MODULES FOR THE DUAL NIL HECKE RING
M.J.DYER

Introduction

Fix a finitely generated Coxeter system (W, S) in a suitable reflection represen-
tation on a finite-dimensional real vector space V', and let S denote the symmetric
algebra of V' with natural W-action. Kostant and Kumar [26] have associated to
this data a graded S-algebra A (the dual nil Hecke ring) on which W acts as a
group of graded S-algebra automorphisms; let AL (resp., ST) denote the ring of
Wi -invariants of A (resp., S), for any standard parabolic subgroup Wy, of W. The
definition of A was motivated by geometric questions; if W is the Weyl group of a
suitable Kac-Moody group G, A* ®s R is isomorphic to the cohomology ring of the
generalized flag variety G/ Py, for a standard parabolic subgroup Py, corresponding
to W, (see also [1]). This paper studies properties of AL, and particularly some
Af-modules, which play an important role in the study of certain representation
theories associated to the W-action on V.

These representation theories are defined for each suitable (finite here, for sim-
plicity) interval I'Y of minimal Wp-coset representatives in orders on W analogous
to Chevalley (Bruhat) order. For finite Weyl groups, some of them are known
via [32, 4] to be essentially blocks of Harish-Chandra bimodules for a semisimple
complex Lie group or blocks of O for the corresponding semisimple complex Lie
algebra, and they are conjecturally closely analogous in general. A construction of
one category associated to ' has been sketched in [21]. First, for R = S @r S
(if Wy, is finite) or RL = AL (in general), one constructs an exact (in the sense of
Quillen) category C¥ of graded RY-modules, with filtrations of a prescribed type
having in particular certain RZ-modules N* for z € I'* as successive subquotients.
The category PL of “projective” objects of CL is equivalent to the category of
finitely generated graded projective modules for a graded R*-algebra A*. The al-
gebra A" and its module category are the objects of basic interest. Some of their
properties can be established using “translation functors” between categories C*
and C?, induced by the usual restriction and extension of scalars between R“-mod
and R’-mod.

The first goal of this paper is to provide proofs for a number of results stated
without proof in [21], and used in an essential way in the theory surveyed there.
First, for construction of the categories C%, one needs to compute Ext}, (N, NJF)
for x # y in T'F. Actually, we shall obtain more general results on Ext-groups which
imply that C* and P” can be given a combinatorial description using the posets
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(with edges labelled by roots) studied in [18]. To define translation functors, one
needs to know that for finite W, R := R? is free over R* and that Homp: (R, RY) =
R as R-module up to degree shift (these last facts are well-known for RF = S¥'®S).
The proof of compatibility of the two definitions of C* and the translation functors
for finite W, (using S* ®S or A" in the definition) requires the fact S®gr AL = A,
together with a main result of Kostant-Kumar’s on the structure of the nil Hecke
ring, for which we provide a simpler proof suggested by the Ext-computations.

The most important open question about the representation categories discussed
above is the Kazhdan-Lusztig conjecture for them. According to this, graded char-
acters of “Verma-modules” in A”-mod are characterized by invariance under a
combinatorially defined involution on the module of formal characters, together
with some degree and support conditions. For finite Wy, these properties would
follow from existence of suitable dualities (contravariant self-equivalences) of the
categories P, compatible with translation functors, together with some degree con-
ditions on the projective indecomposable objects of PL (with suitably normalized
gradations). In this paper, we construct for each ' an RY-module M* (actually in
C*) which conjecturally functions as a “dualizing object” for P, in the sense that
Homper (?,My) should be the desired contravariant equivalence on PX. Compati-
bility of these dualities with translation functors would then follow using the result
A®a: ME 2 MY proved in this paper. The appropriate degree normalization of the
projective indecomposables would simply be the one requiring them to be fixed un-
der the duality. A much stronger conjecture concerning M” (asserting roughly that
all objects in P* may be obtained by iterating extensions which “come from” M¥)
receives some support from results here which imply that it is true after localizing
at any height one prime of S.

In this paper, we study mainly modules for RY = AL and for RY = S* @ S;
the categories P¥, CI and ring A" are not even defined here and will be studied
elsewhere (though we do describe here in a general setting a few simple properties
of objects of CL regarded just as RY-modules). For crystallographic groups W,
our main results all hold as well for an integral form Az of A (essentially, the
graded ring of the filtered equivariant K-theory ring 2 of the flag variety of an
associated Kac-Moody group). This gives rise to canonically associated highest
weight representation theories (and others more akin to blocks of Harish-Chandra
bimodules) over arbitrary fields, for instance, reducing to the ones from Ay, for the
field R. A sequel to this paper will give the analogous results for €2, needed for the
definition and study of (probably closely related) integral representation theories
which may be constructed from € itself (see [21]) For crystallographic groups W,
several representation theories obtained from those mentioned above are known or
conjectured to be closely related to more familiar representation theories arising in
Lie theory; also, it seems likely that for such W, many of the objects constructed in
this paper and its sequel have geometric significance in relation to the generalized
Bruhat decompositions and Schubert-like varieties defined in [6].

We now describe the contents of this paper in some detail. Section 1 gives,
mainly without proofs, a listing of some of the (mostly well known) properties of
Coxeter groups and root systems used in this paper. We also recall from [16, 17]
the definitions of the orders <4 on W used in subsequent constructions; they gen-
eralize and are closely analogous to Chevalley order and its reverse. The class of
reflection representations of Coxeter groups used is a natural one which includes
those of Weyl groups of Kac-Moody Lie algebras and the standard reflection rep-
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resentations in [7] (more generally, also those from “root bases” in [28]). For a
given non-crystallographic reflection representation of W, it may not be possible to
choose a corresponding “reduced” root system. This phenomenon arises for reasons
similar to those for existence of non-symmetrizeable generalized Cartan matices; it
substantially complicates the statements and proofs of results, so in subsequent
sections we work with reduced root systems and at one point briefly indicate how
the main results can be extended to non-reduced ones.

The main results of the paper are given in Sections 2—6, where we study a fixed
order <4 on W, and a suitable subset I' of W in the order <4, with W I' C T.
Let @ be the quotient field of S. In Section 2, we consider for J C L (essentially)
the ring H; of functions @ — @ generated by left multiplications by elements of S
and the BGG-Demazure operators ¢ — a~!(s4(q) — q) for simple roots o with the
reflection s, € J (H is (anti)isomorphic to the “nil Hecke ring” of W as defined in
[26]). We construct a H j-module Mr which, in the case I' = W in Chevalley order
and W; = W, reduces to the left regular module for H := Hg. There is a similar
result for suitable reflection subgroups W of W (associated to the order <4) with
I'W}. CT. Actually, in Section 2, many of the results have analogues replacing the
BGG-Demazure operators by operators ¢ — Xa~1(s4(q) —q)+Y s4(q) (for suitable
scalars X,Y in R) arising in Lusztig’s study [30, 31] of graded Hecke algebras (I
wish to thank George Lusztig for suggesting this possibility). The arguments in
Section 2 are given in a form that applies simultaneously to both situations.

In Section 3, we recall Kostant-Kumar’s “dualization” of H to obtain the dual
nil Hecke ring A with its operators from H, and then give a similar dualization of
Mt to obtain a graded A-module Ar with operators from Hp. In particular, one
has an action of Wy, on A and Ar satisfying w(¢v’) = w(y)w(y’) for w € Wi,
Y € Aand ¢ € Ap. If T' = W in Chevalley order, Ar reduces to the left regular
module for A; many of the formulae we give for Ar are formally obtained simply by
replacing Chevalley order by <4 in the corresponding formulae for A as obtained
in [26].

In Section 4, we describe a formalism suggested by the well-known Schubert
calculus, and use it to obtain a number of previously mentioned results concerning
the ring A* and the A“-module (Ar)* of W, invariants (for finite posets, (Ar)” is
the candidate “dualizing object” M¥).

Section 5 gives a “local” characterization of the nil Hecke ring, which is used first
to give a simple proof of another description of H from [26]. The local description
of H is then extended to some closely related situations, and applied to give the
computation 5.7 of the previously mentioned Ext-groups Extl(NmL,N?f) for the
rings RV = AL and, for finite Wy, RY = S ®r S. We also give a basic technical
fact 5.8 concerning the candidate dualizing object M”.

In Section 6, we study a homomorphism from the Iwahori-Hecke algebra of W
to the split Grothendieck group of a category of (A, A)-bimodules; the results here
do not extend in this form to Az or to the equivariant K-theory ring  discussed
in the sequel to this paper. Much of Sections 5 and 6 depends only on properties
of the nil Hecke ring and its dual proved in [26] and the first part of Section 4.

A brief Section 7, which also is largely independent of earlier sections, discusses
the analogues for modules associated to polyhedral cones of some of the main results
from Sections 2-5 (again, these are needed in the study of representation categories
[21] which are not discussed here).
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Some of the arguments used in Sections 2—7 require some easy general properties
of modules with filtrations of a certain type; modules in the categories C* previously
mentioned (but not defined) are examples. These arguments have been collected
together and given at a general commutative algebra level in Section 8; they do not
depend on the previous sections at all. Some of the problems considered in this
paper for Coxeter groups have also been formulated in a more general context in
Section 8.

