separately continuous in
each variable, given by

〈
∑↑

w

ηA
waw,

∑↓

w

ηT\A
w bw 〉 =

∑
w

awbw.

For ψ ∈ Λ, ψ′ ∈ Λ′, ψ′′ ∈ Λ′′ and h ∈ HL

(a) 〈ψψ′, ψ′′〉 = 〈ψ′, ψψ′′〉
(b) 〈h·ψ′, ψ′′〉 = 〈ψ′, ι(h)ψ′′〉 where ι:H → H is the ring anti-involution determined
by ι(tw) = tw−1 for w ∈W and χ 7→ χ for χ ∈ V (see 2.13).

Proof. The claimed continuity is easily checked, and (a) follows from 3.6(c). To
check (b), it is enough to check the cases h = tr for r ∈ L and h ∈ V , which are
clear from 3.9(12)–(13).

3.12. Suppose that our fixed dual based root systems over R arise by extension
of scalars from root systems over R. Recall that we have then defined SZ as the
symmetric algebra of the weight lattice in V . Let ΛZ be the graded SZ submod-
ule of Λ spanned by the elements ξw for w ∈ W . Similarly, let (ΛΓ)Z be the
graded SZ-submodule of ΛΓ with n-th homogeneous component consisting of ele-
ments

∑↑
w∈Γ η

A
waw with all aw ∈ SZ homogeneous of degree n− 2lA(w).

Proposition. (a) The SZ submodule (ΛΓ)Z of ΛΓ is stable under action by ele-
ments of ΛZ. Hence, ΛZ is a graded SZ-algebra, and (ΛΓ)Z is a graded ΛZ-module.
Moreover, ΛZ (resp., (ΛΓ)Z) is stable under the Coxeter group operators from W
on Λ (resp., from WL on ΛΓ), the operators ∆w for w ∈ W (resp., w ∈ WL) and
ψ 7→ χ · ψ for χ ∈ SZ and ψ ∈ ΛZ (resp., ψ ∈ (ΛΓ)Z).
(b) If u, v, w ∈W J , β ∈ Φ+ and u ∈WJwsβ, then β | (Pw

v,w − Pu
v,u) in SZ.

Proof. Observe first that HZ :=
∑

w∈W twSZ is a subring of H, by 2.11(2)–(3) for
A = ∅. It is easy to see from 3.7(1) that all Ωy,w ∈ HZ and hence all pw,A

x,y ∈ SZ.
This implies the first claim in (a), and the second follows immediately. Stability
of ΛZ (resp., (ΛΓ)Z) under the indicated operators in H (resp., HL) is clear from
previously given formulae for them. For (b), one need only note that the the
elements of H considered in the proof of 3.7(c) actually lie in HZ.

Remark. The sequel to this paper will study the analogues of the situation here for
a ring Ω which is essentially the equivariant K-theory ring Ω of the flag variety of a
Kac-Moody group (see [27]). The ring ΛZ arises as the graded ring of a filtered form
of Ω. It is known for some classes of orders ≤A (and is probably true in general)
that the (ΛΓ)Z arise as the graded modules for certain filtered Ω-modules ΩΓ.

4. Schubert calculus

This section develops some properties of the rings of WJ -invariants of the ring Λ,
and for J ⊆ L, of the WJ -invariants of the Λ-module ΛΓ. We obtain these results
for Λ by well known arguments from the Schubert calculus, using the following
formalism which is extended afterward to ΛΓ.
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4.1. Suppose given a (finitely generated) Coxeter system (W,S), a commutative,
graded ring B and a commutative, graded B-algebra W. We make the following
assumptions (i)–(v) on this situation.
(i) There is a given family {ξw}w∈W of elements of W, with ξw ∈ W2l′(w), which
span W as B-module, and such that ξe is the identity of W (where e is the identity
element of W ).
(ii) There is a given action of W as a group of graded B-algebra automorphisms of
W
(iii) For each s ∈ S, there is a givenB-linear map ∆s: W → W such that ∆s(ψ1ψ2) =
∆s(ψ1)s(ψ2) + ψ1∆s(ψ2) for all ψ1, ψ2 ∈ W
(iv) for a simple reflection s and any w ∈W ,

∆s(ξw) =
{
ξsw if l′(sw) < l′(w)
0 otherwise.

(v) s(ψ) = ψ iff ∆s(ψ) = 0, for any simple reflection s and any ψ ∈ W.
There is then a B-linear operator ∆x: W → W for each x ∈ W , defined by

setting ∆x = ∆s1 . . .∆sn for any reduced expression x = s1 . . . sn. For x, y ∈ W ,
let IA

x,y ∈ W be defined to be ξe if lA(y) = l′(x−1) + lA(xy) and 0 otherwise, and
set I ′x,y = I∅x,y. Then

(1) ∆x(ξy) = I ′x,yξ
xy.

4.2. Before describing the examples to which the preceeding formalism is intended
to apply, we record its main consequences.

Proposition. Let WJ ⊆ WK be standard parabolic subgroups of W , with rings of
invariants WJ ⊇ WK on W. Then
(a) the elements {ξw}w∈W J form a graded basis of WJ over B.
(b) the elements {ξw}w∈WK∩W J form a graded WK-basis of WJ .

Proof. If there were a non-trivial linear relation
∑
ξwaw = 0 with all aw ∈ B, one

could choose u ∈W so l′(u) is maximal with au 6= 0 and apply ∆u−1 to the relation
to get the contradiction au = auξ

e = 0. Hence {ξw}w∈W is B-linearly independent;
in fact, it is a graded B-basis of W. Part (a) follows immediately from 4.1(iv)–(v)
on noting that WK = ∩s∈KWs. Now one sees by induction on l′(x) that

(1) ∆x(ψ1ψ2) = ψ1∆x(ψ2) for ψ1 ∈ WK , ψ2 ∈ W and x ∈WK .

For any w ∈ W , we may write (uniquely) w = wkw
K where wK ∈ WK and

wK ∈WK . Note W J = (WK ∩W J)WK with uniqueness of expression of elements
from the left as a product of elements as on the right. Consider w ∈W J . Then wK ,
wK are both in W J . Write ξwK ξwK

=
∑

v∈W J ξvav for some av ∈ B2(l′(w)−l′(v)).
We claim that av = 0 unless vK ≤′ wK , and that av = δv,w if vK = wK (recall ≤′

denotes Chevalley order). To prove this claim, take x ∈WK . Then ∆x(ξwK ξwK

) =
∆x(

∑
v∈W J ξvav) i.e.

ξxwK ξwK

I ′x,wK
=

∑
v∈W J

I ′x,vK
ξxvav
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by (1) and 4.1(1). For x−1 6≤′ wK (resp., x−1 = wK) the left hand side of this
equation is 0 (resp. ξwK

). Examining the coefficient of ξxv on the right for v ∈W J

with vK = x−1 gives the claim. The claim just proved can be equivalently restated
as

(2) ξxξy ∈ ξxy +
∑

v∈W J

vK<′x

ξvB2(l′(x)+l′(y)−l′(v)) for x ∈WK ∩W J and y ∈WK .

It follows that the elements {ξxξy} with x ∈WK ∩W J and y ∈WK form another
graded B-basis of WJ (related to the basis {ξw}w∈W J by an infinite, upper unitri-
angular change of basis matrix, with respect to suitable row and column orderings).
Since the elements {ξy}y∈W K form a graded B-basis of WK , (b) is proved.

4.3. Let WJ , WK be as in the preceeding proposition, and assume also that they
are finite. Denote their longest elements by ωJ and ωK respectively. It is well-
known that the map x 7→ x̂:WK ∩W J → WK ∩W J given by x̂ = wJxwK is an
order-reversing (in Chevalley order) bijection of WK ∩W J with itself, satisfying
l′(x) + l′(x̂) = l′(ωJωK). In particular, 1̂ = ωJωK is the maximum element of
WK ∩W J in the order induced by Chevalley order.

By 4.2(b) with J = ∅, there are for x ∈ WK unique WK-linear maps (of degree
zero) cx: W → WK〈2l′(x)〉 such that ψ =

∑
x∈W K cx(ψ)ξx for all ψ ∈ W.

Proposition. If WJ ⊆ WK are finite, there is is an isomorphism of graded WJ -
modules θ: WJ → HomWK (WJ ,WK)〈2l′(ωJωK)〉 given by θ(a)(b) = cwK

(aξwJ b)
for a, b ∈ WJ .

Proof. Note first that for ψ ∈ W, ∆ωK
(ψ) = ∆ωK

(
∑

x∈W K cx(ψ)ξx) = cωK
(ψ) by

4.1(1) and 4.2(1). Also, for a simple reflection s and any ψ1, ψ2 ∈ W, we have

∆s(∆s(ψ1)ψ2) = ∆s(∆s(ψ1)∆s(ψ2)) = ∆s(ψ1∆s(ψ2))

since ∆2
s = 0. We show now that

(1) ∆ωK
(ξxξy) = δx,yωK

if x, y ∈WK with l′(x) + l′(y) ≤ l′(ωK).

In the proof, we write I(x <′ y) to denote ξe if x <′ y and 0 otherwise. Now if
l′(x) + l′(y) < l′(ωK), then (1) is trivial, so we assume l′(x) + l′(y) = l′(ωK) and
proceed by downward induction on l′(y). If l′(y) = l′(ωK), then (1) is again trivial.
Otherwise, choose s ∈ K with l′(sy) > l′(y) and observe that

∆ωK
(ξxξy) = ∆ωKs∆s(ξx∆s(ξsy)) = ∆ωKs∆s(∆s(ξx)ξsy)

= I(sx <′ x)∆ωK
(ξsxξsy) = I(sx <′ x)δsx,syωK

= δsx,syωK

as required to finish the proof of (1). For x, y ∈ WK ∩W J with l′(x) + l′(y) ≤
l′(ωJωK), we now have

∆ωK
(ξxξωJ ξy) = ∆ωKωJ

∆ωJ
(ξxξyξωJ ) = ∆ωKωJ

(ξxξy)

= ∆ωKωJ
∆ωJ

(ξxξωJy) = ∆ωK
(ξxξωJy) = δx,ŷ

(2)
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by (1) and 4.2(1). This implies that the matrix
(
θ(ξx)(ξŷ)

)
x,y∈WK∩W J of elements

of W is upper unitriangular for a suitable ordering of its rows and colums, in
particular it has determinant ±ξe ∈ WK . Since the elements {ξx}x∈WK∩W J form
a WK-basis of WJ , it is clear that θ is an isomorphism of ungraded WJ -modules.
Since θ is homogeneous of degree zero, it is a graded isomorphism also.

4.4. From data W, B, W etc satisfying the conditions 4.1(i)–(v), one may obtain
similar sets of data by base change, under suitable conditions. For example, let C
be any commutative, graded B-algebra. Then

(1) if 2 is not a zero-divisor in C, the C-algebra W ⊗B C with natural C-basis
{ξw ⊗ 1C}w∈W , W -automorphisms w ⊗B IdC and operators ∆s ⊗B IdC for simple
reflections s also satisfy the conditions 4.1(i)–(v).

Indeed, all conditions except (v) are clear without the hypothesis on 2 ∈ C. For
(v), let f ∈ W⊗B C and s be a simple reflection. If s(f) = f , then 2f = f + s(f) ∈
Ws ⊗B C and so ∆s(2f) = 0. Since 2 is not a zero-divisor in C and W s ⊗B C is
a free C-module, ∆s(f) = 0 as wanted. Conversely, suppose ∆s(f) = 0. Writing
f =

∑
w∈W ξw⊗ cw with cw ∈ C, one has cw = 0 unless sw >′ w. Since s(ξw) = ξw

when sw > w, this gives s(f) = f .

Remark. If C is an ungraded B-algebra in which 2 is not a zero divisor, then
the data in (1) satisfies the ungraded analogues of 4.1(1)–(v) and the ungraded
analogues of conclusions of the Propositions 4.2 and 4.3.

4.5. This subsection describes some situations (a)–(c′) in which the formalism from
4.1 can be applied. First, we have (a)–(c) immediately below.

(a) Let W = Λ, B = S, and define the elements ξw as in 3.8. The operators w
and ∆w for w ∈ W are as defined in 3.10. Then 4.1(i)–(v) hold. The only point
not previously checked is 4.1(v), which follows readily from the formula 3.10(f), for
instance.

(b) Take W = ΛZ, B = SZ, and ξw as in 3.12. The Weyl group automorphisms and
operators ∆s are also as defined there. Again, 4.1(i)–(v) are easily seen to hold.

(c) Here we assume that W is finite with longest element ω. Take W = S, with the
natural W -action induced by that on V = S2, and let B denote the subalgebra of
W -invariant elements of S. Recall from 3.3 the elements tw of the nil Hecke ring
and their action on S; for instance, for a parabolic subgroup WK of W ,

(1) tωK
(f) =

1∏
α∈Φ+

K
α

∑
w∈WK

(−1)l′(ωK)−l′(w)w(f).

Set ∆r = tr for r ∈ S, and, for any y ∈ W , set ξyω = ty−1( (−1)l′(ω)

](W ) D) where
D =

∏
α∈Φ+ α. Then conditions 4.1(i)–(v) are known to hold; we indicate a proof

below.
First, for w ∈W , w(D) = (−1)l′(w)D, so (1) shows that

(2) tωK
(ξω) = (−1)l′(ω)−l′(ωK) ](WK)

](W )

∏
α∈Φ+\Φ+

K

α,
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and in particular ξe = 1. Next, since tv tw is equal to twv if l′(wv) = l′(v) + l′(w)
and to 0 otherwise, one has ty−1ξw = I ′y,wξ

yw which proves 4.1(iv). For 4.1(v), note
that if α ∈ Π, then sα(f) = αtsα

(f) + f for f ∈ S, and S is an integral domain.
The part 4.1(ii) is trivial, 4.1(iii) is an easy computation from the definitions, and
clearly ξy ∈ S2l′(y), so it remains to prove the claim in 4.1(i) that {ξw}w∈W spans
S over B. Let F = SSW

+ be the ideal of S generated by homogeneous W -invariant
elements of S of positive degree. By well-known facts ([34, 4.2.6 and 4.2.8] and
10.1(2)), a family {dw}w∈W of homogeneous elements of S are a B-module basis
of S iff the classes dw + F of the dw in the quotient algebra S/F are R-linearly
independent. Now tr(F ) ⊆ F for r ∈ S, so for w ∈ W , tw acts naturally on the
quotient S/F . Linear independence of the classes ξw +F in S/F over R follows as
in the start of the proof of 4.2, so the ξw are a B-basis of S as required to complete
the verification of the conditions 4.1(i)–(v) in the situation (c) above.