Sections 9-10 are appendixes to the paper. Section 9 discusses an extension
of Matsumoto’s well-known monoid lemma for Coxeter groups; it is useful in con-
structing versions associated to orders <4 of standard objects parametrized by W.
Using this result, we indicate a possible more conceptual approach to the construc-
tion of the modules from Section 2; unfortunately, this approach contains a gap
which can at present only be filled in special cases.

In Section 10, we quote some general facts from commutative algebra and de-
scribe some results in the invariant theory of finite pseudoreflection groups arising
as special cases. Though these results are not new (especially for Coxeter groups,
in which case some of them may also be easily obtained using the Schubert calculus
formalism as in Section 4), it seems difficult to find an explicit reference for them
in the literature.

1. Root systems and orders on Coxeter groups

In this section, we summarize, with only occasional indications of proof, some
basic properties of Coxeter groups and root systems, and facts we shall require on
certain partial orders on Coxeter groups which generalize the well-known Chevalley
(Bruhat) order on W and its reverse. As general references on Coxeter groups, one
has [7] and [22]; for the standard Chevalley order, see [10].

1.1. Let k denote R or Z. We say that a subset X of a free k-module V' is pointed
if there exists ¢ € V* := Homy(V, k) with ¢(a) > 0 for all « € X. We say that X
is reduced if ma = ng for a, B € X and m,n € k>o implies m = n.

Now fix two free k-modules V' and V' with a given k-bilinear map (—,—): V x
V' — k, and pointed, reduced subsets II C V, IIVY C V' with a given bijection
a— a1 — IV satisfying

(1) (a,a”) =2 for all a € 1II.

For a € I, define s:v — v — (v, ") in GL(V), S = {Sa }aemn, and W = (S) (the
subgroup of GL(V') generated by S). Define ® = {w(a) | a € II, w € W} and
¢t ={y e ®|ved cnk>oa}. Dually, define so,v € S" € W’ in GL(V’) and
BVt C PV C V. Fora+#pell let cap:= (o, fV)(3,a) € k.

Lemma. In the above situation, one has ® = &+ U (—®T) iff (ii)-(iii) below hold;
(ii) for a # B €11, {a, BY) < 0. Further, (3,a") =0 if {(a, V) = 0.
(iii) for o # B € II, either cq g > 4 (in which case we set mq 3 = 00) or co g =

4 cos? P for some mq g € N>o.

Proof. The proof is very similar to that of the special case [13, 4.11], by reduction
to rank two as in [12].
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1.2. If the conditions (i)-(iii) of the previous section hold (and II, ITV are pointed
and reduced), as we now assume, we call (V,II,®) and (V',IIV,®V) (dual) based
root systems over k. One calls elements of ®, ®* and II roots, positive roots and
simple roots respectively. Elements of S are called simple reflections.

For integral dual based root systems (i.e. ones with k = Z), we call V' the weight
lattice. From such integral root systems, one obtains dual based root system over
R (and a natural identification of their corresponding groups W, W’) by extension
of scalars to R (i.e. regarding V C V ®z R and similarly for V).

Though we mainly consider dual based root systems (V,II, ®) and (V/, 11V, ®V)
over k = R in this paper, we sometimes assume they arise by extension of scalars
from integral systems as above, and refer to their weight lattice (which is regarded
as a lattice in V).

1.3. Consider fixed dual based root systems as above. Let I:W — N be the
standard length function of (W, S), defined by I'(w) = n if w = r1...7, for some
r; € S with n minimal; then ry...r, is called a reduced expression for w. For
r,s € S, define n, s := ord(rs) € NU{oo}. For any monoid M, a family of elements
{zs}ses of M is said to satisfy the braid relations for W if for each r # s € S
such that n, s # oo, one has ,, ...z, =z, ...2,, , wheren =n,, and r;, =r
for even i and r; = s for odd i. Let T be the set of W-conjugates of elements of
S (the set of reflections of (W,S)) and regard the power set P(T') as an abelian
group under symmetric difference A+ B = (AU B) \ (AN B). For w € W, define
Nw)={teT|l'({tw) <l'(w)} e P(T).

Lemma. (a) For o, €11, n,, s, is equal to 1 if a = 3 and to mq,p otherwise.
(b) (W, S) is a Cozeter system i.e.

W = (S| (rs)" = =1forall r,s €S with n, s # 00)

naturally.
(¢) The map S — S’ given by s +— sqv extends to a (unique) isomorphism W —
W' which we use to identify W' with W. Then (w(v),v") = (v,w™(v")) forw € W,
veV andv e V',
(d) The bijection 11 — T1V extends to a W -equivariant bijection ® — ®V. Define
Sa:v — v — (v,a Y in GL(V) for a € ®. Then for any w € W and o € P,
wsaw_l = Sw(a)-
(e) The “reflection cocycle” N:W — P(T') is characterized by N(s) = {s} fors € S
and N(xy) = N(x) + aN(y)z~! for z,y € W. For w € W, $(N(w)) = '(w) and
Nw)={sq|a€e®Nw(-2")}
(f) (Monoid Lemma) Suppose elements x, of a monoid M, for r € S, satisfy the
braid relations of (W,S). Then there is a unique family of elements {xy }wew of
M such that ., = x,, ... 2y, for any reduced expression w =1y ...71y.
(g) For any J C S, let W be the standard parabolic subgroup of W generated by
Jyletlly ={ae€ll|sq,€J} and let &5 = {w(a) | a € II;, w e Wy}. Then
(V.11;,®;), and the obvious dual (V' ,II';,®’)), are dual based root system with
associated Coxeter system (Wy,J).
(h) @ (or equivalently ®V ) is reduced (in the sense of 1.1) iff for all o # 8 € IT with
Mma,a finite and odd, (o, B¥) = (B, ). In that case, the map o — s, is a bijection
Ot - T, and if w = Sq, ... Sa,,, @i € 11, is a reduced expression for w € W, then
Ot Nw(—PT) ={B1,...,0n} where B; :=sa, - Sa;_, ().
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Proof. The proofs of these facts from the decomposition ® = &+ U (—®™T) of the
root system into positive and negative roots are well known [35, 12] if the root
system is reduced. In general, one can prove the following two claims together by
induction on n;

(i) for a, o, 8 € I with 8q, ... Sa, (@) = ¢ for some ¢ € Ry and with s, ... Sa,
reduced, one has s,y ... sqv(aY) =c71(3Y)

(ii) any reduced expression of an element w of W can be converted to any other
reduced expression for w by successive application of the braid relations, if I'(w) <
n.

For each n, one first proves (i) by a reduction to the dihedral case similar to that
in the proof of Lemma 1.1, and then proves (ii) essentially by the usual proof of
the monoid lemma. Once (i) and (ii) are proved, the rest of the proof is standard.

Remarks. The W-conjugates of the subgroups W in (g) are called parabolic sub-
groups of W. Note that ® is necessarily reduced (in the sense of 1.1) if k = Z, by

().

1.4. Define the “fundamental chambers” C = {v € V | (v,a¥) > 0 for all « € IT }
and C' = {v € V' | (q,v') > 0foralla € I} of W on V and V'. A standard
argument [23, 3.12] shows that

(1) each W-orbit on the “Tit’s cone” Uy,eww(C) contains a unique point of C, and
the stabilizer in W of v € C is generated by the reflections s, which fix v.

By (1), no non-trivial element of W fixes C' elementwise iff
(i) for each o € TI, there exists ¢ € C with (¢, a") > 0.

If (i) holds, we say C is sufficiently large. If V' is of finite dimension over k¥ = R and
IT is finite, C is sufficiently large iff the interior of C' (in the Euclidean topology) is
non-empty.

An element w of W is called a pseudoreflection if (1 —w)(V) is a free k-module
of rank one. The following sufficient conditions (b) for all pseudoreflections in W to
be reflections (i.e. of the form s, for a € &) are implicit in [26, 4.8], from which
the following proof is adapted.

Lemma. (a) Any pseudoreflection w € W of order 2 is a reflection i.e. equal to
8o for some o € ®T.

(b) If the fundamental chamber of W on V is sufficiently large, then every pseu-
doreflection of W on V is a reflection.

Proof. The case k = Z follows from the case k = R, so we assume k = R. In general,
it is known ([33], [11]) that any involution w in a Coxeter group can be expressed as
a product of commuting reflections, say w = sg, ... sg, for §; € ®T. One must have
(Bi, 8]) = 0 for i # j, hence (1 —w)(V) = @®;RB;. This makes (a) obvious. For (b),
note that there is no loss of generality in assuming that the fundamental chamber
on V' is sufficiently large (see the remark below). It is enough by (a) to show that
if w € W is pseudoreflection, then w? = e. Write w = sq, ... 84, With a; € II.
The standard parabolic subgroup of W generated by the s,, acts faithfully on the
R-subspace U of V spanned by the «; (using 1.2(e), for instance). On U, w has
determinant (—1)" and fixes a hyperplane pointwise, so, considering the Jordan
form of w (on U), either w? = e or (w — €)? = 0. Suppose for a contradiction
that e — w = —(e — w™!). By assumption, there exist ¢ € C' and ¢’ € ' with
6



(;,¢') > 0and (¢,af) >0fori=1,...,n. A standard argument [23, 3.12] shows
that (e —w)(¢) and (e —w~!)(¢) are expressible as non-zero non-negative R-linear
combinations of the a; so 0 < {(e — w)¢p, ') = —((e —w™1)p, ¢’) < 0.