For later use, we record the following well-known fact (which can also be easily
seen from the above discussion):
(3) the map f 7→ tωK

(f) is a SK-linear surjection of S onto SK .
Of course, (3) requires only the assumption of finiteness of WK and not of W .

Additional examples of data satisfying 4.1(i)–(v) arise from base change as in
4.4. In particular, we explicitly list the main examples (a′)–(c′) arising this way.
(a′) the example W = Λ⊗S R, B = R obtained by base change ?⊗S R from (a)
(b′) the example W = ΛZ ⊗SZ Z, B = Z obtained by base change ?⊗SZ Z from (b)
(c′) for finite W , the example W = S⊗S′ R, B = R arising from base change ?⊗S′ R
from situation (c), where S ′ is the subalgebra of W -invariants of S.

The results obtained from the formalism in 4.1 may be summarized as follows.

Corollary. The conclusions of 4.1 and 4.3 hold in all situations 4.5(a)–(c′) listed
above.

Moreover, in situations (a) or (c), the canonical maps WJ ⊗B C → (W⊗B C)J

and (if ]WK <∞) HomWK (WJ ,WK)⊗B C → HomWK⊗BC(WJ ⊗B C,WK ⊗B C)
are graded B-algebra isomorphisms, for any commutative, graded B-algebra C.

Proof. The first assertion is known, and the second claim follows from the fact that
in situations (a) or (c) one can actually apply base-change ?⊗B C as in 4.4(1) for
any graded B-algebra C.

Remark. In the situation (c′), there is a natural identification of W with the coin-
variant algebra S/F . The results in situations 4.5(c)-(c′) comprise part of the
classical Schubert calculus (see e.g. [5], from which several of the proofs in this sec-
tion are adapted). Some of them hold in somewhat greater generality (see Section
10). The result 4.3 in situation (a) could also be deduced from 4.3 in situation (c),
using the proposition in the next subsection. In the situation (a), the result 4.2(a)
is proved in [26].

4.6. Regard Λ as a graded S ⊗R S algebra with (χ ⊗R χ
′)ξe = χ · (ξeχ′). We call

the S-algebra structure on Λ given by action of the subring S ⊗R R (resp., R⊗R S)
of S ⊗ S the left (resp., right) S-algebra structure.

Corollary. Fix finite standard parabolic subgroups WJ ⊆WK of W .
(a) The map χ⊗R ξ 7→ χ · ξ for χ ∈ S, ξ ∈ Λ restricts to an isomorphism of graded
SJ ⊗R S-algebras SJ ⊗SK ΛK → ΛJ .
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(b) If W itself is finite and K = S, the map χ⊗χ′ 7→ χ · ξeχ′ for χ, χ′ ∈ S restricts
to an isomorphism of graded SJ ⊗R S-algebras SJ ⊗SK S → ΛJ .

Proof. Note that if W = WK is finite, then ΛK = ξeS, so (b) is just a special case
of (a). Hence it will suffice to prove (a). First, we prove (a) in case J = ∅. For a
simple root α with s = sα ∈ K, one has operators s ⊗ Id and ∆s = 1

α (s − e) ⊗ Id
on S ⊗R ΛK , and the operators s and ts on Λ from the action of the nil Hecke
ring. From the definitions, one easily sees that these operators intertwine the map
m′:S ⊗R ΛK → Λ given by χ⊗R ξ 7→ χ · ξ for χ ∈ S, ξ ∈ ΛK :
(1) m′ ◦ (s⊗ Id) = s ◦m′ and m′ ◦ (∆s) = ts ◦m′. In particular, the image of m′ is
closed under action by the operators w and tw for any w ∈WK .
This implies that the left graded S-algebra structure on Λ restricts to a left graded
SK-algebra structure on ΛK , and som′ factors through S⊗SK ΛK to give a S⊗SKS-
algebra homomorphism m:S ⊗SK ΛK → Λ.

Let D = (−1)l′(ωK )

](WK)

∏
α∈Φ+

K
α. Write m(D ⊗ ξe) =

∑
w ξ

waw for some aw ∈ S;
note aw = 0 if 2l′(w) > degD = 2l′(ωK). Using 3.10(h) and 4.5(2), one sees
that aωK

= 1. From 4.2(b) and 4.2(2), it follows that d := m(D ⊗ ξe) ∈ ξωK +∑
w∈WK

l′(w)<l′(ωK)

ξwΛK . Hence for any u ∈ WK , the image of m contains an element

∆uωK
(d) ∈ ξu +

∑
w∈WK

l′(w)<l′(u)

ξwΛK . By induction on l′(u), it follows that ξu is in

the image of m for all u ∈ WK . By 4.2(b), it follows that m is surjective. As ΛK-
modules, both Λ and S⊗SK ΛK are free of the same finite rank ](WK) (by 4.2(b)). In
general, a surjective homomorphism of isomorphic finitely generated (free) modules
over a commutative ring is an isomorphism. Hencem is an isomorphism of ungraded
ΛK-modules, and so m is also an isomorphism of graded S ⊗SK S-algebras. This
proves (a) if J = ∅. Now for general J , note first that
(2) Λ is graded free as left SK-module.
Indeed, for any graded basis {di}i∈I of S over SK , the elements ξww−1(di) for
i ∈ I and w ∈ WK are easily seen (using 4.2(a)) to form a graded basis of ΛK

as left SK-module. Now taking WJ invariants in the WJ -equivariant isomorphism
m above gives isomorphisms SJ ⊗SK ΛK ∼= (S ⊗SK ΛK)J ∼= ΛJ of the rings of
invariants (the first map is seen to be an isomorphism using (2), for instance). The
composite isomorphism is clearly the restriction of the map defined in (a).

4.7. Suppose given data W, W , B etc as in 4.1. We assume here also that B =
⊕n∈NBn is positively graded. We give W and its subrings the discrete topology.
We assume for simplicity in the following results that Γ = WLΓL; then Γ = WJΓJ

for any J ⊆ L. We now consider any topological, graded W-module M = ⊕n∈ZMn

satisfying the following conditions (i)–(v) analogous to those imposed on W (the
intended examples will be described later).
(i) with the B-module structure induced by that on W, M is a B-submodule of
K↑

B(Γ, η) (with the the subspace topology) and Mn consists of all formal sums∑↑
w∈Γ ηwbw ∈ K↑

B(Γ, η) with all bw ∈ Bn−2lA(w).
(ii) WL acts as a group of continuous graded B-module automorphisms of M ; the
action satisfies w(ψψ′) = w(ψ)w(ψ′) for any w ∈WL, ψ ∈ W and ψ′ ∈ M
(iii) For each s ∈ L, there is a given continuous, B-linear map ∆s: M → M such
that ∆s(ψψ′) = ∆s(ψ)s(ψ′) + ψ∆s(ψ′) = s(ψ)∆s(ψ′) + ∆s(ψ)ψ′ for all ψ ∈ W,
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ψ′ ∈ M
(iv) for s ∈ L and any w ∈W ,

∆s(ηw) =
{
ηsw if sw <A w

0 otherwise.

(v) s(ψ) = ψ iff ∆s(ψ) = 0, for any s ∈ L and any ψ ∈ W.

It follows that here is a continuous B-linear operator ∆x: M → M for each x ∈
WL, defined by setting ∆x = ∆s1 . . .∆sn

for any reduced expression x = s1 . . . sn.
One has

(1) ∆x(ηy) = IA
x,yηxy

where IA
x,y is defined in 4.1.

4.8. For any J ⊆ L, denote the set of WJ -invariant elements of M by MJ . Then
MJ is a graded B-submodule of M. Now we have the following result analogous to
4.2.

Proposition. Let WJ ⊆WK ⊆WL be standard parabolic subgroups of WL. Then
(a) MJ is a graded WJ -submodule of M, with MJ

n =
∑↑

w∈ΓJ ηwBn−2lA(w).
(b) the map ψ ⊗ ψ′ 7→ ψψ′, for ψ ∈ WJ and ψ′ ∈ MK , induces an isomorphism
WJ ⊗WK MK ∼= MJ of graded WJ -modules.

Proof. The fact that MJ is a graded WJ -module follows from 4.7(ii). The explicit
description of MJ in (a) follows immediately from the conditions in 4.7(iv)–(v) on
noting that MK = ∩s∈KMs. Next, we prove that

(1) each m ∈MJ
n is uniqely expressible as a finite sum m =

∑
x∈WK∩W J ξxmx with

mx ∈ MK
n−2l′(x).

By 4.2(b), which is actually a special case of (1), this will prove (b). In the proof,
for any v ∈ Γ, write v = vKv

K with vK ∈ WK and vK ∈ WΓK , so lA(v) =
l′(vK) + lA(vK). First, note the formula

(2) ∆x(ψm) = ∆x(ψ)m for ψ ∈ W, m ∈ MK and x ∈WK

which is proved by induction on l′(x). Consider x ∈ WK ∩W J and y ∈ ΓK . As in
the proof of 4.2(b), one sees using (2) that

(3) ξxηy ∈ ηxy +
∑

v∈ΓJ

vK<′x
vK≥y

ηvB2lA(v,xy) for x ∈WK ∩W J and y ∈ ΓK .

The uniqueness claim in (1) follows from this. For let m =
∑

x∈WK∩W J ξxmx = 0
with mx ∈ MK

n−2l′(x). If some mx 6= 0, choose x′ of maximal length l′(x′) with

mx′ 6= 0, and write mx′ =
∑↑

y∈ΓK ηycy, Choose y′ minimal in the order ≤A with
cy′ 6= 0. Then the coefficient of ηx′y′ in the expression of m = 0 as a formal B-linear
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combination of elements ηz is cy′ 6= 0 by (3), a contradiction. From (3), it follows
that for z ∈ ΓJ ,

(4) ηz ∈ ξzKηzK +
∑↑

x∈WK∩W J , x<zK

y∈ΓK , y≥zK

ξxηyB2lA(xy,z).

Consider an element m =
∑↑

z∈ΓJ ηzcz of MJ
n. Then cz ∈ Bn−2lA(z). There are

elements z1, . . . , zp of W J such that cz = 0 unless z ≥ zi for some i. If cz 6= 0, then
zK ≥ zK

i for some i, and l′(zK) ≤ lA(z)− lA(zK
i ) ≤ n/2− lA(zK

i ); in particular, for
some N ∈ N, l′(zK) ≤ N for z ∈ Γ with cz 6= 0. Note that there are only finitely
many elements w of WK of length l′(w) ≤ N . It follows that substituting (4) into
m =

∑↑
z∈ΓJ ηzcz gives an expression for m as required in (1), completing the proof.

4.9. We now describe the main situations to which the formalism from 4.8 can be
applied.
(a) Let W = Λ, B = S etc be as in 4.5(a), and M = ΛΓ with ηw = ηA

w as in 3.9.
The WL-action and operators ∆s on M are as defined in 3.10. Then all conditions
4.7(i)–(v) hold.
(b) Take W = ΛZ B = SZ, etc as in 4.5(b). Let M = (ΛΓ)Z withWL-automorphisms
and operators ∆s as in 3.12. Again, all conditions 4.7(i)–(v) hold.

Additional examples arise from (a), (b) by base change (to a commutative, pos-
itively graded B-algebra C in which 2 is not a zero divisor) as follows. Let M(C)
be the right C-submodule of K↑

C(Γ, η′) with M(C)n =
∑↑

η′wCn−2lA(w). Define the
continuous left Λ ⊗B C-module structure (and left action of ∆s, for s ∈ L, and
w ∈ WL) on M(C) as follows; define the structure constants of M(C) with respect
to standard elements ξw⊗1C , η′w by applying the structural homomorphism B → C
to the corresponding structure constants of M with respect to standard elements
ξw, ηA

w . The conditions in 4.7 are easily verified. We explicitly record the two main
examples arising by base change.
(a′) the module M(R) arising by base change from B = S to C = R in (a)
(b′) the module M(Z) arising by base change from B = SZ to C = Z in (b).
We summarize the results obtained with this formalism in the following proposition.

Proposition. The conclusions of propositions 4.8 hold in all situations (a)–(b′)
listed above. In situation (a) with K ⊆ J ⊆ L and WJ finite (so M = ΛΓ), MJ

has a natural graded (SJ ,S)-bimodule structure induced by its ΛJ -module structure,
and, moreover, SK ⊗SJ MJ ∼= MK as graded (SK ,S)-bimodule.

Proof. The first statement is known, and the second follows from 4.6.

Remark. Recall the Coxeter system (W ′, S′) from 2.15. If WJ , W ′
K are finite par-

abolic subgroups of (W,S), (W ′, S′) respectively with WJΓW ′
K ⊆ Γ (and Γ fi-

nite, for simplicity) there is a natural (SJ ,SK)-subbimodule M(J,K) of M with
M ∼= S ⊗SJ M(J,K) ⊗SK S as (S,S)-bimodule, and there is an interesting represen-
tation theory associated to shortest (WJ ,W

′
K) double coset representatives in Γ for

which one might hope M(J,K) might function as a dualizing object. The problem
of extending these definitions to infinite W ′

K motivated 2.16–2.17. For crystallo-
graphic W , this problem (for J = ∅ and W ′

K = W ′) is expected to be relevant (see
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[16, 21]) to the study of the category O of modules for Kac-Moody Lie algebras
(W arises as an “integral Weyl group” of a weight λ and W ′ arises as the reflection
subgroup of W generated by reflections fixing λ, in the standard dot action of W
on the weights).

5. Extensions of some modules for the dual nil Hecke ring

This section gives some alternative descriptions of the nil Hecke ring and its
dual, and some calculations of certain Ext1 groups (e.g. for some Λ-modules).
Throughout this section, we always assume (if the root system arises by extension
of scalars from an integral root system) that the roots are all indivisible elements
of the weight lattice.

5.1. Recall that Q is a QW -module with (
∑

w qwδw) · q =
∑

w∈W qww(q). For
β ∈ Φ+, define the localization S(β) := S[α−1 | α ∈ Φ+ \ {β}] of S; we regard it as
a subring of Q. Then

(1) S = ∩β∈Φ+S(β).

Lemma. Assume that the fundamental chamber of W on V is sufficiently large
(see 1.4). Then an element h =

∑
w qwδw ∈ QW satisfies h · S ⊆ S iff for all

w ∈W and α ∈ Φ+, one has qw ∈ α−1S(α) and qw + qsαw ∈ S(α).

Proof. Let p be any prime element of S, and x, y ∈ W . Then p | (δx − δy)(χ) for
all χ ∈ S iff p | (δx − δy)(χ) for all χ ∈ V , which in turn holds iff p is associate to
some (unique) α ∈ Φ+ and y = sαx, by 1.4. By 8.2, h ·S ⊆ S iff (i)–(ii) below hold:
(i) for each prime element p ∈ S not associate to any root, qwδw · (S) ⊆ SpS
(ii) for each α ∈ Φ+ and w ∈W , (qwδw + qsαwδsαw) · χ ∈ Sw(α)S for all χ ∈ S.
Here, SpS is the localization of S at the prime ideal generated by p. For fixed w
and α, condition (ii) is equivalent to

(iii) qwχ+ qsαwsα(χ) ∈ SαS

for all χ ∈ S. Note S = Ssα + αSsα where Ssα is the subring of sα-invariant
elements of S. The left hand term in (iii) is Ssα -linear in χ, so (iii) holds iff it
holds for χ = 1 and for χ = α. From this, it readily follows that (iii) holds iff
qw ∈ α−1SαS and qw + qsαw ∈ SαS . Now note that condition (i) is just qw ∈ SpS
for any prime element p not associate to a root i.e. only products of roots occur
in the denominators of each qw (when written in lowest terms). The lemma now
follows immediately.

5.2. The following description of the nil Hecke ring H was obtained in [26] by a
more complicated argument.

Corollary. Assume that the fundamental chamber of W on V is sufficiently large.
Define H ′ := {h ∈ Qw | h · S ⊆ S }. Then
(a) H ′ = H

(b) H ∩H =
∑

w∈W δwS.
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Proof. Let Λ̂ denote the set of functions ψ:W → S satisfying the following condi-
tion:

(1) ψ(w) ≡ ψ(wsβ) (mod βS) if w ∈W and β ∈ Φ+

Regard Λ̂ as a subset of HomQ(QW , Q) by setting f(
∑

w δwqw) =
∑

w f(w)qw; by
3.7(c) and 3.8(2), one has Λ ⊆ Λ̂.

Fix ψ ∈ Λ̂, and h =
∑

w qwδw ∈ H ′. Then h =
∑

w δw−1qw =
∑

w δwaw where
aw := qw−1 satisfies aw ∈ α−1S(α) and aw + awsα

∈ S(α) for all w ∈ W , α ∈ Φ+.
By definition of Λ̂,

awψ(w) + awsα
ψ(wsα) ≡ (aw + awsα

)ψ(w) ≡ 0 (mod S(α))

and so
∑

w∈W awψ(w) ∈ ∩α∈Φ+S(α) = S. This shows that

(2) ψ(h) ⊆ S for all h ∈ H ′ and ψ ∈ Λ̂.

Now we can give the proof of (a). By 3.3, H ⊆ H ′. Conversely, let h ∈ H ′.
Write h =

∑
w twbw for some unique bw ∈ Q. Then ξw(h) = bw ∈ S by (2), and so

h ∈ H as required.
For part (b), the inclusion of the right hand side in the left is clear since δr

(for r ∈ S) and S are contained in the intersection. Conversely, suppose h =∑
w qwδw ∈ H ∩ H. Then for w ∈ W and α ∈ Φ+, one has qw ∈ α−1S(α) and

qw + qsαw ∈ S(α) (since h ∈ H ′), and w(qw−1) + (sαw)(q(sαw)−1) ∈ S(α) (since
h =

∑
w∈W w(qw−1)δw ∈ H ′). The last of these three sets of equations is equivalent

to qw+sα(qsαw) ∈ S(α); together with the first and second sets, it implies qw ∈ S(α),
hence qw ∈ ∩α∈Φ+S(α) = S. This completes the proof.

5.3. The following result is proved for finite Weyl groups in [2]; the proof there
easily extends to the general situation, but instead we obtain it as a “dual” version
of the lemma. We let either
(a) B = S, W = Λ
or, if our root system arises by extension of scalars from an integral root system,
(b) B = SZ, W = ΛZ.
In either case, let R denote the B-algebra of functions W → B with pointwise oper-
ations. By 3.8(2), 3.7(a) and 3.12, W can be naturally regarded as a B-subalgebra
of R, and hence so can the subring WJ of WJ -invariant elements of W for any
J ⊆ S.

Corollary. The homogeneous component WJ
n of degree n is identified by the above

with the functions ψ:W → B satisfying the conditions (i)–(iii) below;
(i) ψ is constant on each coset WJu with u ∈W
(ii) ψ(w) ≡ ψ(wsβ) (mod βB) if w ∈W , β ∈ Φ+

(iii) ψ(w) ∈ Bn for all w ∈W .

Proof. Since WJ = {ψ ∈ W | ψ(uw) = ψ(w) for all u ∈ WJ }, we may assume
J = ∅ without loss of generality. Let Ŵ denote the set of functions W → B
satisfying (ii)–(iii). By 3.8(2), 3.7(c) and 3.12(b), W ⊆ Ŵ. For the converse,
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suppose ψ ∈ Ŵn. Write ψ =
∑

w∈W ξwqw for some qw ∈ Q, possibly with infinitely
many qw non-zero.

Assume first that that we are in case (a) and moreover that the fundamental
chamber for W on V is sufficiently large. By 5.2(2) and 5.2(a), qw = ψ(tw) ∈
Sn−2l′(w). In particular, qw ∈ S and qw = 0 for almost all w, so ψ ∈ Λ. Now
in general (with J = ∅), Remark 1.4 says one can choose a R-space U ⊇ V , with
W -action from dual based root systems on U and V ′, so that the fundamental
chamber of W on U is sufficiently large. Then in either situation (a) or (b), B
may be naturally regarded as a subring of the symmetric algebra S ′ of U over R,
and one may naturally identify the dual nil Hecke ring of W on U with Λ ⊗B S ′,
as S ′-algebra. By the special case already considered, all qw ∈ S ′n−2l′(w). If some
qw 6∈ B, take w of minimal length l′(w) with this property. Then qvξ

v(w) ∈ B for
all v <′ w and qvξ

v(w) = 0 for v 6≤ w, so qwξw(w) ∈ ψ(w) + B ⊆ B. Since ξw(w)
is a product of (indivisible if B = SZ) roots and qw ∈ S ′, it follows that qw ∈ B, a
contradiction which completes the proof.

5.4. The next part of this section describes some variants and extensions of 5.1
and 5.2. In each of three specific (and closely related) situations we consider, there
will be a commutative ring R and a family σ := {σx:U → B}x∈X of distinct
R-algebra homomorphisms from a commutative R-algebra U into a commutative
domain (and R-algebra) B with quotient field K. In each case, one defines the
coalgebra Kσ

∼= ⊕x∈XσxK (consisting of certain functions U → K) and its B-
submodule Bσ of functions U → B as in 8.3. In particular,

Bσ := {ψ ∈ Kσ | ψ(U) ⊆ B }

= {
∑
x∈X

σxax | ax ∈ K,
∑
x∈X

axσx(u) ∈ B for all u ∈ U }.

(1)

We provide in each of the three cases a “local” description (analogous to 5.1) and
a B-basis of Bσ, and show Bσ may naturally be regarded as a coalgebra over B.

In each of the three cases, there will be a parabolic subgroup WJ of the Coxeter
group W such that X = W J and a ring W on which W acts as a group of ring
automorphisms, such that U = WJ (the ring of WJ -invariants on W). There will be
ring homomorphisms σ′x: W → B for all x ∈ W (satisfying in fact σ′x|WJ = σ′y|WJ

whenever WJx = WJy), and for x ∈ W J , σx will be defined as the restriction
σx = σ′x|WJ . Henceforward, we drop the notational distinction between σ and σ′.
We now describe R, W, B and the {σx}x∈W in each of the three cases (a)–(c) of
interest here.
(a) In this case only, assume that WJ is finite and that the fundamental chamber of
W on V is sufficiently large. Let R = R, W = B = S and for x ∈W , let σx:S → S
be the unique extension of the R-linear map x−1:V → V to a graded R-algebra
automorphism of S. If J = ∅, the results to be given for this case reduce to 5.1 and
5.2(a).
(b) In this case and the next, WJ need not be finite. Set W = Λ, R = B = S. For
χ ∈ W, x ∈W there is a unique σx(χ) ∈ B such that

(2) χξx ∈ ξxσx(χ) +
∑
y>′x

ξyB.
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Then σx: W → B is clearly a B-algebra homomorphism, and

(3) σx(ξy) = P x
y,x = (−1)l′(x)x−1(ST

x,y)

By 3.6(g), the restriction of σx to ΛJ depends only on the cosetWJx of x as claimed.
(c) In this third case, we suppose that the root system arises by extension of scalars
from an integral root system. We take R = B = SZ and W = ΛZ. Then we define
the σx for x ∈ W by the formula (2) again, and note that (3) still holds in this
context.

5.5. In any of these three situations 5.4(a)–(c), we regard the elements of Φ+

as pairwise non-associate, prime elements of B. For β ∈ Φ+, extend the earlier
notation S(β) by defining the localization B(β) := B[α−1 | α ∈ Φ+ \{β}] of B. One
has

(1) B = ∩β∈Φ+B(β).

The following result (and its analogue in the sequel to this paper) is fundamental
in the study of the reprentation categories described in [21].

Theorem. Let {ax}x∈W J be a family of elements of K, of which all but finitely
many are zero. Then in any one of the three situations 5.4(a)–(c) above, the fol-
lowing two conditions are equivalent:
(i)

∑
x∈W J axσx(u) ∈ B for all u ∈ WJ

(ii) for any β in Φ+ and x, y ∈W J with y ∈WJxsβ, one has{
ax ∈ β−1B(β) and ax + ay ∈ B(β) if x 6= y

ax ∈ B(β) if x = y.

Proof. Consider first the situation of 5.4(a). If J = ∅, the Theorem reduces to
5.1. Now consider arbitrary J with WJ finite. Extend the ax for x ∈ W J to a
W -indexed family {aw}w∈W constant on cosets WJw. Recall that W = B = S.
Since the map W → W given by u 7→

∑
w∈WJ

σw(u) has WJ as image, it follows
that (i) is equivalent to

∑
w∈W awσw(u) ∈ B for all u ∈ W, and this is equivalent

in turn to (ii), by the equivalence for J = ∅ of (i) and (ii).
Now we prove the equivalence in the situation of 5.4(b). Fix β ∈ Φ+. For

the remainder of this proof, for any w ∈ W , we denote the unique element of
WJwsβ ∩W J by w′. Define ∆(β)

w ∈ Kσ for w ∈W J by

(2) ∆(β)
w =

{
(σw − σw′) 1

β if w′ <′ w

σw otherwise

(note that w′ <′ w iff wsβ <
′ w). It follows immediately from 3.7(c) that

(3) ∆(β)
w (WJ) ⊆ B i.e. ∆(β)

w ∈ Bσ.

We now prove the following claim:

(4) if elements {aw}w∈W J of K, almost all zero, satisfy (
∑

w∈W J ∆(β)
w aw)(χ) ∈ B(β)

for all χ ∈ WJ , then all aw ∈ B(β).
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For this, it suffices to show that if q is any prime element of B, not associate to
any element of Φ+ \ {β} and elements {bw}w∈W J of B, almost all zero, satisfy
(
∑

w∈W J ∆(p)
w bw)(χ) ∈ qB for all χ ∈ WJ , then q | bw for all w. In fact, it

will even be enough by (3) to show that in this situation, q | bv if v ∈ W J is of
maximal length l′(v) with bv 6= 0. Fix any such v. There are unique cw ∈ B with∑

w ∆(p)
w pbw =

∑
w σwcw. In fact,

cw =


bw if w′ <′ w
pbw − bw′ if w′ >′ w
pbw if w′ = w.

We have by 3.6(b) and 3.2(3) that

pq |
∑
w

pbw∆(p)
w (ξv) = cvd where d = ±

∏
γ∈Φ+

vsγ<γ

γ.

Now we consider the following three cases (∼ denotes the relation of being associate
in the unique factorization domain B). If v′ <′ v and p ∼ q, then q divides d at
most once, so q | cv = bv. If v′ <′ v and p 6∼ q, then q doesn’t divide d at all, so
q | cv = bv again. Finally, if v′ ≥′ v, then neither p nor q divides d since vsβ >

′ v,
so pq | cv = pbv and again q | bv. This completes the proof of the claim (4).

Now to finish the proof of the theorem in the situation 5.4(b), note that by (1)
and (4), condition (i) of the theorem is equivalent to the condition that for each
β ∈ Φ+,

∑
w σwaw =

∑
w ∆(β)

w b
(β)
w , for some b(β)

w ∈ B(β). This in turn is easily seen
to be just a restatement of condition (ii) of the theorem.

Finally, the proof of the theorem in the situation 5.4(c) is essentially the same
as for 5.4(b), substituting a reference to 3.12(b) for the one to 3.7(c).

5.6. Now define elements nv ∈ Kσ for v ∈ W J in each situation 5.4(a)–(c) as
follows:

(1) nv :=
∑

y∈W J

σy

( ∑
u∈WJ

(uy)−1(S∅uy,v)
)
.

Clearly, {nv}v∈W J is a K-basis of Kσ. In fact, using 3.2(2) and 2.14, one checks

(2) σy =
∑

x∈W J

nx(−1)l′(y)y−1(ST
y,x).

From (1), (2), 3.2(2) again and 3.5, one easily sees that

(3) ∆(nv) =
∑

x,y∈W J

nx ⊗ nyP
v
x,y

in the comultiplication defined as in 8.3 (note that the coefficients on the right of
(2), (3) are in B). By 3.2(6), if WJ is finite, then

(4) nv =
∑

y∈W J

σyy
−1

(
S∅y,ωJv

∏
α∈Φ+

J

α
)
.
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Proposition. In each situation 5.4(a)–(c), the elements {nv}v∈W J form a B-
module basis of the B-module Bσ = {ψ ∈ Kσ | ψ(U) ⊆ B }.