Remark. Note that if U, U’ are free k-submodules of V' containing II, IIV respec-
tively, one gets dual based root systems (U, I, ®) and (U’, 11V, ®V), with associated
Coxeter system naturally identified with that of the original root systems (by restric-
tion of W-action to U and U’). Call the new dual based root systems restrictions
of the original ones. The following observation is useful.

(2) any dual based root systems (U,II,®) and (U’,IIV,®") may be regarded as
restrictions of dual based root systems (V,II,®) and (U’,IIV,®") such that the
fundamental chamber on V is sufficiently large. In fact, one may take V := U @ k¢
for any ¢ € Homy(U', k) with (¢, I1V) C kso.

1.5. We now recall from [16,17] the main facts we shall need concerning certain
partial orders <4 on W. Fix an “initial section of a reflection order” A C T, where
T is the set of reflections; we don’t repeat the definition here, but mention that the
basic example is A = { s, | @ € @7 N P} where P is the cone of positive elements
of some vector space total ordering of V' (if k = R). We let 4: W — Z denote the
length function defined by la(w) = I'(w) — 24(N(w=1) N A). Let <4 denote the
associated order on W as in [16]; thus, <4 is the partial order on W generated by
the relations

(1) T <y 8.2 ifx €W, a€® and ls(z) < la(50T).

For A =0 (resp., A=T), <4 is Chevalley order on W (resp., its reverse).

Let P4 be the set of non-empty, finite, closed intervals [u,v] := {z € W | u <4
x <4q4 v} in W in the order <4 such that the open interval [u,v] \ {u,v} has a
combinatorial sphere as its order complex (if it is non-empty). Any interval in Py
is finite and all of its non-empty closed subintervals are also in P4. In this paper,
we use mainly the recursive characterization of P4 given by (d) of the following
proposition.

Proposition. (a) For x <4 w, there is a chain x = 29 <4 ... <z T, = w with
la(zy) =la(z) +n.

(b) Forx e W, s€ S, one has la(sz) =la(z) £1

(c) (the “Z-property”) for z,y € X and s € S with sx <4 x, sy <4 y one has
st <apsyiffr <ayiff st <avy.

(d) P4 is the smallest set of non-empty closed intervals in W in the order <4 which
contains [e,e] and satisfies [sx,sy] € Pa <= [z,y] € Pa = [sz,y] € Pa for all
ses, x,ye W with st <az, sy <ay (see [16, 2.5]).

Remark. Tt is known that for some A (e.g. A = Wi NT for some K C S) every

closed interval in W in the order <4 is in P4. In particular, this holds for Chevalley
order and its reverse.

1.6. We define a spherical poset in the order <4 to be a subset I' of W in the order
<4 such that (i) below holds:
(i) for any u <4 v in T', one has [u,v] C T and [u,v] € Pa.
For any I' C W and any standard parabolic subgroup W, of W, define I'' = {w €
I |la(sw) > 1a(w) for all s € J }.
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Lemma. Let I' C W be spherical in the order <a, and fit L C S.

(a) For any any w € T'L, the map = — zw is an order-isomorphism between Wi,
(in Chevalley order) and Wrw (in the order induced by <a) satisfying la(zw) =
U'(z) +1a(w) for all x € Wi,. Moreover, W, T'L is spherical.

(b) If W T'E CTE and either Wy, is finite or A =0, then W It =T

(c) For K C L, any x € WrT'l may be uniquely written v = x ™ where v € Wik
and % € TK,

Remark. These results apply in particular to Chevalley order, where they are well
known. We write W for {w € W | I'(zw) ='(z) + I'(w) for all z € W }.

2. Modules for the nil Hecke ring

In this section, we construct some modules for Kostant-Kumar’s nil Hecke ring
(case 2.2(i) below); these play an important role in the rest of the paper. We
also obtain by the same procedure modules for (the analogue for general Coxeter
systems of ) Lusztig’s graded affine Hecke algebra (case 2.2(ii) below), but these are
not used subsequently in this paper.

2.1. Throughout this paper, we fix dual based root systems (V,II, ®), (V/, 11V, ®V)
over R with associated Coxeter system (W, .S). Unless otherwise stated, we assume
that V and V' are finite-dimensional, that S is finite and that ® (and hence ®V) is
reduced. Let S = > S, denote the symmetric algebra of V' over R, graded so
So =R and S; = V; thus, S is non-canonically isomorphic to a graded polynomial
ring over R, in dim V' indeterminates of degree 2. If our based root system arises
by extension of scalars from an integral based root system, we define Sz to be the
the symmetric algebra over Z of the weight lattice, naturally regarded as a graded
subring of S.

Fix a partial order <4 on W associated to an initial section of a reflection order.
We sometimes denote [4(w) — 14 (v) by la(v,w). Write v4(u,w) (resp., u >4 w
to indicate that v € ®%, u <4 w € W and u = s,w (resp., that y4(u,w) and
v <4 w, where v <4 w means v < w and l4(v) = l4(w) — 1). If we need to
make dependence of some object or relation on the “parameter” A explicit, we will
attatch a subscript or superscript A. If there is no danger of confusion, we may
omit the subscript or superscript when referring to < 4. In particular, we write <
for <4 and [ for [4; standard Chevalley order will be denoted <y or <’, and the
standard length function is I’ = I.

2.2. Fix elements { X, }oco and X in the subalgebra of S generated by W-invariant
elements of V', such that for a € ®, one has X, = X, for all w € W, and such
that either (i) or (ii) below holds.

(i) X =0 and all X, = 1. In this case, let : V' — V be the identity map.

(ii) X # 0 and there is a direct sum decomposition V = U; @ Uy @ RX such that
IT C Uy, the distinct X, form a basis of Uy, and (Us & RX, ®V) = 0. In this case,
let 8:V — V be the R-linear map fixing U; @ Us pointwise and with (X) = —X.

In situation (ii), one regards U; as given and the X,, X as indeterminates over
the symmetric algebra of U;. Given the reflection representation of W on U, one
could for instance extend it to one on a suitable V' as above so that X, = Xz iff
«, (8 are in the same W-orbit on .
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2.3. Let @ denote the quotient field of S. There is a natural action of W as a
group of R-algebra automorphisms of S and of @) extending the natural action on
V. This action fixes X and all X, for a € ®. We also extend € to a R-algebra
automorphism 6 of S and of Q. Note that in either case 2.2(i)—(ii), # commutes
with each element of W on @, fixes each simple root, fixes the X, with o € ®, and
satisfies 0(X) = —X. We let R[X,, X| denote the R-subalgebra of S generated by
X and all the X, with a € ®.

2.4. Define elements S, = S4 of Q for x € W by

ea(a,z)
(1) Sﬁ _ H eala, )
Xo +ea(a,z)aX

acdtnz(—o+)

where €4 (o, ) denotes 1 if z <4 sqx and —1 otherwise. Then using 1.3(h),

Xo —aX
(2) St .= %SQ(S’;‘) if o el and s,z >4 x,
—a
3) ()71 = (=1)"@e(s]).

2.5. We now define elements Sy, = Sf,w of @ for [z,w] € Pa.

Lemma. There is a unique family of elements Sf,w € Q, defined for [x,w] € Py,
such that Séw =S4 if x = w, and such that for any x €V,

(1) (x—zw ™ ())Sew == Y (x[y)XME X 88,
va(uw,w)

if © <4 w. Here and later, any term Sﬁu with © ¢4 u is interpreted as zero, and
we interpret X° as 1 if X =0 (i.e. in case 2.2(i)).

Proof. Fix a point x. € V with no W-isotropy, and set x.,, = w(x.) for all w € W.
Then v(xw) # Xw for all v # e and w in W. There is obviously a unique family of
elements Sy ., defined for [z, w] € P such that S, , = S, and

Sﬂc,w = - Z <Xw | ,y\/ >(Xw - xw_l(Xw))_lx’YXl(%w)_lSI,u
'Y(urw)

if x < w. For example,
(2) Sm,w - *X—ySz/’Y if x l> w.