Proof. First, consider the situation 5.4(a). As is well known (see 4.5(3)) the map
tωJ

:S → S is a surjection S → SJ . Set D =
∏

α∈Φ+
J
α. Using 4.5(1) and 3.2(2),

one computes that for χ ∈ S,

nvtωJ
(χ) =

∑
y∈W J

y−1
(
S∅y,ωJvD

)
y−1

( 1
D

∑
u∈WJ

(−1)l′(ωJ )−l′(u)u−1(χ)
)

= (−1)l′(ωJ )
∑

y∈W J

∑
u∈WJ

(−1)l′(uy)(uy)−1(S∅uy,ωJv)(uy)−1(χ)

= (−1)l′(ωJ )tωJv(χ).

Suppose n =
∑

v∈W J nvbv ∈ Kσ, with the bv ∈ K. Then n ∈ Bσ iff for all χ ∈ S,∑
v∈W J bvtωJv(χ) ∈ S i.e. iff all bv ∈ S, by 5.2.
Now consider cases 5.4(b) and 5.4(c). For w ∈W J , 3.2(1) and 2.14 give

nv(ξw) =
∑

y∈W J

( ∑
u∈WJ

(uy)−1(S∅uy,v)
)
(−1)l′(y)y−1(ST

y,w)

=
∑

y∈W J

( ∑
u∈WJ

(−1)l′(uy)(uy)−1(S∅uy,vS
T
uy,w)

)
= δv,w

and the result follows easily (see 8.4(1)) since the ξw for w ∈ W J form a B-basis
of WJ and the σv are B-linear.

Remark. In situation 5.4(a) (resp., (b), (c)), one may dualize Bσ as in 8.3 to obtain
a B-algebra B∗

σ = HomB(Bσ, B). Then by (3), ΛJ (resp., ΛJ
Z , ΛJ) may be identified

naturally with a B-subalgebra of B∗
σ, identifying ξw, for w ∈W J with the element

n∗w of B∗
σ defined by n∗w(nv) = δv,w.

5.7. By 8.12, Theorem 5.5 reduces the calculation of certain Ext1-groups of im-
portance in studying the representation categories from [21] to the simultaneous
solution of certain explicit congruences. The most important special case is the
following (stated in [21] in cases 5.4(a) and (b), with a proof given fully only for
J = ∅ in case 5.4(a)).

Define the ring UB = U ⊗R B; in 5.4(b)–(c), one has UB
∼= U naturally since

R = B. For x ∈ W , define the UB-module (which we regard also as (U,B)-
bimodule) Bx which is equal to B as right B-module and has left U -action given
by (u, b) 7→ bσx(u) for u ∈ U and b ∈ Bx. Then Bx = By if x ∈WJy.

Corollary. Let x, y ∈W . Then as right B-modules,
(a) HomUB

(Bx, By) ∼= B if x ∈WJy and is zero otherwise.
(b) if x 6∈ WJy, then Ext1UB

(Bx, By) ∼= B/γB if y ∈ WJxsγ for some (necessarily
unique) γ ∈ Φ+ and the Ext-group is zero otherwise.

Proof. The result follows immediately from Theorem 5.5 and the general description
of such Hom and Ext1-groups in 8.6(1)–(2).

5.8. Finally in this section, we record a basic technical fact with applications to
the study of the conjectural dualities in the representation categories from [21].

40



We define first in each case 5.4(a)–(c) a UB-module (i.e. a (U,B)-bimodule)
M. In situation 5.4(a), we regard the ΛJ -module M = ΛΓ as a UB = SJ ⊗R S-
module M by means of the SJ ⊗R S-algebra structure on ΛJ as in 4.6. Define the
UB = ΛJ⊗SS = ΛJ -module M = ΛΓ in case 5.4(b), and the UB = ΛJ

Z⊗SZSZ = ΛJ
Z-

module M = (ΛΓ)Z in case 5.4(c). We write Q for the quotient field of B in each
case 5.4(a)–(c) (this is contrary to our usual use of Q in case 5.4(c)).

Recall our spherical poset Γ and L ⊆ S with WLΓ ⊆ Γ, and take J ⊆ L.
For a formal symbol δJ , consider the topological right Q-module K↑

Q(ΓJ , δJ) de-
fined in 2.10. It has a stucture of topological left U = WJ -module structure with
ψ(

∑↑
δJ
waw) =

∑↑
w∈ΓJ δJ

wawσw(ψ) for ψ ∈ WJ and aw ∈ Q supported in a finitely
generated coideal of ΓJ , and therefore it becomes a UB-module by restriction.

Corollary. In each case 5.4(a)–(c), there is a continuous embedding

MJ → K↑
Q(ΓJ , δJ)

of UB-modules mapping ηA
w 7→

∑↑
δJ
v av,w where av,w = v−1(ST\A

v,w /S
T\A
v ).

Moreover, if v 6= w ∈ ΓJ and β ∈ Φ+ are such that w ∈ WJvsβ, then av,w
∼= u

β

(mod B(β)) for some unit u ∈ B(β).

Proof. The case 5.4(a) follows just by restricting scalars from the result in case
5.4(b), so assume we are in case 5.4(b) or (c). Note that by construction of M, there
is certainly such an embedding in case J = ∅; take δ∅y = (−1)l′(y)Dyy

−1(ST\A
y )

in 3.9(7). For general J , one easily sees it is enough to treat the special case
with ΓJ finite. By 5.7 and 8.8, there is some embedding MJ → K↑

Q(ΓJ , δJ) of
(WJ , B)-bimodules mapping ηA

w 7→
∑

v∈ΓJ δJ
v v

−1(sv,w) for some sv,w ∈ Q with
sw,w = 1 and sv,w = 0 unless w ≤A v. Now for any ψ ∈ W, w ∈ Γ one may write
ψηA

w =
∑↑

u∈Γ η
A
u Ωw,u(ψ) for (unique) Ωw,u(ψ) ∈ B. Since Ωw,u(ψ) = 0 if ψ ∈ WJ ,

w ∈ ΓJ and u ∈ Γ \ ΓJ , and since the corollary holds for J = ∅, it follows by the
discussion in 8.6 applied to M and MJ that sv,w = S

T\A
v,w /S

T\A
v for v, w ∈ ΓJ . Now

the second claim follows using Lemma 3.4 and 3.4(2).

6. The Iwahori-Hecke algebra and bimodules for the dual nil Hecke ring

In this section, we construct a homomorphism between the Iwahori-Hecke algebra
of W and a Grothendieck group of graded bimodules for the dual nil Hecke ring Λ
under tensor product.

6.1. Recall the definition of the Iwahori-Hecke algebra H of W . Let v be an
indeterminate. Then H is the Z[v, v−1]-algebra (with identity Te) generated by
elements {Tr}r∈S subject to quadratic relations

(1) T 2
r = v2Te + (v2 − 1)Tr, for r ∈ S

and the braid relations on the Tr for r ∈ S.
By the monoid lemma, for any w ∈ W , there is a well-defined element Tw of

H such that Tw = Tr1Tr2 . . . Trn for any reduced expression w = r1r2 . . . rn for
w. It is known that the family {Tw}w∈W is a Z[v, v−1]-basis of H. Another basis
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{C ′
w }w∈W of H over Z[v, v−1] is defined in [25]; we don’t repeat the definition here

in general.

6.2. Since the only order on W considered in this section will be Chevalley order,
we denote it here by ≤, and the standard length function by l, contrary to our
usual conventions. Throughout this section, let B be a N-graded S-algebra; the
main cases of interest are B = S or B = R, and so we assume for simplicity that
B0 = R, and that dimR Bn is finite for all n. Let WJ = (Λ ⊗S B)J = ΛJ ⊗S B,
regarded as a B-algebra. We do not distinguish notationally between ψ ∈ ΛJ and
ψ ⊗ 1B ∈ WJ ; in particular, we often write χ for the image of χ ∈ S under the
structural homomorphism S → B. In the following sections, tensor products are
over W unless otherwise indicated.

For any s ∈ S, define the graded (W,W)-bimodule B′s = W
⊗

Ws W〈−1〉. Let
D denote the full subcategory of graded (W,W)-bimodules consisting of all graded
bimodules B isomorphic to (W,W)-bimodule direct summands of finite direct sums
of tensor products B′s1

⊗ . . . ⊗ B′sn
〈m〉, for all m ∈ Z, n ∈ N and sequences

s1, . . . , sn ∈ S. Let H′ denote the split Grothendieck group of D; this is an abelian
group with generators [B] for the (isomorphism classes of) objects B of D and a
relation [B] = [B′] + [B′′] for each split exact sequence 0 → B′ → B → B′′ → 0
(with maps homogeneous of degree 0) in D. Then H′ becomes an an algebra over
Z[v, v−1] with [B][B′] = [B⊗W B′], identity [W], and vn[B] = [B〈n〉].

Theorem. Let H be the Iwahori-Hecke algebra of W over Z[v, v−1]. Then there
is a Z[v, v−1]-algebra homomorphism E :H → H′ with E(C ′

s) = [B′s] for all s ∈ S,
where C ′

s = v−1(Ts + Te).

Remarks. The proof and its corollaries will occupy the remainder of this section.
The same statement is true with W = S instead (see [32], [21]) and can be deduced
easily from the theorem here. Over W = S, it is known from [21] as well that
if the fundamental chamber for W on V is sufficiently large, there are graded
indecomposable (W,W)-bimodules Bw such that any direct summand of any Bs1 ⊗
. . .Bsn

〈m〉 is a finite direct sum with uniquely determined multiplicities, of modules
Bw〈m〉, and that E is an isomorphism. It may be conjectured that similar Bw exist
for W = Λ⊗SB as well, and may be chosen (in either case) so that the E(C ′

w) = [Bw]
where {C ′

w}w∈W is the Kazhdan-Lusztig basis of H.

6.3. In subsequent subsections, we will define for each J ⊆ S with ](J) ≤ 2 and
each w ∈WJ a graded (W,W)-bimodule Bw with the following property; for r ∈ S
one has

(1) Br
∼= B′r, B′r ⊗ B′r = B′r〈1〉 ⊕ B′r〈−1〉

and for w ∈WJ , r ∈ J ⊆ S with ](J) ≤ 2 and rw > w, one has

(2) Br ⊗ Bw = ⊕v∈WJ , rv<v
vlw or wlv

Bv.

The theorem (and also the statement that E(C ′
w) = [Bw] for all w lying in any

rank two standard parabolic subgroup of W ) then follows from the lemma below.

Lemma. As Z[v, v−1]-algebra, H is generated by generators C ′
w, for w ∈ WJ for

some J ⊆ S with ](J) ≤ 2, subject to the relations (C ′
e = Id and) (i) and (ii) below:
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(i) C ′ 2
r = (v + v−1)C ′

r for r ∈ S.
(ii) for r ∈ J ⊆ S and w ∈ WJ with ](J) ≤ 2 and rw > w, one has C ′

rC
′
w =∑

v∈WJ , rv<v
vlw or wlv

C ′
v.

Proof. Since the non-zero Kazhdan-Lusztig polynomials for a dihedral group are
all equal to 1, it follows from [25] that the elements C ′

w of H for w in some WJ

with ](J) ≤ 2 generate H and satisfy the relations (i)–(ii). Under replacement of
C ′

r by v−1(Tr +Te), (i) is obviously equivalent to the quadratic relation for Tr, and
it remains to show that (if r 6= s and rs has finite order n = nr,s) (i)–(ii) imply the
braid relation on Tr and Ts.

Let ri = r for even i and ri = s for odd i. Then (i)–(ii) imply that for m ≤ n, one
has C ′

r1
. . . C ′

rm
∈ C ′

r1...rm
+

∑
1≤k<m Z[v, v−1]C ′

r1...rk
and that a similar formula

holds for C ′
r0
. . . C ′

rm−1
. Hence relations (i)–(ii) imply

C ′
r1...rn

=
∑

1≤m≤n

amC
′
r1
. . . C ′

rm
=

∑
m≤n

amC
′
r0
. . . C ′

rm−1

for some am ∈ Z[v, v−1] with an = 1 Multiplying the rightmost two terms of this
equality by vn, making the substitution Cri = v−1(Tri + Te) and simplifying using
just the quadratic relations on the Tri

must give the braid relation Tr1 . . . Trn
=

Tr0 . . . Trn−1 or else one would have a contradiction to linear independence over
Z[v, v−1] of {Tw}w∈W .

6.4. We introduce some notation to be used in the proof of the theorem. Let
Z[[v]][v−1] denote the ring of Laurent power series (with poles of finite order). It
will be convenient to write p(M) =

∑
n∈Z dimR Mnv

n ∈ Z[[v]][v−1] for the Poincaré
series of a graded R-vector space M = ⊕n∈Z Mn with Mn = 0 for n << 0 and
dimR Mn finite for all n. Also, set p(y) =

∑
x≤y v

l(y)−2l(x) for any y ∈W . For two
elements f , g of Z[[v]][v−1], we write f ≤ g if g − f has non-negative coefficents.

Fix s ∈ S. We use frequently below without explicit mention the facts that
ξss(ξs) ∈ Ws, ξs + s(ξs) ∈ Ws. Let es = 1⊗ 1 ∈ B′s and fs = −ξs⊗ 1 + 1⊗ s(ξs) =
s(ξs)⊗ 1− 1⊗ ξs ∈ B′s. Now 4.2(b) implies
(1) {es, fs} is a basis of B′s as left W-module, and also a basis as right W-module.
Moreover, one has

(2) yfs = fsy

for all y ∈ W, since this holds for y = ξx with x ∈ Ws and for y = ξs. We also note
the following characterization of B′s for s ∈ S:
(3) B′s is the graded (W,W)-bimodule generated by an element b = es of degree −1
subject to relations ξxb = bξx for x ∈ Ws.

We can now prove the second assertion in 6.3(1). Indeed, let B (resp., B′) denote
the subbimodule of B′s ⊗ B′s generated by es ⊗ es (resp., by es ⊗ fs). A simple
computation shows that in B′s ⊗ B′s,

es ⊗ fs − fs ⊗ es = −s(ξs)(es ⊗ es) + (es ⊗ es)s(ξs),

fs ⊗ fs = −ξs(es ⊗ fs) + (es ⊗ fs)s(ξs).
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Now by (1),
(4) B′s ⊗ B′s is a free left W module of rank 4 (with basis consisting of the four
elements x⊗ y where x, y ∈ {es, fs}).
It follows that B′s ⊗B′s = B + B′. Also, by (2) and (3), one has that B (resp., B′) is
isomorphic to a quotient of B′s〈−1〉 (resp., of B′s〈1〉). But by (1) and (4), one has
p(B′s ⊗ B′s) = (v + v−1)p(B′s). This implies that B ∼= B′s〈−1〉, B′ ∼= B′s〈1〉 and that
B′s ⊗ B′s = B⊕ B′ ∼= B′s〈−1〉 ⊕ B′s〈1〉.

6.5. We now begin work on 6.3(2). Fix J ⊆ S with ](J) = 2, say J = {r, s} where
r = sα, s = sβ with α, β ∈ Π. For i ∈ Z, define αi = β for i odd, αi = α for i even
and si = sαi

. Consider the polynomial algebra W[t] over W in the indeterminate
t. Define elements y(m)

j ∈ W, for j ∈ N, by

(1) (txm − 1)(txm−1 − 1) . . . (tx1 − 1) =
∑

j

y
(m)
j tj ,

where x1 = ξr and xj = sjsj−1 . . . s2(ξr) for j > 1. Note that y(m)
j is homogeneous

of degree 2j. We claim that

(2) y
(m)
j ∈ Wsm .

To see this, note that the action of W as an automorphism group of W extends to
one on W[t] with w(t) = t for all w ∈ W . The claim (2) holds since if m is even,
sm permutes the factors on the left of (1) in pairs, while if m is odd, sm fixes the
last factor on the left of (1) and permutes the remaining factors in pairs.

6.6. From 3.6(a), for any K ⊆ S, the S-module IK spanned by the elements ξw

with w 6∈WK is an ideal of W. It is easily seen that the quotient algebra W/IK is
naturally isomorphic to Λ′⊗S B where Λ′ is the dual nil Hecke ring of (WK ,K) (in
its reflection representation on V ). Moreover, the elements ξw+IK (w ∈WK) of the
quotient may be identified with the standard basis elements ξw⊗S 1B with w ∈WK

for Λ⊗SB. The automorphisms x (and operators tx) for x ∈WK preserve the ideal
IK , and the induced operators on W/IK may be identified with the corresponding
operators on Λ′ ⊗S B.

6.7. For the proof of 6.3(2), we need certain properties (8)–(9) below which hold
in the special case in which (W,S) is dihedral; this gives some information for
general W by means of 6.6. Suppose for this subsection only that Π = {α, β} where
rα = r and rβ = s. We assume to begin with that we are in the symmetric case
〈α, β∨〉 = 〈β, α∨〉. Set γ = 〈α, β∨〉 and define a sequence {pn}n∈N in R recursively
by p0 = 0, p1 = 1 and pn = γpn−1 − pn−2 for n ≥ 2 Set p−n = −pn so that
pn = γpn−1 − pn−2 for all n ∈ Z. By induction, for all integers n, k, one has

(1) pnpn+k − pn−1pn+k+1 = pk+1 or, equivalently, pkpn − pk−1pn−1 = pn+k−1.

It is easily seen ([13]) that

(2) sα1sα2 . . . sαn−1(αn) = pnα1 + pn−1α2 for n > 0,
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(3) pn = 0 if n = nr,s <∞, pn > 0 if 1 ≤ n < nr,s.

By 3.10(f), r(ξr) = −αξe − ξr + γξs and r(ξs) = ξs. Using this, one verifies by
induction that

(4) xm = smsm−1 . . . s2(ξr) = −(p1α2 + . . .+ pm−1αm)− pm−1ξ
sm + pmξ

sm−1 .

By 3.10(g), for n < nr,s, one has

(5) ξrξs2...sm = (p1α2 + . . .+ pm−1αm)ξs2...sm + pmξ
s2...sm+1

(6) ξrξs1...sm = (p1α2 + . . .+ pm−1αm)ξs1...sm + ξs0...sm + pmξ
s1...sm+1 .

By induction using (5) and (6) one has for finite m with 1 ≤ m ≤ nr,s that

(7) x1x2 . . . xm = p1p2 . . . pmξ
sm+1...s2 .

In particular, the above results give that
(8)
x1x2 . . . xm ∈ R•ξsm+1...s2 , xm ∈ R•ξsm−1 + Rξsm + V ξe for 1 ≤ m < nr,s.

Note also that (5), (6) imply that
(9) the ideal of W generated by ξx has { ξy | y ≥ x } as B-basis.

Now consider the case of dihedralW without the symmetry assumption 〈α, β∨〉 =
〈β, α∨〉. Replacing α by cα and α∨ by c−1α∨ for some c ∈ R>0, leaves the W -action
on V and hence the dual nil Hecke ring Λ unchanged, whereas the basis elements
ξw remain the same only up to multiplication by non-zero elements of R. Choosing
c appropriately reduces us to the symmetric case considered earlier, so we may
conclude that (8) and (9) hold in the general dihedral case.

6.8. We now return to 6.3(2) for general W , keeping notation from 6.5.
Let n = nr,s. Define a graded (W,W)-bimodule Bw for w = sm . . . s2s1 ∈ WJ

with 0 ≤ m = l(w) ≤ n (and m finite, of course) as follows. First, if m = 0, set
Be = W. If m > 0, let Bw denote the graded (W,W)-bimodule generated by an
element b of degree −m subject to the relations

(1)
m∑

j=0

y
(m)
j b(ξr)m−j = 0, ξxb = bξx, for x ∈ WJ

Note that if m > 0, then setting b′ = xmb− bξr, one has

(2)
m−1∑
j=0

y
(m−1)
j b′(ξr)m−1−j = 0, ξxb′ = b′ξx for x ∈W J ,

(3)
m+1∑
j=0

y
(m+1)
j b(ξr)m+1−j = 0.

The rest of this subsection is devoted to the proof of the following.
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Lemma. Let notation be as above. Then
(a) Bw is a graded free right W-module with (homogeneous) basis { ξxb }x≤w.
(b) if m < n, t = sm+1 and w = sm . . . s1 then

B′t ⊗ Bw
∼= ⊕w′∈WJ , tw′<w′

w′lw or wlw′
Bw′ .

Proof. To begin, we show that the elements ξxb with x ≤ w span Bw as right
W-module, implying

(4) p(Bw) ≤ p(w)p(W).

Firstly, by 4.2(b) and the second relations in (1), the elements ξxb with x ∈ WJ

span Bw as right W-module. Also, by 6.7(8), 6.6 and 4.2(2), the first relation in
(1) is equivalent (in the presence of the second relations in (1)) to a relation of the
form

(5) ξyb−
∑
x<y

ξxbXx = 0, where y = sm+1 . . . s2

for certain Xx ∈ W. Suppose that y′ ∈ WJ with y′ ≥ y. By 6.7(9), 6.6 and
4.2(2) again, one may choose a homogeneous z ∈

∑
v∈WJ

ξvB such that zξy ∈
ξy′ +

∑
x<y′ ξ

x′WJ . Now for x < y, one has zξx ∈
∑

x′<y′ ξ
x′WJ by degree

considerations; hence multiplying (5) by z and using the second relations in (1),
one obtains a relation of the same form as (5) with y replaced by y′. The claim at
the start of the proof of this lemma follows. Moreover, if m = 1, the above implies
that p(Bs) ≤ (v−1 + v)p(W). But by 6.4(3), B′s = W ⊗Ws W〈−1〉 is a quotient of
Bs, so these two modules can be identified. Note that this proves the first assertion
in 6.3(1) and establishes that (a) holds if m = 1.

Assume now that 1 < m < nr,s. Let B (resp., B′) denote the subbimodule of
Bt ⊗ Bw generated by et ⊗ b (resp., et ⊗ b′ where b′ = xmb− bξr). Then by 6.7(8),
B + B′ is also the subbimodule generated by et ⊗ b and etξ

t ⊗ b, so it contains the
elements ξxetξ

y ⊗ bξu and ξxetξ
tξy ⊗ bξu with x, u ∈W and y ∈W t. Therefore by

4.2(b) we get

(6) B + B′ = Bt ⊗ Bw.

We now claim that
(7) B (respectively, B′ ) is a quotient bimodule of Btw (respectively, of Bw′ where
w′ = sm−1 . . . s2s1).
We give the proof for B. Clearly, if x ∈W J then ξx(et⊗ b) = (et⊗ b)ξx. Now using
6.5(2) and 6.8(3),

m+1∑
j=0

y
(m+1)
j (et ⊗ b)(ξr)m+1−j =

m+1∑
j=0

et ⊗ y
(m+1)
j b(ξr)m+1−j = 0.

Since et ⊗ b ∈ B−m−1, (7) follows for B by definition of Btw. The proof of (7) for
B′ is similar.
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Now if m = 1 in the above, then b′ = 0 so B = Bt ⊗ Bw. This implies that
p(Bt ⊗ Bw) = p(t)p(w)p(W) = p(tw)p(W). But we’ve already shown that Btw

is spanned as right W-module by the elements ξxb with x ≤ tw, and p(Btw) ≤
p(tw)p(W). It follows from (7) that Bt ⊗ Bw

∼= Btw, proving (b) for m = 1.
Moreover, one has (still with m = 1)

(8) p(Btw) = p(tw)p(W),

so the elements ξxb, x ≤ tw are in fact a basis of Btw as right W-module, proving
(a) with m = 2.

We can now prove (a) and (b) together by induction. Assume inductively that
(b) holds for all ŵ = sm′ . . . s2s1 ∈ WJ with m′ < m where 2 ≤ m < nr,s and (a)
holds for all such ŵ with m′ ≤ m. Then the inductive assumption, (4), (7) and (6)
give

p(Bt ⊗ Bw) = p(t)p(w)p(W) = (p(tw) + p(w′))p(W)

≥ p(Btw) + p(Bw′) ≥ p(B) + p(B′) ≥ p(Bt ⊗ Bw)

where w′ is as in (7). It follows from this that B ∼= Btw, that B′ ∼= Bw′ and that the
sum in (6) is direct. This establishes that (b) holds for w = sm . . . s2s1. Moreover,
this also proves (8), and therefore that (a) holds for w = sm+1 . . . s2s1, completing
the inductive proof of (a) and (b).

As a corollary, we observe that
(9) if WJ is finite (of rank at most two) with longest element ωJ , then BωJ

is the
(W,W)-bimodule generated by an element b of degree −l(ωJ) subject to relations
ξxb = bξx for x ∈W J .

Indeed, this is trivial or known for ](J) ≤ 1. For rank two, note using 4.2(b)
that the bimodule with presentation in (9) is spanned as right W-module by the
elements ξxb, x ∈WJ , and it has BωJ

as a quotient.

6.9. We now complete the proof of 6.3(2) and hence Theorem 6.2. For any w
contained in some WJ with ](J) ≤ 2, one has a graded (W,W)-bimodule Bw defined
by Be = W if l(w) = 0 and by the presentation 6.8(1) (with J = {r, s}, w =
sm . . . s2s1, m ≤ ord(rs)) otherwise. Note that Bw is well-defined by 6.8(9). Finally,
the properties 6.3(1)–(2) have been previously established.

6.10. For a finite sequence X: r1, . . . , rn in S, let WX denote the subbimodule of
the (W,W)-bimodule BX := Br1 ⊗ . . .⊗ Brn

generated by bX = er1 ⊗ . . .⊗ ern
(by

convention, W∅ = W where ∅ denotes the empty sequence). One has the following
corollary of the above proof.

Corollary. For each x ∈ W , there exists a (W,W)-bimodule Wx such that if
x = r1 . . . rn is a reduced expression, then Wx

∼= WX for X: r1, . . . , rn.

Proof. Suppose w = xyz where x, z ∈ W , y is the longest element of a rank two
finite standard parabolic subgroup WJ of W and l(w) = l(x) + l(y) + l(z). Write
J = {r, s}, m = nr,s. Set ti = r if i ∈ N is odd, and ti = s for even i ∈ N, and let Y
(resp., Y ′) denote the sequence t1, . . . , tm (resp., t2, . . . , tm+1). Choose sequences
X: r1, . . . , rn, Z: s1 . . . sp with x = r1 . . . rn, n = l(x) and z = s1 . . . sp, p = l(z).
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Now from the proof of 6.2, it is clear that BY = WX ⊕ B for some subbimodule B
of BY , where WX

∼= By. Indicate the operation of concatenation of sequences by
“·”. Now WX·Y ·Z is the subbimodule of BX·Y ·Z ∼= BX ⊗ BY ⊗ BZ generated by
bX ⊗ bY ⊗ bZ , so is isomorphic to the sub-bimodule of BX ⊗By ⊗BZ generated by
bX ⊗ b⊗ bZ for any non-zero b ∈ (By)−l(y). By symmetry, this last subbimodule is
isomorphic to WX·Y ′·Z , hence WX·Y ·Z ∼= WX·Y ′·Z . The corollary now follows from
1.3(ii).

Remark. Consider an arbitrary finite sequence X: r1, . . . , rn in S. By 6.4(1), the
elements x1 ⊗ . . . ⊗ xn with each xi ∈ {eri , fri} form a W-basis of BX as left W-
module (and as right W-module). Fix x1, . . . , xn and write { i | xi = eri

, 1 ≤
i ≤ n } = {i1, . . . , im} where 1 ≤ i1 < . . . < im ≤ n. It is well known that
{ s1 . . . sm | each sj = 1 or sj = rij

} has a unique maximal element in Chevalley
order, say y. An argument similar to that in the proof of the corollary above
shows that the subbimodule of BX generated by x1 ⊗ . . . ⊗ xn is isomorphic to
Wy〈l(y) + n− 2m〉.

7. Polyhedral cones

This section briefly sketches the analogues for polyhedral cones of some of the
preceeding results in sections 2–5. As a general reference, one has for instance [8].

7.1. Consider a real Euclidean space V ; we denote the inner product by 〈 ·|· 〉. Now
fix a polyhedral cone C ⊆ V ; that is, C is the intersection of finitely many closed half-
spaces C = ∩n

i=1Hαi
for αi ∈ V \{0}, where for α ∈ V , Hα := { v ∈ V | 〈 v, α 〉 ≥ 0 }.

The dual polyhedral cone C∨ is defined by

(1) C∨ := {α ∈ V | 〈α, v 〉 ≥ 0 for all v ∈ C }.

A face of C is by definition a subset F ⊆ C of the form F = { v ∈ C | 〈 v, α 〉 = 0 }
for some α in C∨. It is known that the map F → F ′ := C∨ ∩ F⊥ is an inclusion
reversing bijection between the faces F of C and F ′ of C∨, with F = C ∩ (F ′)⊥.