Fix x € W and r € S with rx > x, say r = s, with a € II. We will show by
induction on I(u) that for v > x in W with ru > u and [z, u] € P, one has

(3) XoSeruw+ (Xo — aX)r(Srar w) = —aSyr oy if @' € {x, 72}
9



Now if I(u) = I(z), then u = z and (3) follows from (2) and 2.4(2). Suppose that
w >z, rw > w, [z,w] € P and (3) holds for all v with z < u < w and ru > u. It
follows that

(4) XoSer g+ (Xo — aX)r(Srar pu) = —X 2S00 0 if 2’ € {z,rz}
for such u. Note that for r € S, w € W with rw >4 w, the map

{(wy) [ru>au, y(w,w) } = {(v,8) | v #w, Bv,rw) }

given by (u,7y) — (ru,r(y)) is a bijection. Set x = xu. Then

(700 = #0700} (XaSar + (Xa = aX)r(Srar) )
= (rx = X)XaSurw + (x - x/w_l(X))XaSz’,w
+ (Xa = aX)r[ (x = 72w (1)) Srar|
=~ (x| 0¥ )aXoSy
= Y XX (X S+ (X = X (Srara))

v (u,w)

:a( (r(x) | @Y ) XaSer w
+ 3 (r V)X, X w>Smf,m)> by (3), (4)

v (u,w)

=« Z X) | BY) Xg Xlvrw)—lg | v from above
B(v,rw)

= a(r(x) - x'(rw)_lr(X))Sz',rw since X = 7(X)

which proves (3) for u = w since r(x) — 2'w™1(x) # 0.
Note that by (3), (4) we have now established the recurrence formula

—aS4 - Hfrw>4w
(5) XaSP o+ (X —aX)r(S2 ) = e
’ —aXQSI,’m if rw<4qw

which holds for a € II, 7 = sq, [z,w] € P4 with rz >4 z and 2’ € {z,rz}. It
follows using 1.5(d) that for [z, w] € P the value of S, ., € @ is uniquely determined
by this recurrence equation and the initial condition S.. = 1. In particular S, ,,
is independent of the initial choice of x.. As one varies . over the points in V'
with no W-isotropy, x., = w(X.) ranges over a dense (in the Euclidean toplology)
subset of V. The equation (1) holds if x = x4, and both sides are linear in x, so
(1) holds for all x € V as required.

2.6. In the situation 2.2(i), for Chevalley order and its reverse, the following result
was proved in [19].
10



Proposition. Fiz [z,w] € Pa. Then

(a) Sz, = (=1)lal=w)SARA Jgt, for some hi . g2, €S expressible as non-zero

linear combinations (with positive real coefficients) of products of elements from

MU {X,,X}; in particular, Sf)w # 0.

(b) There exist elements f2,, € S such that S, = SAf2,(IT  sco+ a)fl
r<ASqr< AW

(c) In (a), hi.,. gi, may be chosen so as to have expressions as homogeneous

real polynomials in elements of TU{X,} U{X} (with respect to the grading giving

elements of 11 degree 2, the X, degree 0 and, in case 2.2(ii), X degree —2), with

degrees satisfying deg(gﬁw) — deg(h;{w) =2l (z,w).

Proof. For the proof, one may assume without loss of generality that the funda-
mental chamber for W on V is sufficiently large, by 1.4(2). Parts (a) and (c) are
proved by induction on l4(z,w) by considering 2.5(1) for points x € V taken in
the interior of the fundamental chamber on V. A proof of a more general version
of (b) is given in 8.14 (cf. also 7.5). We omit the details, which are esentially the
same as in [19].

2.7. Comparing degrees in the two expressions for Sﬁw in this proposition in case

2.2(i) immediately gives the following. For A = {), it reduces to a conjecture of
Deodhar proved in [19].

Corollary. For any [v,w] € Pa, t{a € DT | v <4 sqv <qaw} > la(v,w).

2.8. Define the ring Qw as in [26, (4.1)]. Then Qw is a free right @Q-module with
basis {dy }wew and the multiplication is determined by

(0040) (0w Guw) = 5Uw(w_1qv)qw for v,w € W and gy, g € Q.

The d,, are also a basis of Qw in the left Q-module structure q(8,,qw) = 6w (W 1q)qu
of Qw. We identify @ with the subring Q. = 6.Q of Qw. Note that @ is not
central in Quw but X and the X, are central. For J C S, define the subring
Qw, = Z“)EWJ 5@ of Qu. Also define Qw to be the set of unrestricted formal
linear combinations )y dwqw with all ¢, € Q. This may be naturally regarded
as a (Qw, Qw )-bimodule.

2.9. For a poset X, X°P denotes the opposite poset of X. An upper ray in X is a
set {z € X |z >y} for some fixed y € X. A (finitely generated) coideal of X is
a (finite) union of upper rays. Lower rays and (finitely generated) ideals of X are
defined dually, replacing > by <. Frequently, we consider formal sums ) . a, of
elements of a module where the support of a, (i.e. the set of € X with a, # 0)
is required to be a subset of some finitely generated coideal (resp., ideal) of X (we
say the a,, or the sum, is supported on a finitely generated coideal (resp., ideal);
similarly, we define functions from I' to the module which are supported on a finitely
generated coideal (resp., ideal)). A sum as above will be written Zle g (resp.,

Zie < Gz) to indicate the assumed condition on its support. To obviate the need
for case-by-case discussions of convergence, we introduce in the next subsection a
topology on the most frequently occurring (in this paper) spaces of such formal
sums.
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2.10. For the remainder of this paper, unless otherwise stated, we fix a (non-empty)
spherical subset I of W and some L C S with W, T" C I". In referring to this fixed T,
we write y4(u, w) or v(u,w) to indicate that u,w € ', v € ®* and u <4 w = syu
(previously we allowed u,w € W), and similarly for u 54 w.

For any commutative ring B and any symbol D, introduce formal symbols D,,
for w € T" and define the right B-module K(T", D) of formal B-linear combinations
> wer Duwby with all b, € B. This has a B-submodule K = K]lB(I‘, D) consisting

of those sums Zi;el‘ dywby in Kp(T', D) supported in a finitely generated ideal of T
For a finitely generated coideal X of I, let K x denote the B-submodule of elements
Zi;el‘ Dby, in K such that b, = 0 if w € X. Then K/Kx is a free B-module
(with basis consisting of the cosets D, + Kx for z € X). Give K = Kp(T, D)
the linear topology in which the sets Kx, for finitely generated coideals X, form
a basis of neighbourhoods of 0. For instance, if T' is finitely generated as ideal (in
particular, in the case A = () of Chevalley order on I' = W), then K has the discrete
topology and the elements D,, for w € W form a right B-module basis of K. Note

that if ¢: K}B, (T',D) — K}B(F, D) is a continuous B-linear map, then

(1) ¢(wa oww> - wa (D )b,

in the sense that the (countable) sum on the right hand side converges to the left
hand side (in any order). For example,

(2) for u € Wy, there is a continuous B-linear map K — K given by Zi} Db, —
S Db
Indeed, it is enough to check this when v € L, when it follows easily using the
Z-property of the order <4.

For use later, we also define the topological right B-module K jTB (T, E) by setting
it equal to K }9 (T'°P, E) for any formal symbol E. If B is given the discrete topology,
there is a bilinear map KJT}(F, E) x K}}, (T, D) — B given by

T !
(3) O Bubw, Y Dubl,) — > bubl,
which is readily checked to induce an isomorphism of B-modules
(4) KL(T, E) — Homeon:. 5(K4(T, D), B),

where on the right we have the continuous B-module homorphisms. We define
K }B(F‘] ,D) and K; ('Y, E) similarly for any standard parabolic subgroup W with
w,;I' CT.

2.11. For « € 11, define
(1) ta = —Xaa (05, + 0c) + X6, € Qw,

where e is the identity of W, and note that t2 = X2§.. For any J C S, let H; be
the subring of Qw, generated by S and the ¢, such that s, € J. Regard all the
Hj, in particular H := Hg, as topological rings with the discrete topology. Also,
define the topological right S-module M = Mrp := K‘% (T',m#) of formal S-linear
combinations Zi}er m#q,, of symbols mZ for w € T

12



Proposition. The map Zi}er Mingw — Yoper 0z (Y wer quz ™1 (S2,)) gives an
w>x ’

injective homomorphism M — Qw of right S-modules, the image of which is a

(Hp,S)-subbimodule of Qw . Identifying M with its image, the resulting (Hp,,S)-

bimodule structure on M makes M a topological Hy-module (i.e. the elements of

Hy, act continuously on M) satisfying

@) xmd =m0~ 3 w7V X Xl
ya(u,w)
3) b A ma if rw >4 w
rMy, = .
ma X% if rw <4 w.

forallre L,wel and x €V.

Proof. First, there is an obvious continuous inclusion K é(F, mA) - K é (I, mA) of
right S-modules. Next, let § be a formal symbol. Then the map

S g 2 35, (Z qwx‘l(S;‘,w)>

wel zel’ wel
w>x

gives an isomorphism Ké(l", mA) — Ké (T, 9) of topological right @-modules, since
Sf)y =0 unless z <4 y and S2 # 0, for z,y € I'. Finally, we may naturally regard
Ké(R d) as a right Q-submodule of Qw. The composite of these maps gives the

injective right S-module map M — Qy as in the statement of the proposition.
Now K(lg(l“, §) C Qw is stable under left multiplication by elements of Qy, , in
particular by all elements of Hy, and the left multiplications by elements of Qw,
on K, C%Q(I‘, d) are continuous; it is enough to check continuity of left multiplication
by elements ¢ € @), which is clear, and by elements d,, for w € Wy, which is just
2.10(2). Now regarding M C Ké(F, ) € Qw, the recurrence formulae 2.5(1) and
2.5(5) are respectively seen to be equivalent to (2) (cf. 8.10) and (3) above. The
continuity of left multiplications by the elements of H; now implies that M is a
left Hy-submodule of Ké(l“, 8) C Qw, and the proposition is completely proved.