Fix a set Γ with a given bijection x 7→ Fx between X and the set of faces of C.
We order Γ by setting x ≤ y iff Fx ⊆ Fy; Γ is then a finite lattice, called the face
lattice of Γ. For x, y ∈ Γ, we define l(x) to be the dimension of the linear subspace
〈Fx〉 of V spanned by Fx. We write x l y to indicate that x < y and there is no
z ∈ Γ with x < z < y; this holds iff x ≤ y and l(y) = l(x) + 1.

7.2. For x ∈ Γ, let σ′x denote the orthogonal reflection in F⊥
x i.e. the unique R-

linear map V → V which fixes F⊥
x pointwise and acts by multiplication by −1 on

Fx.
Let S denote the symmetric algebra of V graded as usual so S0 = R, and S2 = V ,

and extend σ′x to a graded R-algebra automorphism σx of S.
For x 6= y in Γ, define dx,y ∈ V ⊆ S as follows. If x l y, let dx,y be the unique

unit vector α in 〈Fy〉∩〈Fx〉⊥ such that 〈α, v 〉 ≥ 0 for all v ∈ Fy, and set dy,x = dx,y.
If x 6= y and neither x l y nor y l x, set dx,y = 1. It is not hard to see (details
are left to the reader) that
(1) for x 6= y in X, dx,y is a greatest common divisor in S for the elements of
(σx − σy)(S).
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7.3. Let Ψ = { dx,y | x l y ∈ Γ }. For each α ∈ Ψ, let S(α) be the localization
S(α) := S[β−1 | β ∈ Ψ \ {±α}] of S, regarded as a subring of the quotient field K
of S.

Proposition. For a family {qx}x∈Γ of elements of K, one has
∑

x qxσx(χ) ∈ S
for all χ ∈ S iff the following two conditions hold for all γ ∈ Ψ and x ∈ Γ:
(i) if there is no y ∈ Γ with dx,y = ±γ, then qx ∈ S(γ)

(ii) if y 6= x satisfies dx,y = ±γ, then qx ∈ γ−1S(γ) and qx + qy ∈ S(γ).

Proof. Note that there can be at most one y ∈ Γ satisfying dx,y = ±γ (for fixed x
and γ). The proof using 7.2(1) and 8.2 is very similar to that of 5.1, and details
are therefore omitted.

7.4. We recall from [20] the definition of a graded (S,S)-bimodule M = MC associ-
ated to the polyhedral cone C and the inner product on V (we regard M equivalently
as a (S,S) bimodule when convenient, via χmχ′ = (χ ⊗ χ′)m for χ, χ′ ∈ S and
m ∈ M). First, M has a graded basis {mx}x∈Γ as right S-module, withmx ∈ M2l(x).
The left S-action is given by

(1) χmx = mxσx(χ)−
∑

y∈Γ:xly

〈χ | d∨x,y 〉my for χ ∈ V

where d∨x,y = 2dx,y for x l y.
Denote by m′

x be the standard basis element in MC∨ corresponding to the face
F ′

x of C∨. and let {m∗
x}x∈X denote the dual right S-basis of the graded right S-

dual M∗ := HomR⊗S(M,S) defined by m∗
x(my) = δx,y. Give M∗ the non-standard

(S,S)-bimodule stucture with (χfχ′)(m) = −f(χmχ′) for χ ∈ V , χ′ ∈ S, f ∈ M∗

and m ∈M . Then one can check that there is an isomorphism of (S,S)-bimodules

(2) M∗ ∼= MC∨〈−2 dim(V )〉

mapping m∗
x to (−1)l(x)m′

x.

7.5. We may naturally regard M as a (S,S)-subbimodule of the (S,K)-bimodule
M′ := M⊗S K. Now by 7.2(1), 8.6 and 8.8, there is a basis δx, for x ∈ Γ, of M ′ as
right K-space with the following properties;
(i) χδx = δxσx(χ) for χ ∈ S
(ii) mx =

∑
y∈Γ δyax,y for some ax,y ∈ K with ax,x = 1 and ax,y = 0 unless x ≤ y.

By 8.10, the elements δx are uniquely determined by these conditions. One may
also write δx =

∑
y∈X mybx,y for some bx,y ∈ K with bx,x = 1 and bx,y = 0 unless

x ≤ y.
For x ≤ z ≤ y in Γ, set Iz(x, y) := { dz,z′ 6= 1 | x ≤ z′ ≤ y, z′ 6= z }. Then (see

[18]) if x ≤ z ≤ y Iz(z, y) (resp., Iz(x, z)) is the set of unit vectors of V lying in the
extreme rays (i.e. one-dimensional faces) of the polyhedral cone Fy ∩ F⊥

z (resp.,
F⊥

x ∩ Fz).

Proposition. For any x ≤ y in Γ, one may write ax,y = fx,y/(
∏

α∈Iy(x,y) α) (re-
spectively., bx,y = (−1)l(y)−l(x)gxy/(

∏
α∈Ix(x,y) α) for some non-zero, homogeneous

element fx,y ∈ S2(](Iy(x,y))−l(y)+l(x)) (resp., gx,y ∈ S2(](Iy(x,y))−l(y)+l(x))) which is
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expressible as a linear combination with non-negative coefficients of products of
elements of Iy(x, y) (resp., Ix(x, y)).

Proof. The proof is a refinement of that of 8.10. For x < y, 7.4(1) gives

(1) ax,y(σy(χ)− σx(χ)) = −
∑

z∈Γ:xlz

〈χ | d∨x,z 〉az,y

for χ ∈ V . Assume inductively that the result for ax,y holds with x replaced by
any x′ with x < x′ ≤ y. Choose χ = du,y for some x ≤ u l y. Then (see [18])
〈χ, d∨x,z 〉 = 0 if x l z ≤ u while 〈χ, d∨x,z 〉 > 0 for x l z ≤ y with z 6≤ u. Also,
σy(χ) = −σx(χ) = −du,y. The result for ax,y follows immediately by induction,
and then that for bx,y follows by 7.4(2).

7.6. For x ∈ Γ, define the (S,S)-bimodule Sx which is equal to S as right S-module,
and with left S-module structure χm = mσx(χ) for m ∈ Sx, χ ∈ S. The following
result is the analogue in this context of 5.7-5.8.

Corollary. Let x, y ∈ Γ. Then as right S-modules,
(a) HomS⊗RS(Sx,Sy) ∼= S if x = y and is zero otherwise.
(b) if x 6= y, then Ext1S⊗RS(Sx,Sy) ∼= S/dx,yS.
(c) If dx,y 6= 1 with, say, x ≤ y, then ax,y = −bx,y = d−1

x,y.

8. Generalities from commutative algebra

In this section, we make some mostly trivial remarks concerning certain rings
defined by extending one definition of the nil Hecke ring to the general context of
a family of ring homomorphisms U → B between commutative rings U and B.
We also describe some general features of certain (U,B)-bimodules associated to a
suitable ordered family of such ring homomorphisms.

8.1. Throughout this section, U denotes a commutative ring and B denotes a
commutative domain with quotient field K. We suppose given a family σ =
{σx:U → B}x∈Γ of pairwise distinct ring homomorphisms, where Γ is now any
set. If {cx}x∈Γ is a family of elements of K, almost all zero, we define the function∑

x∈Γ σxcx:U → K by u 7→
∑

x∈Γ cxσx(u). The set Kσ of all functions U → K so
arising has a natural (U,K)-bimodule structure given by (ufk)(u′) = kf(uu′) for
u, u ∈ U , k ∈ K, f ∈ Kσ; one has

u(
∑

x

σxcx)k =
∑

x

σxcxkσx(u).

By Dedekind’s lemma, the elements σx for x ∈ Γ form a right K-module basis of
Kσ. In this subsection and the next, we give some useful extensions of this fact.

For an ideal b of B and x, y ∈ Γ, define the equivalence relation ≡b on Γ by
setting x ≡b y if (σx − σy)(U) ⊆ b.

Lemma. Suppose that B is a local ring with maximal ideal m, and that a is any
B-submodule of K. Then for a family {cx}x∈Γ of elements of K, almost all zero,
the following conditions (i)–(ii) are equivalent:
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(i) (
∑

x∈Γ σxcx)(U) ⊆ a

(ii) for each y ∈ Γ, (
∑

x∈Γ
x≡my

σxcx)(U) ⊆ a.

Proof. Obviously (ii) implies (i). For (i) implies (ii), suppose that Γ = {1, . . . , n}
with σi 6≡m σj for i ≤ p and j > p, where p ≥ 1. Assuming (

∑n
i=1 σici)(U) ⊆

a, it is enough to show (
∑n

i=p+1 σici)(U) ⊆ a. If p = n this is certainly true,
so suppose that p < n. Choose y ∈ U so (σ1 − σn)(y) 6∈ m. For any u ∈ U ,
we have (

∑n
i=1 σici)(uy) ∈ a and

(∑n
i=1 ciσi(u)

)
σn(y) ∈ a. Subtracting gives

(
∑n−1

i=1 σicidi)(U) ⊆ a where di = (σi−σn)(y) ∈ B and d1 is a unit in B. Repeating
this argument n− p− 1 more times gives (

∑p
i=1 σiciei)(U) ⊆ a for some elements

ei of B with e1 ∈ B•. Multiplying this relation by e−1
1 and subtracting from

(
∑n

i=1 σici)(U) ⊆ a gives a relation (
∑n

i=2 σic
′
i)(U) ⊆ a for some c′i ∈ K (i =

2, . . . , n) with c′i = ci for i > p. Repeating the entire argument p − 1 more times
shows that (

∑n
i=p+1 σici)(U) ⊆ a as required.

8.2. We maintain the general notation U , B etc from 8.1, but do not assume that
B is local.

Corollary. Suppose that a ia a B-submodule of K and that P is a set of prime
ideals of B such that a = ∩p∈P ap as B-submodules of K (ap denotes the localization
of a at p, regarded as a subset of K). Then for a family {cx}x∈Γ of elements of K,
almost all zero, the following conditions are equivalent:
(i) (

∑
x∈Γ σxcx)(U) ⊆ a

(ii) for each y ∈ Γ and p ∈ P , (
∑

x∈Γ
x≡py

σxcx)(U) ⊆ ap.

Proof. The proof is immediate from the assumption a = ∩p∈P ap and Lemma 8.1,
on noting that (σx − σy)(U) ⊆ pBp iff x ≡p y.

Remark. The hypotheses of the corollary hold in the following situations (a)–(b):
(a) P is the set of maximal ideals of B and a is a principal fractional ideal i.e.
a = Bk for some k ∈ K.
(b) B is a Krull domain, a is (zero or) a divisorial fractional ideal in K and P is the
set of height one prime ideals of B. This includes the case where B is a UFD (then
the divisorial fractional ideals are the principal fractional ideals Bk for k ∈ K•,
and the height one primes are the ideals Bp for p a prime element of B).

8.3. For the remainder of this section, we assume that both U and B are algebras
over a commutative ring R, and that Γ is a set of pairwise distinct R-algebra
homomorphisms U → B (e.g. R = Z). Then Kσ is naturally a U ⊗R K-module.
We make Kσ into a coalgebra over K, with the standard K-basis elements σx ∈ σ of
Kσ grouplike i.e. the comultiplication ∆:Kσ → Kσ⊗KKσ is given by ∆(

∑
σxcx) =∑

σx ⊗ σxcx and the counit ε:Kσ → K given by ε(
∑

x σxcx) =
∑

x cx. Define the
UB := U ⊗R B-submodule Bσ := { f ∈ Kσ | f(U) ⊆ B } of Kσ, and consider the
following condition:

(i) Bσ is a free (or projective) B-module and, under the natural inclusion Bσ ⊗B

Bσ → Kσ ⊗K Kσ, one has ∆(Bσ) ⊆ Bσ ⊗B Bσ.

Suppose that (i) holds. Then Bσ is naturally a coalgebra over B and we denote
by B∗

σ := HomB(Bσ, B) the dual B-algebra. In fact, the UB-module structure
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on Bσ gives B∗
σ a natural UB-algebra structure, and one can consider the further

condition

(ii) the UB-algebra structural homomorphism UB → B∗
σ is surjective.

The condition (i) (and sometimes (ii)) holds in a number of specific situations
associated to Coxeter groups studied in this paper and its sequel.

8.4. This subsection and the next lists some observations concerning conditions
8.3(i)–(ii); the observations are not used essentially in this paper (or the sequel), and
proofs are left to the interested reader. Maintain the notation from the preceeding
subsection.

(1) If there is a K-basis {ex}x∈Γ of Kσ with all ex ∈ Bσ and elements {ux}x∈Γ of
U such that ex(uy) = δx,y, then 8.3(i)–(ii) both hold (using “free” in (i)).

(2) If Γ is finite and B is a discrete valuation ring, then (1) holds. Hence 8.3(i)–(ii)
both hold (using “projective” in (i)) if Γ is finite and B is a Dedekind domain.

8.5. In this subsection, we discuss a special case of the situation considered above.
Suppose that B is a commutative R-algebra which is a domain with quotient field
K, and G is a group of R-algebra automorphisms of B. For any finite subgroup H
of G and g ∈ G, let gH denote the restriction of g to a R-algebra homomorphism
BH → B; then gH = g′H iff gH = g′H. We let σH := { gH | g ∈ ΓH } where
ΓH := G/H denotes a set of coset representatives of H in G.

One may define BσH
and the BH ⊗BG B-algebra B∗

σH
as above (assuming that

the family σH of homomorphisms BH → B satisfies 8.3(i); we also assume this
for σ := σ{e}). Then Bσ is naturally a ring (under composition of functions) and
B∗

σ therefore acquires a natural stucture of right Bσ-module. In particular, there
is a natural action of G as a group of algebra automorphisms of B∗

σ defined by
(gf)(b) = f(g−1b) for g ∈ G, f ∈ B∗

σ and b ∈ Bσ. One can therefore form the B-
algebra (B∗

σ)H of H-invariant elements of B∗
σ. In a number of situations associated

to Coxeter groups considered in this paper and its sequel, one (or more) of the
following related conditions holds for certain finite subgroups H ′ ⊆ H of G;

(i) the structural homomorphism BH ⊗BG B → B∗
σH

is an isomorphism of rings

(ii) B∗
σH

∼= (B∗
σ)H as BH ⊗BG B-algebras

(iii) B∗
σH′ is a free (or projective) B∗

σH
-module

(iv) HomB∗
σH

(B∗
σH′ , B

∗
σH

) ∼= B∗
σH′ as B∗

σH′ -module.

Using 8.4(2), one can show that

(1) if G is finite and B, BG are both Dedekind domains, then (i)–(iii) hold for any
subgroups H ′ ⊆ H ⊆ G (using “projective” in (iii)).