Remark. 1t is possible to reverse the order of development of this section by first
proving the above theorem and then using it to define the Sf,w and establish the
recurrence formulae for them. The main point is then to give an independent
construction of the Mt as (S, S)-bimodules. In the situation 2.2(i), this was done
in [20]. Using properties [14, 3.4] and [16, 2.6] of spherical intervals, essentially
the same reduction to dihedral groups can also be used to get the (S, S)-bimodule

structure on My in case 2.2(ii).

2.12. In general, we always regard My as a (Hp,S)-subbimodule of QW, via the
embedding given by Proposition 2.11. Suppose in this subsection only that A = §,
I' =W and L = S; thus, I' is W in Chevalley order. Recall the notation H = Hg.

Proposition. Suppose A =0, T =W and L = S. As left H-module, My is just
the left regular module for H. Write t,, := mg, Then the elements {t, }wew form
13



a basis of H as left S-module (and also as right S-module), and t,, = ta, ... ta, for
any reduced expression W = Su .. .Sa, (andte = 0d¢).

Moreover, for J C S, the elements {ty}wew form a left (and right) S-module
basis of Hj.

Proof. As observed in 2.10, the elements ¢,, defined in the statement of the propo-
sition are a right S basis of Mj since e is the minimum element of W in Chevalley
order. From 2.11(2), it follows that they form a left S-module basis of My as
well. Note t. = . is the identity element of H. The relations 2.11(3) now implies
tyw = ta, - .. ta, for any reduced expression w = $Sq, ... Sq,, and hence that My is
generated as H-module by t., hence My = H. The final assertion in the proposition
follows easily.

Remark. In case 2.2(i), the ring H is (anti-isomorphic to) the nil Hecke ring defined
n [26,(4.12)]; the elements t,, here are the Z,, there. In the situation 2.2(ii), with
W a finite Weyl group, the ring H can be specialized to Lusztig’s graded affine
Hecke algebra, as defined in [30, 0.1] (see also [31]).

2.13. The following gives a presentation by generators and relations for H; as
R-algebra, for J C S.

Corollary. The ring Hj is generated as R-algebra with identity t. by generators
t, with r € J and x with x € V subject to the following relations:

(a) the linear relations on 'V and x1x2 = x2x1 for x1,x2 € V.

(b) ¢
(©) Xt —t T(X) (6 a¥) Xate
(d) the braid Telatzons of (W, S) on the t,.

Proof. Consider the ring H’, generated by elements ¢, (r € J), x (x € V) and
identity ¢/, subject to relations as above. Let S’ denote the (commutative) subring of
H'; generated by ¢/, and V. There is a (surjective) ring homomorphism ¢: H; — H;
mapping x +— X, t,. — t., t. +— t.. By the monoid lemma 1.3(f), the braid
relations imply that there are well-defined elements ¢!, of H';, for w € W, with
ty, = t. ...t whenever ry...r, is a reduced expression for w; one must have
o(tl,) =ty for w e Wy. Forr € J, tht!, =t., if '(rw) >'(w) and .t/ =t X>
otherwise, using (b). Now using (c), one sees that the ¢, span H’; as right S'-
module. Since ¢(S’) C S and the t,, are a right S-basis of H, it is now easily seen
that ¢ is an isomorphism.

Remark. 1t follows from the corollary that there is a ring anti-involution of H fixing
S elementwise and mapping t,, to t,,-1 for w € W; it is the restriction of the ring
anti-involution of Qy which fixes @) elementwise and maps §, to J, aX"’Xa for
a€ell, r=s,.

2.14. We describe the inverse of the (in general infinite) upper triangular matrix
(z71(S2L), wer associated to <4 in terms of the matrix (x_l(S;LT-,LA))m wer SS0-

er
ciated to the reverse order <z 4.
)l (v) —l(SA (STlA)) =5,

Proposition. For any z,z €T, Zye [ z](



Proof. Since Sf’y =0 unless <4 y and S # 0, it is enough to show that

(1) 6=y mi(=1) @2 (B(STY).

vel

One may even assume without loss of generality that I" is finite. The result now
follows for general reasons (see 8.13 and 8.10) from 2.4(3).

Remark. The involution 6 of @) fixes all elements Sﬁw/Sf with z,w €T

2.15. Note that if A = ) and ' = W, then Mr = H has, as well as the left H-
module structure, also a right H-module structure; we now establish the analogous
result in general. It will not be used anywhere else in this paper.

For B € P(T) and w € W, write w - B = N(w) + wBw™' € P(T). Let
S i={reT|r-A=A+{r}} and let W’ be the reflection subgroup of W
generated by S’.

Lemma. (a) (W', 5’) is a Cozeter system with reflection cocycle N': W' — W'NT
given by N'(w) = w-A+ A forw e W'. For K C S, let W be the parabolic
subgroup of W' generated by K, and let I”: W' — N denote the standard length
function of (W', 5").

(b) For anyr € 8" and w € W, one has la(wr) =la(w) £ 1.

(c) ifv,w e W and t € S" with wt >4 w and vt >4 v, then v <4 w iff v <4 wt iff
vt <4 wt (the “right Z-property”)

(@) if K €8 and w € W with lx(wr) < la(w) for all r € K, then the map
x = wr: Wi — wWi. gives an isomorphism between Wi, (in the order acquired as
a subset of (W', S") in its Chevalley order) and the spherical subset Wi, of W in
the order <4, with l4(wz) = l4(w) +1"(z).

Proof. Parts (a)—(c) are all in [16, 1.8]. For #(K’) = 2, which is the only case
required in this paper, it is easy to prove (d) by an ad hoc argument using (b) and
().

Remark. Much more general facts will be proved in another paper which requires
a systematic study of shortest (W, Wy, ) double coset representatives in the orders

<. In general, S’ may be empty, and it is likely there are also examples with S
finite and S’ infinite.

2.16. For each r € S’, define the element

ea(a,e)
, o —eala, e)a B
(1) 0p = 0r H <Xa —eala, e)aX)

acdtnr(—o™)
SaF#T

of Qw, where €4(a, z) is defined in 2.4. Also, for v € ®* with r = s, € S, set

Xy +9X
(2) th =6, ———

X
—ea(y,€) 6. —2L.
R
For K C S’, let H} denote the subalgebra of Qyw generated by the elements d.x
for x € S and t/, for vy € ®* with s, € K. Regard Hy as a topological ring with

discrete topology. Also, define H' := Hg,.
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Proposition. (a) If K C S" with TK C T, then Mr C Qw is a topological
(Hp, Hj)-bimodule. For v € &t and w €T’ withr = s, € K,
A .
m if wr >4 w
| T
K mi, X2 if wr <4 w.

(b) The R-subalgebra H' of Qw has a basis {t, }wew as left (or right) S-module
such that t, = 6. and for w € W and r = s, € S" with v € T,

= { e, 0>
T X2 if U (rw) < 1" (w).

Proof. Fix r and « as in (a). One easily sees that

(3) xth, =tLr(x) —ealv,e)(x,v") X, 0e

2 _ 2
(4) t = X%

A somewhat more tedious calculation using 1.3(e) shows that

X, +9X

(5) 6yy_1(sy) = 5$x_1(5z) 5; forall x <4 zr =y € W.

Now we prove (a) (the proof is very similar to that of [26, 4.2]). Recall My C
K (g(F, d) C Qw is certainly stable under right multiplication by elements of S. As
before, right multiplication by an element Zwewfg dwqw in Qw is continuous on

K, (lg(F, 9), using the right Z-property. To prove (a), it remains only to establish the
formula there in the case wr >4 w (the other case then follows immediately by
(4)).

Fix w € T with wr >4 w. Write m{t,, = > 6,v7*(S},,). Note S}, =0
unless v < wr, by the right Z-property. To prove (a) in this case, one has to show
that Sy r = S;)W for v < wr, and for this, it is sufficient to consider the case that
T is a finite spherical interval I' = [y, wr] where yr >4 y (since v is contained in
such an interval). Now by induction we may assume that (a) holds with w replaced
by any w’ € T except perhaps w’ = w or w' = wr. We calculate using (3) and
2.11(2) that for x € V,

Xmﬁt; = miw (Xt

L= Y (ea)Xa XA e

a(u,w)
= mipt!, (wr) "1 (x) — ea(y, e)(w ™ (x), 1Y) Xymip
_ Z <X; a\/>XaxlA(u,’LU)—le-i-lA(Tu,u)mﬁT

a(u,w)

= n) 00— B (XX
B(z,wr)
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We have also used here the fact that a(u, wt) iff either a(ut,w), or v = w and « is
the positive root in +w~y. Now this calculation gives that for z € [y, wr],

(X - Z(wr)_1X)S;,wr = - Z <Xa ﬁv>XﬁXlA(m7wr)_15£w'
B(z,wr)

The same formula holds if S/ is replaced by S24,.; if z # wr, choosing x so

zZ,wr Z,wr?

z(wr)~!(x) # x shows S, = SZ,,. On the other hand, for z = wr this last
equality follows from (5). This completes the proof of (a).

Next, we show that the ¢, satisfy the braid relations of (W', S’). Choose positive
roots B # v with s, =1 € §', s3 = s € S’ such that rs has finite order n, say.
Let v; denote (3 for even i and ~ for odd i. Let W]  be the parabolic subgroup
of W’ generated by r and s, with longest element w = s, ...y, = 8y, ...54,.,-
As a finite subset of W in the order <, W] has an element u of minimal length
la(u) with respect to [4. By 2.15(d), the map w’ +— uw’ is an isomorphism W) ; —
IV := [u,uw] of posets satisfying l4(uw’) = la(u) 4+ " (w’), where W/, has the
usual Chevalley order as a finite dihedral group with generators r, s and I’ is
the indicated interval of W in the order <4. In particular, I is spherical and
"W/ o = I'". Assume temporarily that I' = I'". Now part (a) applied to I' = I/
implies that

mgtl, ot =mg, =mitl ot
and the braid relation for r and s follows since (for I' = ') m# = 526, is a unit
in Qw. The monoid lemma now gives elements t!, of Qu for w € W, satisfying
t ty =t for w € W v € & with s, € § and I"(syw) > I"(w). By (3),
ty by = t;vwX2 if I"(syw) < I"(w), so the right S-module H" spanned by the ¢,
for w € W’ is closed under left multiplication by the tfy. One easily sees

t€0uQ + > 6,Q,

’

veW
U (v)<” (w)

(where in general R® denotes the unit group of a ring R), so the ¢, for w € W’
are right (or left) @-linearly independent. From (3), H” is also closed under left
multiplication by elements of V', so H” = H’. This completes the proof of (b), and
hence of the proposition.

2.17. The proof of the following result, showing the very close similarity between
H’ and H, is essentially the same as that of 2.13, and is therefore omitted.

Corollary. For any parabolic subgroup (Wi, K) of (W', S"), ZwGW;( .S is a

subring of H'. It may be identified with the R-algebra generated by (identity element
t. and) the elements t]. forr € K, xt, for x € V subject to the following relations:

(a) the linear relations on V', and xx' = x'x for x,x' €V
(b) t? = X2t
(¢) xtl. =tir(x) —ealv,e)(x,vV) X t, forr =s, € K,y € ®+
(d) the braid relations for (Wi, K) on the t...
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2.18. In this subsection, we briefly indicate the changes necessary in case 2.2(i) if
one works with non-reduced root systems. First, in that case one may still define ¢,
as before. Note that a rank two root system (in our sense) can always be replaced
by a reduced rank two root system, without changing the action of W on V or
V', simply by multiplying all roots in one W-orbit by a suitable ¢ € Rsq and
multiplying the corresponding coroots by ¢~ !. It follows that (in the non-reduced
case) the t,, satisfy the braid relations up to multiplication of one side by a positive
scalar. Hence one obtains a (left or right) S-basis t,, of H with t,, € Rsoty, ... 1,
for any reduced expression w = ry ...7r,. To get 2.11 for non-reduced root systems,
one can first show that there is at most one (up to isomorphism) (S, S)-bimodule
structure on the right S-module Mr := Kg(l", mA) (with continuous left S-action)
such that

(1) xmiy =mp(wy) = > micuwx 7Y
vy

U— AW

for some non-zero scalars ¢, ,, (the proof of this can be reduced to its special case in
which I' is a length two spherical interval and £(S) = 2, where it is easily checked).
Moreover, using 8.8, one can show that if such a module My exists, it has an
embedding as a (S,S)-subbimodule of Qw. Using the uniqueness, one can prove
existence of such a module M, with all ¢, ,, > 0, satisfying in addition

A .
Ay wMin, frw>4w

) tomit = {

0 if rw <aqw

for r € S with rI' C I, for some scalars d,,, > 0 in R. First, one builds a
suitable (S, S)-bimodule M = M, ,; of Qw recursively by 1.5(d), for finite spherical
intervals [z,y], as follows. Suppose r € S, rx > =z, ry < y and [z,y] € Pa. If
Mgy C Qw is already defined, one sets m# = t,m2 for w € [z,y] \ [x,7y] and
Mgy = Zwe[m’y] mAS for T = [z,y], and defines My, as the quotient of M,
by its subbimodule }° (. 1\ (g
dualize (see 8.13), apply the preceeding argument for the reverse order <p\ 4 and
then dualize again to get M|, , and M|, ). The construction of Mr for general I'
reduces easily to the case of finite intervals I' just sketched.

With similar changes (insertion of positive unit factors from R in appropriate
places in the statements, and generally more complicated proofs), all results proved
in this paper for reduced root systems (except those in the situation 2.2(ii)) can be
extended to non-reduced root systems.

]me . If instead M|, ) is defined, one can first

3. Modules for the dual nil Hecke ring

In this section, we dualize the modules for the nil Hecke ring defined in the
previous section to obtain a family of modules Ar for the dual nil Hecke ring A.

3.1. We use the following conventions for graded modules M = @, czM,, N over

a positively graded, commutative ring R = @&,ecnRy,. We denote M with degrees

shifted up by p € Z as M(p), so (M(p))n = M,_p. We give M ®g N the natural

structure of graded R-module so that its homogeneous component of degree i is
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spanned by elements m ®n with m € My, n € N, and p+¢q = ¢. If M is in addition
finitely generated over R, Hompg (M, N) has a natural structure of graded R-module
with Hompg(M, N), = { f € Homgr(M,N) | f(M,) C Nyyp foralln e Z}.

3.2. For the remainder of the paper, unless otherwise specified, all notations used
from Section 1 will refer to the situation 2.2(i), for a fixed spherical poset I' in
the order <4 and fixed L C S with W,I' C I". Any finite standard parabolic
subgroup Wy of W, has a unique “longest element” which will always be denoted
wr; it is characterized by the condition !'(wg) > I'(w) for all w € Wg. Define
dL={ae®|s, € Wk}, and write SK = {f € S| w(f) = f for all w € WK}
for the ring of Wi-invariant elements of S.

We give some additional properties of the elements Sﬁw which are special to the
situation 2.2(i). First, note that the field automorphism 6 of @ is now the identity,
and the recurrence formula 2.5(5) simplifies to

A
704836',7'

0 if rw < w.

w Hrw>a4w

) S+ (53 = {
This shows in particular that if [y, 2] € P4 and sz < z for all s € J C S, then

Y,z

@) (~D)' @) ()L (SA ) - (—1)l’<y>y—1(s;jz) for all z € W;.
From the definition 2.4(1),

(3) ST = H a, S — (_1)1/(1) H ol

acdtnz(—ot) acdtNz(—ot)

and combining this with (2),

(4) S e = (D)@ T o7t ifzewk

T, Wi
aE@}

for any finite standard parabolic subgroup Wy of W. Recall the ring H, defined
in 2.11 as a subring of Qy generated by S and all elements t, = —a~ (850 + 6c)
for @ € TI. In the situation of (4), one has

(5) log = Z 6u;(71)ll(WK)7l,(w) H a”l.

weWgk acd}
It follows that for J C L and [z,w] € P4 that

(6)
> (W) TS W)

veEWy
0 if wg T’ and WyzNT7 # ()
(—1)1/(“’1)‘%*1(5;4’@]1” Haeqﬁ a) ifweTl’ and (W) < oco.
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Indeed, for w ¢ T/, (6) follows from (1) and in the other case, (6) follows from

(5) since t,,m# = mZ . In general, the standard basis elements &,, of Qw, with

w € W, are in H since d,, = toa+ 6. € H, and so by 2.11 and 2.14(1),
(7) S;‘CyGS for all z,y € W.

From (1), one computes ST, for I'(y) <1 explicitly as (8)—(9) below:
(8) ST, = (1)@ forx e W

(9) For a simple reflection r € S, define ¢(: W — V by o(")(w) = (fl)l/(“’)Sg,r.
Then o) € ZY(W,V) (i.e. ¢ is a 1-cocycle of W on V) with ¢(")(s) = 0 for
simple s # 7, and 0(")(r) = —a, where a € II has s, = r. If there exists an element
Xa € V with (Xa, ") = da,g for all 8 € II, then ST, = (=1)!" ) (w(xa) — Xa)-

3.3. Let x — T denote the involutory ring anti-isomorphism of @y defined by
Swq — 0y—1w(q), and let H (resp., H; for J C S) denote the subring of Qu into
which H (resp., Hy) is mapped by this involution. Give @ the left Qu-module
structure with (6,,q) - ¢ = w(qq’) for w € W, q,¢' € Q. Then

(1) r-SCSifreH.

In fact, H is generated as ring by S and the elements f, = —(J,, + 5e)§ for a € TI.
Now one need only check that X (s(f) — f) € S for f € S, which is immediate since
S = 8% +aS%e.

3.4. For any positive root § € &+, let S = S[y~! | v € T\ {3} denote the
localization of & at the multiplicative subset generated by the positive roots other
than 3.

Lemma. Letv e W, € ®T be such that v <4 w := vsg and [v,w] € Pa. Then
there exists a unit u of S such that v’l(Sﬁw/Sf) =uB~! (mod SP).