Another situation in which the study of the conditions in 8.3 and this subsection
might be of interest is mentioned in 10.5.

8.6. Maintain notation from 8.3. Identify the category of (U,B)-bimodules (with
left and right R action coinciding) with the category of left UB := U⊗RB-modules.
For x ∈ Γ, let Bx denote the UB-module which is equal to B as right B-module,
with left U -action given by χm = mσx(χ) for m ∈ Bx and χ ∈ U . If y ∈ Γ as well,

52



then (see [21])

(1) HomUB
(Bx, By) ∼=

{
B if x = y

0 otherwise,

(2) Ext1UB
(Bx, By) ∼= { k ∈ K | k(σx − σy)(u) ∈ B for all u ∈ U }/B if x 6= y

as right B module. Regarding σx:U → B as a homomorphism U → K, one can
identify the UK-bimodule Kx with Bx ⊗B K. Note that in general, (2) gives

(3) Ext1UK
(Kx,Ky) ∼= 0 for x 6= y

8.7. For the remainder of this section, we assume that Γ is endowed with a fixed
partial ordering ≤ such that the (pairwise distinct) R-algebra homomorphisms
{σx:U → B}x∈Γ satisfy the condition

(1) Ext1UB
(Bx, By) = 0 if x 6< y and y 6≤ x.

We also assume (just for simplicity) that Γ is finite.

Remark. If B is Noetherian, a representation category can be associated to such
data as in [20]. The general questions considered in this section are of potential
interest in situations where there are “natural” choices satisfying (1) of the partial
order on Γ, since for these it is possible the representation category itself may be
of interest.

8.8. Consider a UB-module M equipped with a fixed finite basis {mi}i∈I as right
B-module, indexed by a finite set I (disjoint from Γ) with a function i→ i: I → Γ
such that

(2) χmi ∈ miσi(x) +
∑
j∈I
j>i

mjB

for χ ∈ U . For a coideal Y in Γ , M(Y ) :=
∑

j:j∈Y mjB is then a UB submodule of
M . Any sequence Γ = Ym ⊇ . . . ⊇ Y0 = ∅ of coideals of Γ for which Yj \Yj−1 = {yj}
has one element for each j, gives a filtration M = M(Ym) ⊇ . . . ⊇ M(Y0) = 0 of
M with each successive subquotient M(Yj)/M(Yj−1)) isomorphic to a finite direct
sum of UB-modules Byj . By 8.6(3), M ′ := M ⊗B K ∼= ⊕j

(
M(Yj)/M(Yj−1)⊗B K

)
as UK-module, where M(Yj

)
/M(Yj−1)⊗BK is a direct sum of finitely many copies

of Kyj
. Since M is free as right B-module, M may be naturally identified with the

UB-submodule M ⊗B B of M ′. It follows from this that there is a basis of M ′ as
right K-vector space with the following two properties:
(i) χδi = δiσi(χ) for i ∈ I and χ ∈ U
(ii) mi =

∑
j∈I δjaij for some aij ∈ K satisfying ai,i 6= 0, and ai,j = 0 unless i = j

or j > i.
In fact, one may take all ai,i = 1, but we do not necessarily assume that this is

done.
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8.9. Conversely, suppose given a UK-module M ′ with basis {δi}i∈I as right K-
space satisfying 8.8(i) for some function i → i: I → Γ. Let mi be defined as in
8.9(ii) for some constants ai,j satisfying the conditions there, and let M be the
right B-submodule of M ′ spanned by the mi. We will determine the condition on
the ai,j for M to be a UB-submodule of M ′ (it will then necessarily be of the type
considered in 8.8).

Since the matrix (ai,j) is upper triangular with non-zero diagonal entries, with
respect to a suitable ordering of I, it is invertible, so the mi form a K-basis of M ′

as well. Hence
(1) δi =

∑
j∈I mjbi,j for some bi,j ∈ K satisfying bi,i 6= 0, bi,j = 0 unless i = j or

j > i.
Then for χ ∈ U , χmi =

∑
j δjσj(χ)ai,j =

∑
k mk

(∑
j ai,jbj,kσj(χ)

)
. Thus,

(2) M is a UB-submodule of M ′ iff for all i, k ∈ I, the element Ωi,k of Kσ defined
by Ωi,k =

∑
j δjai,jbj,k satisfies Ωi,k(U) ⊆ B i.e. iff Ωi,k ∈ Bσ as defined in 8.2.

8.10. Suppose M is as in 8.8. The functions Ωi,k defined by 8.9(2) satisfy

(1) χmi =
∑

j

mjΩi,j(χ) for χ ∈ U.

Replacing the basis elements mi by their expressions in terms of the δi, recalling
χδi = δiσi(χ) and taking the coefficient of δi on both sides gives

(2)
(
σj − σi)(χ)

)
ai,j =

∑
k∈I

i<k≤j

Ωi,k(χ)ak,j .

It follows that all the ai,j are recursively determined by the structure constants
Ωi,k(χ) and the ai,i. For specified values of ai,i 6= 0, the K-basis elements δi of M ′

satisfying 8.8(i)–(ii) are therefore uniquely determined by the B-basis elements mi

of M .

8.11. The functions Ωi,k also arise also arise naturally as follows. Note that M ′

above naturally becomes a right comodule for C := Kσ, with comodule structure
map ∆:M ′ →M ′⊗K C given by ∆(

∑
δici) =

∑
δi⊗ δici (this comodule structure

is independent of the choice of K-basis δi for M ′ satisfying 8.8(i)–(ii)). Since the
mi are also a K-basis of M ′, there are unique elements Ωi,k ∈ C such that

(1) ∆(mi) =
∑

k

Ω′
i,k ⊗mk

The definitions immediately give that

(2) Ω′
i,k =

∑
j

δjai,jbj,k = Ωi,k.

Note also that from (1), (2)

(3) ∆(Ωi,k) =
∑

j

Ωi,j ⊗ Ωj,k
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or equivalently Ωi,k(χχ′) =
∑

j Ωi,j(χ)Ωj,k(χ′) for χ, χ ∈ U .

8.12. Consider a UB-module M with B basis {mi}i∈I as in 8.8. Write χmi =∑
j mjΩi,j(χ) as in 8.10(1). Suppose there is some non-empty coideal Y ⊆ Γ such

that M(Y ) = 0, and fix x ∈ Y . Let KI denote the B-module consisting of I-tuples
(ci)i∈I of elements of K and Ex be the B-submodule of KI consisting of those
I-tuples (ci)i∈I with

(1) ci
(
σx − σi

)
−

∑
j∈I
j>i

Ωijcj ∈ Bσ for all i ∈ I.

The following result generalizes 8.6(2).

Lemma. As B-module, Ext1UB
(M,Bx) ∼= Ex/B

I where BI is the submodule of KI

consisting of I-tuples of elements of B and Ex is as defined above.

Proof. Choose in the module Bx a basis element δ as right B-module. Note (M⊗B

K) ⊕ Kx is a UK-module. For c = (ci)i∈I in KI , let M̂ ⊆ (M ⊗B K) ⊕ Kx be
the B-submodule spanned by elements m̂i = mi + δci for i ∈ I, together with δ.
Then by 8.9(2), M̂ is a UB-module (i.e. is stable under the U -action) iff c ∈ Ex.
In that case, there is an obvious exact sequence 0 → Bx → M̂ → M → 0 of UB-
modules which is seen to split iff c ∈ BI . This gives an injective homomorphism of
B-modules Ex/B

I → Ext1UB
(M,Bx), which is surjective as follows from 8.8.

8.13. The following trivial observations are sometimes useful. Consider a UB-
module M with B basis {mi}i∈I as in 8.8, and the UK-module M ′ := M ⊗B K.
The dual K-vector space M ′∗ := HomK(M ′,K) has a natural UK-module structure
induced by that on M ′; one has χδ∗i = δ∗i σi(χ) for χ ∈ U , where the δ∗i are the
basis of M ′∗ dual to the δi. Define m∗

i =
∑

j δ
∗
j bj,i ∈M ′∗, so also δ∗i =

∑
j m

∗
jaj,i.

The m∗
i are of course the basis of M∗ := HomB(M,B) dual to the basis mi of M

(under the obvious identification of M∗ with a UB-submodule of M ′∗). One has
χm∗

j =
∑

im
∗
i Ωi,j(χ). Note that the right B-basis m∗

i of M∗ satisfies the same
conditions as assumed in 8.8 for the basis mi of M , but for the opposite poset Γop

instead of Γ.

8.14. Here, we assume that B is a UFD. Note then that the B-module on the right
hand side of the formula 8.6(1) is isomorphic to B/Bdx,y where dx,y is a greatest
common divisor for the elements (σx − σy)(u) of B for u ∈ U (or for u in a set of
R-algebra generators for U).

Lemma. Let M be as in 8.8, and choose bases {mi}i∈I for M and {δi}i∈I for
M ⊗B K as in that subsection, related by the equations mi =

∑
j∈I δjai,j and

δi =
∑

j∈I mjbi,j. Then for any i, j ∈ I with i < j

(a) ai,j ∈ aj,j

(∏
i≤y<j dy,j

)−1

B

(b) bi,j ∈ bi,i
(∏

i<y≤j di,y

)−1

B.

(c) Ωi,j ∈
∑

x:i≤x≤j δx

(
1∏

y 6=x:i≤y≤jdx,y
B

)
.
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Proof. By 8.13, part (b) follows from (a). Also, (c) follows from (a) and (b). To
prove (a), suppose i < j and assume inductively that (a) is true with i replaced by
any i′ ∈ I with j > i′ > i. Using induction to give a common denominator, 8.10(2)
can be written as

ai,j(σj − σi)(χ) =
fχaj,j∏
y∈X

i<y<j

dy,j

for some fχ ∈ B. Now (a) follows on recalling the definition of di,j .

9. Appendix: A monoid lemma for “mixed” braid relations

This appendix discusses a variant of Matsumoto’s monoid lemma for Coxeter
groups which can in special cases be used to give alternative constructions of the
modules considered in Section 2 of this paper.

9.1. Note that there is an action of W on P(T ) defined by w ·A = N(w) +wAw−1

for w ∈W , A ⊆ T (see 1.3(e)). We consider the following condition on a subset A
of T ;

(i) For each finite rank two parabolic subgroup W ′ of W , there exists an element
w′ ∈W ′ with N(w′) ∩W ′ = A ∩W ′.

Since we assume the condition in (1) for all dihedral parabolic subgroups (not just
the standard ones), it follows that

(1) if A ⊆ T satisfies (i), so does w ·A for any w ∈W .

Indeed, it is enough to check this for w ∈ S, which is easy. The condition (i)
is equivalent to the corresponding condition with “rank two” omitted from the
statement, though we shall not need this fact, and holds if A is any initial section
of a reflection order on T .

Fix for now two distinct simple reflections r, s ∈ S whose product has finite
order m = nr,s. Set ri = r for i odd and ri = s for i even. Let M be a monoid
and xr = (r+, r−) ∈ M ×M , xs = (s+, s−) ∈ M ×M be two ordered pairs of
elements of M . We say that xr, xs satisfy the mixed braid relations for r and s if
the following condition holds:

(ii) for any sequence of symbols ε1, ε2, . . . , εm from {+,−} with at most one pair
of unequal consecutive terms (i.e. εi 6= εi+1 for at most one 1 ≤ i ≤ m− 1),

rε1
mr

ε2
m−1 . . . r

εm
1 = rεm

m+1r
εm−1
m . . . rε1

2 .

In particular (ii) implies that the elements r+ (resp., r−) satisfy the ordinary
braid relations of (W,S).

Lemma. Let M be any monoid and xr = (r+, r−) ∈ M ×M , for r ∈ S, be pairs
of elements of M satisfying the mixed braid relations (i.e. xr and xs satisfy the
mixed braid relations for r, s whenever r, s in S with 1 < nr,s <∞).

Then for any A ⊆ T satisfying (i), there exist unique elements xA ∈M for x ∈W
such that eA is the identity element of M and if r ∈ S, x ∈ W with l′(rx) > l′(x),
then (rx)A = rεxA where ε denotes “−” if r ∈ x ·A and “+” otherwise.
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Proof. If the xA exist, then for any reduced expression x = r1 . . . rn, one has

(2) xA = rε1
1 . . . rεn

n

where εi denotes “−” if ri ∈ ri+1 . . . rn · A (i.e. if rn . . . ri . . . rn ∈ A) and denotes
“+” otherwise. To prove the lemma, it will suffice to show the right hand side of
(2) is independent of the choice of reduced expression for x. By 1.3(ii), it is enough
to prove the right hand side of (2) does not change when the reduced expression for
x is changed by a braid relation. By the definitions, the proof of this immediately
reduces to the case when x is the longest element of a dihedral standard parabolic
subgroup W ′ = Wr,s of W , with m = nr,s < ∞. By (1), A ∩W ′ = N(w) ∩W ′

for some w ∈ W ′ with l′(w) = p. If p < m, interchange r and s if necessary and
suppose without loss of generality that l′(rw) > l′(w). Then the equality of the
expression (2) for the two reduced expressions of x is just the mixed braid relation
(ii) for a sequence ε1, . . . , εm of p “−” signs followed by m− p “+” signs.

9.2. Obviously, if r+ = r− for all r ∈ S, one just has the monoid lemma. We now
discuss another example. The group B generated by elements ṙ for r ∈ S, subject
only to the braid relations of (W,S), is called the braid group of W . There is a
natural surjective homomorphism B →W , with ṙ 7→ r for all r ∈ S.

Lemma. Suppose that G is a group and that there are elements ṙ ∈ G, for r ∈ R,
satisfying the braid relations for W (e.g. G = B, the braid group of W ). Then the
pairs xr = (ṙ, ṙ−1) ∈ G×G satisfy the mixed braid relations for W .

Proof. Each of the mixed braid relations for (xr, xs), for r 6= s in S, is equivalent
to the usual braid relation on ṙ and ṡ, in this case.

9.3. In this subsection, we discuss the relevance of 9.2 to construction of the el-
ements mA

w in the QW -module Q̃W from Section (ii), in the situation 2.2(ii). In
this case, the invertible elements tr of QW , for r ∈ S, satisfy the braid relations.
Acting on the left on a completely arbitrary element h ∈ Q̃W by the elements in
QW whose existence is given by 9.1, one gets elements m̃w ∈ Q̃W for w ∈W , with
me = h, satisfying

trm̃w =
{
m̃rw if rw >A w

X2m̃rw otherwise.