Proof. For any [z,y] € Pa, define S}, , = 2~ (52", /S2'). From the above proposi-
tion

(1) Sty € ([I acor @)7'S.

r<TS5q <Y
Suppose « € IT and r = s, € S satisfy rz >4 x and ry <4 y. From 2.5(5),

1

2 L N
@) Shy == i) Shew
, 1
(3) Sac,ry = 733_1(04) Svl"gc,ry + S;“ac,y

Now consider 3 € ®*. If ry = xsg, then y = rasg, the first term on the right of (3)

is in ) by (1) and so the lemma holds for the pair [v,w] = [z, ry] iff it holds for

[v,w] = [rx,y]. Similarly, if y = zsg, then ry = rasg and [rx, ry] € P4 unless rz £
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ryie. unlessy = ra. Ify #rz, (1) and S, , = —(z~ )15, ., — (x’l(a))fzs’
show that the lemma holds for [v, w] = [z,y] iff it holds for [v, w] = [rx,ry]. Using
1.5(d), the lemma is therefore true if it holds for intervals [v, w] = [z, i

such that y = s, for some o € II. But then S} , = *ﬁ = :i:% by (2). This

completes the proof of the lemma.

Remark. Suppose that the root system arises by extension of scalars from an inte-
gral root system in which the roots are indivisible elements of the weight lattice.
Recall that Sz denotes the symmetric algebra over Z of the weight lattice, regarded
as a subring of S. The recurrence formulae above shows that Sﬁy and S , are
elements of the localization of Sz at its multiplicative subset generated by ®*. It
follows that (1), and hence also the lemma, remains true if the symmetric algebra
S is replaced everywhere by Sy.

3.5. Let M = Mt be the left Hy-module associated to I' in the previous section.
Let Qw ®¢ Qw denote the tensor product with both sides considered as right
(Q-modules. Define the diagonal map A: Qw — Qw ®¢ Qw by

A(0wq) = 0wq @ 0y = 61 @ dugq forw e W and ¢ € Q.

Then A is associative and commutative with a counit e:Qyw — @ defined by
€(6wq) = q. There is an associative product structure ® on Qw ®¢ Qw, defined by

(5z & 5yqy) O] (§z ® 5w¢]w) = 010w @ 6yw(w71Qy)Qwa

such that A is a ring homomorphism. If T is finitely generated as a coideal (in
particular, if T is finite or I' = W in Chevalley order), one has

A(mg) - A(Z 5yy—1(s;j{w)) = 6, @6,y " (S;)

yel yel’
= ZQ?:“’ ®m’z4 = Z ty ®m’z4p5’7’ZA
zel zel
veEW
where by 2.14
) T DT CAS
yel
@ pit = o (TSt s, )
yel

(with the assumed condition on I', all the sums above have only finitely many
non-zero terms).

3.6. In general, for any v,w,z € W with [z,w] € P4 define elements pﬁj‘ €Q
and Q‘;w € Qw by 3.5(1) and (2) (note that these sums involve only finitely many
non-zero terms, even if I' is not a finitely generated coideal). Also, set P, = p})”zm .

We record the following.
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Lemma. Assume [z,w] € P4 and v € W Then

(a) Q‘:w = 0 unless z <4 w, and p}j’,’ZA = 0 unless v <y y for some y with z <y
Yy <A UJ

b) Qf = 6w and pit = (— IO ~Y(SL.,), independent of A

T\A T\A
C) zwiQ\ andpvz *plziw\ .

(
(
(d) py* = 64,0, independent of A

(e) if 2 —>A w, 1 = 8o where a € I, and an element xo € V exists as in 3.2(9),
then prz <Xa,fy )

() (wx =zt =3 o L Wt =2 5 X [t for x e V.
(@) Pt =P ifycW’/, zeW and z € Wz

Proof. Parts (a)-(c) are immediate consequences of the definitions, and (d) follows
from 3.2(8) and 2.14. Part (e) follows from 3.2(9) (the more general result when x,
doesn’t exist is left to the reader). Part (f) (and an equivalent formula involving
Q2 ,) follows easily using 2.5(1) for A and T\ A, while (g) follows from (b) and
3.2(2).

3.7. Part (a) of the following lemma provides the basis for the subsequent “dual-
ization” of H and M.

Lemma Fiz v, z,w € W with [z,w] € Pa. Then

(a) pyy A ¢ SQ(Z/(,U) La(zw)), and in particular, py =0 unless la(z,w) <1'(v).
(b) 2, €eH and Q2,-SCS

(c) if u,v,w e WY, 3 € ®F with u € Wywsg, then (| (PY, — PY,).

Proof. First, we show that if [z, w] € P4 and r = s, for some « € II satisfy s,z > 2
and s,w < w, then

(1) QA =t
ZT”LU 5szw+thzrw

To prove the formula for Q2 , for example, one calculates (using 3.2(1) repeatedly)

that

zZ,w?

2, = > (=) W,y (SIS

yerl
_ A A
= Z(_l)l/(y)(syy—l(ST;A)y I(Sy,MU) + ( ) (Sry rw)
yerl . -y ( )

= ) W5, (s SIS ) — () SIS )

yel

1
= - Qz rw 6er rw
L 0,0 0)
:ter,rw~

The second part of (1) can be proved in a similar way. Note d, € H and ¢, € H.

Since O, = 6. € H, one sees from (1) and 1.5(d) that Q£ € H for [z,w] € Pa.

The second part of (b) then follows by 3.3(1). Since Q2 =3, .1 tup¥2, it follows
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that pﬁ’zA € S. Using 2.6 and 3.5(2), pﬁ’zA is expressible as a quotient f/g of
homogeneous elements f,g of S satisfying deg(f) — deg(g) = 2(1’(1}) — ZA(z,w)),
giving the remaining part of (a).

Finally, for (c), write 8 = x(«) with x € W and « € II. Then for w € W,

1 1
By — Oupes )= = G (B0 — 60 )—60n € H
(5o = Bues) = Bunl. = 8., ) 0001 €
since all 6, € H. But
1 o owsy 1
(5w *5w55)5 = Z tv(Pv,w 7PU,wSB)B

veW

by 2.14(1) and 3.6(b), so § | (P, — Puuss;) by 2.12. The result now follows by
3.6(g).

Remark. The fact that Q;‘{w -§ C S is true for general reasons, see 8.10-8.11.

3.8. Following [26], we dualize H to obtain the “dual nil Hecke ring” A. Let Q"

denote the set of all functions W — @, endowed with the structure of commu-

tative Q-algebra with pointwise addition, multiplication and scalar multiplication.

Identify Q" and Homg (Qw, @), regarding Qw as a right @Q-module, by setting

F wew Owtw) = X, quwf(w) for any f € Q" Then the algebra structure on Q"

is the one obtained by dualizing the @-linear comultiplication in Qw (see 3.5).
Define a left Qu-module structure on H by

(1) (z-¥)(y) = v(Ty) for 2,y € Qw and ¢ € Q™.

Now define the dual nil Hecke ring A to be the set of ¢ € Q" such that (H) C
and ¥(t,,) = 0 for almost all w € W. For w € W, let £ be the element of @
defined by

S
w

(2) €°(ty) = 0w, te.  E9(y) =Py, =(-1)" Wy Y(ST ) fory,v,we W.

The elements {£*},cw then form a right S-module basis of A, and we give A the
unique graded S-module structure so that £ € Agy(y)-

Proposition. (a) A is a S-subalgebra of QW , with identity element £¢, and is even
a graded S-algebra in the grading defined above.
(b) A is stable under the left action of H C QW .

Proof. First, the calculation in 3.5 (for I' = W, A = (}) implies that

(3) 7" = ) PrE"

weWw

where P’ := p’;’;gj was defined in 3.5(2). Together with 3.7(a) and 3.6(d), this
proves (a). Part (b) follows immediately from the definitions.

3.9. If T is finite, one can dualize the comodule Mt for the coalgebra H (see 3.5
and 3.7(a)). In general, we now give a similar “dualization” of M, to obtain a
graded A-module Ar.
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Recall the ring H;, with its discrete topology; we also give Q" and its subring
A the discrete topology. Now let QT denote the set of all functions I' — @ which
are supported in a finitely generated coideal of I'. For any formal symbol D, the
map f — > Duf(w) is a bijection Q' — K&(I‘,D) which we use to give
Q' the structure of topological (right) @-module. From 2.10, we hence obtain
isomorphisms

(1) Q" = KL (T, D) = Homeont. o (K4(T,0),Q)

(2) K;(F,nA) >~ Homeont. B(K]lg(F,mA),B) for B=Qor B=S8

of @-modules (resp., B-modules), where n“ is a new formal symbol. Using the
isomorphism ch (T,mA) = ch (T, 0) from the proof of 2.11, we have isomorphisms
of right @-modules

(3) KL(T,n*) 2 Homeone., (K5(T,0),Q) = QF.
Now Q' has a natural structure of topological Q"-module, with
(4) (V) (w) = U(w)¥' (w)  forall W e QY, ¥ c Q" and w €T.

Moreover, since Ké(F, ) has a natural structure of topological left @y, -module,

we have a natural Qw,-module structure on Homeont. ¢ (Ké (T, 0), Q), given by

() (h-9")(m) = ' (hm)

for h € Qw,, ¥ € Homeops. Q(Ké(I‘,d),Q) and m € Ké(F,(S). Using (3), we
transfer the Qyy, -module structure and Q" -module structure to KZQ(F, nt).
Proposition. For n € Z, define A, as the set of formal S-linear combinations
Zwef nia, in K;(F,UA) with a,, € Sy_21,(w) for all w € T, and define the right
S-submodule Ar = N := ®pezAl, of K;(F,n ). Then the structures of Qw, -
module and Q" -module defined above on KCB(F,nA) induce by restriction natural
structures of topological H 1,-module and graded topological A-module on Ar.