Write mw =
∑

x∈W δxx
−1(sA

x,w) with sA
x,w ∈ Q (this is a possibly infinite for-

mal sum, with no conditions on supports). The sA
x,w satisfy the same recurrence

equation 2.5(5) as SA
x,w, and the initial values sA

x,e for x ∈ W could be arbitrarily
prescribed. Hence if sA

e,e = 1 and sA
x,w = 0 for x 6≤A w, it would follow follow that

SA
x,w = sA

x,w for any [x,w] ∈ PA. It may be conjectured that there exists a choice
of initial values sA

x,e for x ∈ W (i.e. effectively, a choice of the element h ∈ Q̃W )
so that sA

e,e = 1 and sA
x,w = 0 for x 6≤A w. If the whole of W is spherical in the

order ≤A, the conjecture is true (for unique elements sA
x,e). In general there may be

many choices of the sA
x,e to satisfy the conjecture, and it seems unlikely that there is

any “natural” choice in general (an interesting question, however, is whether there
is such a natural choice in the special case of the standard order on the alcoves
of an affine Weyl group, see [29]). Although the need for proof of this conjecture
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has been circumvented in this paper, there are closely analogous situations in the
sequel where corresponding difficulties remain unresolved except in special cases.

9.4. The remainder of this subsection describes some additional matters related to
9.1, none of which are used anywhere else in this paper. Suppose G = B is the
braid group of W in Lemma 9.2. For A ⊆ T satisfying 9.1(i) and for any reduced
expression y = r1 . . . rn, one has

(1) yA = ṙε1
1 . . . ṙεn

n

where εi denotes −1 if rn . . . ri . . . rn ∈ A and denotes +1 otherwise. It can be
shown from (1) (cf. [9]) that

(2) if v, w ∈ W and A,C are two subsets of T satisfying 9.1(i), then vA = wC iff
v = w and N(v−1) ∩A = N(w−1) ∩ C.

Let us write ẏ := y∅ = ṙ1 . . . ṙn. From the definitions, one sees

(3) (xy−1)N(y) = ẋẏ−1 for y ∈W.

Now any finite A ⊆ T satisfying 9.1(i) is of the form A = N(y) for some y ∈ W .
Hence if W is finite, (3) determines the wA (for all such A satisfying 9.1(1) and all
w ∈W ) in terms of the usual cross-section {ẇ}w∈W of W in the braid group.

Remark. If W is a finite Weyl group, combining (2) and (3) gives another formu-
lation of the necessary and sufficient condition ẋẏ−1 = żẇ−1 for isomorphism of
certain principal series modules I(x, y) and I(z, w) for an associated semisimple
complex Lie group (see [9]).

9.5. Next, we apply 9.1 to the the Iwahori-Hecke algebra H of (W,S) over the
ring Z[v, v−1] of integral Laurent polynomials in an indeterminate v, to give the
following minor refinement (and alternative proof) of [16, (4.1)].

Proposition. For any initial section A ⊆ T of a reflection order , there exists a
Z[v, v−1]-basis {T̃w,A}w∈W of H with T̃e,A = Te, such that for r ∈ S and w ∈W ,

T̃rT̃w,A =

{
T̃rw,A if rw >A w

T̃rw,A + (v − v−1)T̃w,A otherwise.

Proof. Take xr = (v−1Tr, vT
−1
r ) (elements of the unit group of H) in 9.2. These

elements satisfy the mixed braid relations so we obtain elements xA ∈ H for x ∈W
which we denote by T̃x,A = xA. These satisfy the multiplication formula in the
proposition. Moreover, T̃w := T̃w,∅ = v−l′(w)Tw where the Tw are the standard
basis elements of H over Z[v, v−1]. From 9.4(1), it follows that Tw,A ∈ T̃w +∑

l′(v)<l′(w) Z[v, v−1]T̃v, so the T̃w,A form a basis of H as well.

9.6. Finally, we mention one other general class of elements satisfying mixed braid
relations.
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Proposition. If ∆r, for r ∈ S, are idempotent elements satisfying the braid rela-
tions in a unital ring R, then the pairs xr = (∆r, 1 −∆r) satisfy the mixed braid
relations in the multiplicative monoid underlying R.

Proof. In the Iwahori-Hecke algebra H of W over Z[v], the elements xr = (Tr, Tr −
(v2 − 1)) satisfy the mixed braid relations for W , since (using 9.2) the pairs
(Tr, v

2T−1
r ) satisfy the mixed braid relations in H⊗Z[v] Z[v, v−1]. The result follows

on applying the ring homomorphism H → R determined by v 7→ 1 and Tr 7→ −∆r

for r ∈ S.

10. Appendix: Polynomial invariants of pseudoreflection groups

In this section we obtain some results in the invariant theory of finite pseu-
doreflection groups (rederived for Coxeter groups in Section 4) as specializations of
general facts from commutative algebra. As general references for the (well known)
facts quoted in this section, one has [3] or [7]. The section finishes with some obser-
vations suggesting that some of the questions from Section 8 studied in this paper
for Coxeter groups may also be of interest more generally e.g. for finite complex
pseudoreflection groups.

10.1. Let K be a field of characteristic p ≥ 0, and V be a finite-dimensional vector
space over K. An element g ∈ GL(V ) is said to be a pseudoreflection if the linear
map g − IdV :V → V has one-dimensional image. Let S denote the symmetric
algebra of V over K, given the grading S = ⊕n∈NSn with S0 = K and S2 = V .
Thus, S is non-canonically isomorphic to the graded polynomial ring in dimV
indeterminates of degree 2. For any subgroup G of GL(V ), , the G-action on V
extends uniquely to an action of G as a group of graded K-algebra automorphisms
of S. Let

(1) SG := { f ∈ S | g(f) = f for all g ∈ G }

denote the subalgebra ofG-invariants of S. Recall the following well-known theorem
of Shephard and Todd, Chevalley and Serre.

Theorem. Suppose that G is a finite pseudoreflection group i.e. G is finite and
generated by pseudoreflections. Then the following conditions (i)–(ii) are equivalent,
and hold in coprime characteristic (i.e. if either p = 0, or p > 0 and the order of
G is coprime to p).
(i) S is graded free of finite rank as a module over SG

(ii) SG is a graded polynomial ring in n = dimV indeterminates i.e. it is generated
over K by n algebraically independent homogeneous elements x1, . . . , xn of positive
degree.

Let nG denote the number of pseudoreflections in G. It is also known that in
coprime characteristic,

(2) 2nG =
n∑

i=1

(
deg(xi)− 2

)
, rankSG(S) = ](G) =

n∏
i=1

(
deg(xi)/2

)
.

10.2. In general, let B = ⊕n∈NBn be a positively graded algebra over a field
K, with B0 = K. Assume that B is generated as a K-algebra by finitely many
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homogeneous elements of positive degree. Let n denote the Krull dimension of B
i.e. the maximum number of elements of B which are algebraically independent
over K. We use below the following general fact.

Proposition. In the above situation, the following two conditions are equivalent:
(a) there exist homogeneous elements θ1, . . . , θn of B generating a polynomial sub-
ring K[θ1, . . . , θn] of B over which B is a finitely generated free module
(b) whenever θ1, . . . , θn are homogeneous elements of B generating a graded poly-
nomial subalgebra K[θ1, . . . , θn] of B over which B is a finitely generated module,
B is actually a free K[θ1, . . . , θn]-module.

If (a)–(b) hold, B is called a graded Cohen-Macaulay K-algebra. There is then
a graded B-module ω(B) (the “canonical module for B”) such that for any graded
polynomial subring C = K[θ1, . . . , θn] of B over which B is a finitely-generated
module, there is an isomorphism

ω(B) ∼= HomC(B,C) 〈
n∑

i=1

(deg(θi)− 2)〉

of graded B-modules.

10.3. Now we have the following.

Proposition. Let G be a finite pseudoreflection group acting faithfully on the K
vector space V in coprime characteristic, and let H be any subgroup of G which is
also generated by reflections. Then
(a) SH is a graded free SG-module of rank [G : H]
(b) HomSG(SH ,SG) ∼= SH〈−2(nG − nH)〉 as graded SH-modules.

Proof. First, B = SH is a graded polynomial ring B = K[y1, . . . , yn] by 10.1; in
particular, it is Cohen-Macaulay by 10.2(a). Of course, A = SG is also a graded
polynomial ring. Recalling 10.1(2), (a) is now immediate from 10.2(b), and (b)
follows on applying the last statement in 10.2 with C = B and C = A in turn.

10.4. For a finite subgroup G of GL(V ), define the element JG ∈ S as follows.
For each pseudoreflection g ∈ G, choose φg ∈ V ∗ and ag ∈ V such that g(v) =
v + 〈φg, v〉ag for all v ∈ V . Then define JG as the product of the elements ag for
all pseudoreflections g in G. We can now give the following more explicit version
of 10.3(b) (with a different proof).

Proposition. Assume G is a finite pseudoreflection group on V in coprime char-
acteristic, and let H be a subgroup of G generated by pseudoreflections. Then the
map

θ:SH → HomSG(SH ,SG)〈2(nG − nH)〉

with θ(b)(b′) = J−1
G

∑
g∈G/H det(g)g(bJHb

′) (where the sum is over a set of coset
representatives of H in G) is an isomorphism of graded SH-modules.

Proof. In general, let B/A be a finite extension of normal domains (so B is finitely
generated, in particular integral, as an A-module) with quotient fields F/E. For
example, if B is a normal domain, finitely generated as algebra over a Noetherian
ring R, one could take A = BG for any finite group G of R-algebra automorphisms
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of B, in which case F/E is Galois with Galois group G. In general, we denote by
TrF/E or TrB/A the trace map F → E for the (finite) field extension F/E.

Define as usual the inverse different D−1
B/A and different DB/A by

(1) D−1
B/A := { f ∈ F | TrF/E(fB) ⊆ A }, DB/A := { f ∈ F | fD−1

B/A ⊆ B }.

Note that any A-module homomorphism B → A is the restriction of a unique
E-linear map F → E; since the trace form of F/E is non-degenerate if F/E is
separable,
(2) If F/E is separable, the map ψ:D−1

B/A → HomA(B,A) given by ψ(f)(b) =
TrF/E(bf) is an isomorphism of B-modules.
The different and inverse different are known to be divisorial ideals of K; in par-
ticular,
(3) if B is a unique factorization domain (UFD), one has D−1

B/A = d−1B for some
0 6= d ∈ B.

We apply below the following special case of the general transitivity property for
the inverse different,
(4) If C/B/A are finite extensions of Noetherian UFD’s, with corresponding quo-
tient fields L/F/E, and L/E is separable, then D−1

C/A = D−1
C/BD

−1
B/A.

(if we did not have UFD’s, the right hand side would be replaced by its divisorial-
ization).

Now return to the situation of the proposition. One has from [3, 7] that

(5) DS/SG = JGS = { b ∈ S | g(b) = det(g−1)b for all g ∈ G }

and of course the analogous statements for H. By (3)–(4) and 10.1,

(6) D−1
SH/SG = (JG/JH)−1SH .

Hence multiplication by d := (JG/JH)−1 gives an isomorphism of SH -modules
ψ′:SH → D−1

SH/SG . We claim that as a map of ungraded SH -modules, θ = ψ ◦ ψ′

where ψ:D−1
SH/SG → HomSG(SH ,SG) is the isomorphism given by (2). For let

b, b′ ∈ SH . Using (1) for both H and G, one has

(ψ ◦ ψ′)(b)(b′) = TrSH/SG(bdb′) =
1

](H)

∑
g∈G

g(bdb′) =
1
JG

∑
g∈G/H

det(g)g(bJHb
′).

It now follows that θ is an isomorphism of ungraded modules; as a map from the
graded module SH to HomSG(SH ,SG)〈2(nG − nH)〉 it is homogeneous of degree
zero, hence a graded isomorphism.

10.5. Finally, we make some suggestive observations concerning particular cases of
some questions in Section 8.

Let V and V ′ be finite-dimensional vector spaces over a field k and let S, S ′
be their respective symmetric algebras graded as usual in this paper. For Γ ⊆
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Homk(V, V ′) and for x ∈ Γ, denote by σx:S → S ′ the graded R-algebra homorphism
restricting to x as a map V → V ′ on the homogeneous components of degree 2. Let
U = S, B = S ′, R = R and σ := {σx}x∈Γ. Define Bσ and the equivalence realtions
∼=a as in 8.1-8.5. We claim that the following statements hold;
(1) For a prime element p of S ′ and x, y ∈ Γ, one has x ∼=pS′ y iff p ∈ V ′ and
(x− y)(V ) ⊆ kp.
(2) Suppose that Γ is finite and there is 0 6= α ∈ V ′ ⊆ S ′ such that x ∼=αS′ y for all
x, y ∈ Γ. Then the condition in 8.4(1) holds, and hence so do 8.3(i)–(ii).
(3) Suppose that V = V ′ (so S = S ′) and that Γ is a subgroup G of GL(V ). Let
N be the (normal) subgroup of G generated by the pseudoreflections in G. Let
σ′ := {σx}x∈N ; one may naturally regard Bσ′ as a subring of Bσ. Then as right
S-modules, Bσ = ⊕g∈N\GBσ′σg where the sum is over a set of coset representatives
for N in G; in particular, Bσ is a free left Bσ′ -module and 8.3(i) holds for the family
σ iff it holds for σ′.

Indeed, (1) is obvious (cf. the start of the proof of 5.1), and (3) follows by (1)
and 8.2. The remaining fact (2) is not used in any essential way below, and its
proof is left to the reader. In the situation (3), the results (1), 8.2 and (2) imply
that 8.3(i) holds “after localization at any height one prime ideal of S” for any
finite G in any characteristic. I don’t know for which G 8.3(i) itself holds, except
for the following very special case.

Proposition. Make the assumptions as in (3) above, and also assume that G is
finite and K = R. Then 8.3(i) holds.

Proof. By (3), one may assume without loss of generality that G = N . So by
the classification of finite real reflection groups, G is a finite Coxeter group in
a reflection representation on V . One may choose a system of simple roots for
G; the fundamental chamber on V is automatically sufficiently large, and so the
Proposition follows from [26] (or 5.2, 2.12 and 3.7(a) of this paper).

Remark. It would be interesting to know, in the situation (3) with K = C, if 8.3(i)
and 8.5(i) hold for G, H finite complex pseudoreflection groups on V .
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