Proof. Now from the definitions, for z,v € T,

yel’
so inverting using 2.14,
(6) i (y) = (8,) = (=)' Wy (SEA) fory el
or equivalently,
T _
(7) m =Y Dy(=1)'Wy (ST,

yel
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Now in (3), the first and last modules are actually topological Q-modules, and (7)
shows the isomorphism between them given by (3) is a homeomorphism; hence the
Q"-module structure on K ch (T, n?) is continuous by its definition. Inverting (7)
again gives

(8) D, _Z nA -1 SA

yel
Hence for any u € W and v € T,
=D Dy it (w) = D oy (SprwSyuSya’).
yel wel
That is,
(9) &t = nipldt
wel’

Since KCB(F,nA) is a topological A-module (by restiction of its topological Q" -
module structure) and the £ form a graded right S-basis of A, it follows from
3.7(a) that A,A;, C A, and that Ap := @,ezA;, is a graded topological A-

module. o
Now for the H p-module structure. First, the definitions give that
(10) (6w - YN (W) = ' (w™to) forw e Wr,9' € Q" andv el

(11) (g-¢")(v) =v g (v) forqe @, v e QF andv eT,

from which (using the Z-property for (10)) the Qy, -module structure on Q' (and
hence the one on KCB (T',n*)) is continuous. By dualizing 2.11(2)—(3), one obtains

(12) X ma =maw ) = > ndx|7Y)  forxeV,

0 if rw >4 w.

This and continuity shows that
(14) t, - A, CAj,_yand x- A, C Al ,forall yeV andre L.

Since V and elements %,, for r € L generate H, this completes the proof of the
proposition.

Remark. If ' = W in Chevalley order, so A = (), then Ar is the left regular A-
module AA and 7 = £¥. Also, taking L = S, the Hz-module structure on Ar
coincides with the H-module structure on A. Therefore, formulae involving Ap
established so far or subsequently apply in particular to A.

3.10. Introduce the following notation. Write w(¢)) = 8, - ¢ and Ay, () = tyy-1 -2
for w € W and ¢ € A, or for ¢y € Ar and w € Wp,. There should be no confusion
between the notation A, and that for comultiplication. For y € § and m € Ar or
m € A, we sometimes write ym in place of my. Note that in general, x - m # xm
for x € S (see 3.9(12)). The following lemma lists a number of additional facts
concerning A and the graded A-module A’ = Ar-.
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Lemma. Lety € A, ' € Ap, we Wy, u el and r = s, with a € II. Then

(a) the W, action on Ar is as a group of graded S-module automorphisms satisfying
w(y') = wW)w@W'). In particular, the W-action on A is as a group of graded
S-algebra automorphisms.

(b) Ar(P)’) = pA(Y') + Ar(P)r () = () Ar(¥') + Ar(P)))" if r € L

(c) Ar(A ( ') = r(wAr(w/)) ifrelL

(d) A ( A) equals 02, if la(u) = I'(w™Y) + La(wu) and is zero otherwise.

(e) w(ng) = X.er ni gasy where

g = (=D Wy ST wy) TN (Siy.2) € Satae

yel’

() if r € L, r(nf!) is equal to ngt +nfu= (@) = X o e |4V if ru <au
and to n2 if ru >4 u.
(g) assuming for simplicity that there is an element xo € V as in 3.2(9), one has

€Tnfu:nf(xa7u*1(xa))+ Z 2 xa | YY) forr e L.

~
U— A2

(h) for x € S, write x - mf} = ZyEF mﬁQy,u(X) for some (unique) Q. (x) € S.
Then X 0y = > uer M Qy.u(X)-

() x -9 = (x- €)'

Proof. The formula in (f) follows from 3.9(12)—(13) on writing 6,9’ = (at,+0.)-¢’,
and the claim in (a) that the Wy -action preserves the grading follows from (f), for
instance. By 3.9(10), one has (w(¢’))(u) = ¢'(w~'u) and the analogous formula

for v, so the rest of (a) follows easily from the definition (1¢')(u) = ¥(u)y'(u) of
the A-module structure on Ap. By 3.9(10)—(11),

(1) (Ar(y) () =

Then (b) follows by easy computations from (1) and the analogous formula for ,
and (c) follows from (b) noting A2 = 0 since fi = 0. Part (d) follows immediately
from 3.9(13) by induction on I'(w). Part (e) may be proved writing &, - 7 =
> yer Duwy (6w - ni)(wy), using 3.9(10), (6) and (8) and noting gZ% € Sa,(su)
since w is a graded S-module automorphism of Ar. For (g), note by 3.7(a) that

7,%;{? = 0 unless y > w and {(u,y) < 1, in which cases the value is given by 3.6(e), or
3.6(b) and 3.2(9). Finally, (h) and (j) are immediate consequences of the definitions.

Remarks. (a) In the terminology of [24], A equipped with operators A, for r € L is
a ring with twisted derivations, and Ar equipped with the A, for » € L is a module
with twisted derivations over A.

(b) There may be infinitely many non-zero terms in the sums in 3.6(f)—(g).

3.11. Let A’ = Ar and A” = Aror be the graded A-modules with H ;-module
structure associated to the poset I' in the orders <4 and <\ 4 respectively.
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Lemma. There is a bilinear pairing {(-,-): ' x A" — S, separately continuous in
each variable, given by

(7 a0 ) = 3 aub

Foryp e A, ¢ € N, yv" €N and h e Hy,

(8) (W', ") = (W, ") L

(b) (h-yp’ "y = (', L(R)y") where v: H — H is the ring anti-involution determined
by L(ty) =tw—1 forw € W and x — x for x € V (see 2.13).

Proof. The claimed continuity is easily checked, and (a) follows from 3.6(c). To
check (b), it is enough to check the cases h = t,. for r € L and h € V, which are
clear from 3.9(12)—(13).

3.12. Suppose that our fixed dual based root systems over R arise by extension
of scalars from root systems over R. Recall that we have then defined Sz as the
symmetric algebra of the weight lattice in V. Let Az be the graded Sz submod-
ule of A spanned by the elements £“ for w € W. Similarly, let (Ar)z be the
graded Sz-submodule of Ar with n-th homogeneous component consisting of ele-
ments ZTweF nita,, with all a,, € Sz homogeneous of degree n — 204 (w).

Proposition. (a) The Sz submodule (Ar)z of Ar is stable under action by ele-
ments of Az. Hence, Ay is a graded Sz-algebra, and (Ar)z is a graded Az-module.
Moreover, Ay (resp., (Ar)z) is stable under the Coxeter group operators from W
on A (resp., from Wy, on Ar), the operators A,, for w € W (resp., w € Wr,) and
Y= x - for x € Sz and Y € Az (resp., ¢ € (Ar)z).

(b) Ifu,v,w e W, 3 € & and u € Wywsg, then | (PY,, — PY,) in Sz.

Proof. Observe first that Hz := ), .y twSz is a subring of H, by 2.11(2)—(3) for
A = (. It is easy to see from 3.7(1) that all Q, ., € Hz and hence all p;“;;‘ €Sz
This implies the first claim in (a), and the second follows immediately. Stability
of Az (resp., (Ar)z) under the indicated operators in H (resp., Hp) is clear from
previously given formulae for them. For (b), one need only note that the the
elements of H considered in the proof of 3.7(c) actually lie in Hy.

Remark. The sequel to this paper will study the analogues of the situation here for
a ring €2 which is essentially the equivariant K-theory ring €2 of the flag variety of a
Kac-Moody group (see [27]). The ring Ay arises as the graded ring of a filtered form
of Q. It is known for some classes of orders <4 (and is probably true in general)
that the (Ar)z arise as the graded modules for certain filtered Q-modules Qr.

4. Schubert calculus

This section develops some properties of the rings of W -invariants of the ring A,
and for J C L, of the W-invariants of the A-module Ar. We obtain these results
for A by well known arguments from the Schubert calculus, using the following
formalism which is extended afterward to Ar.
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4.1. Suppose given a (finitely generated) Coxeter system (W,S), a commutative,
graded ring B and a commutative, graded B-algebra W. We make the following
assumptions (i)—(v) on this situation.

(i) There is a given family {{"},ew of elements of W, with £ € Wy (., which
span W as B-module, and such that £° is the identity of W (where e is the identity
element of W).

(ii) There is a given action of W as a group of graded B-algebra automorphisms of
\%%

(iii) For each s € S, there is a given B-linear map Ag: W — W such that Ag(1119) =
A (Y1)s(2) + P1As(2) for all 1,1y € W

(iv) for a simple reflection s and any w € W,

& it U (sw) < U'(w)
0 otherwise.

aden ={

(v) s(v) = ¢ iff As(vh) =0, for any simple reflection s and any ¥ € W.

There is then a B-linear operator A,: W — W for each x € W, defined by
setting A, = Ag, ... A, for any reduced expression z = sy...s,. For z,y € W,
let I}, € W be defined to be £ if [a(y) = I'(#7") + la(zy) and 0 otherwise, and
set I, , = I? . Then

(1) AL(8Y) = I, , &

4.2. Before describing the examples to which the preceeding formalism is intended
to apply, we record its main consequences.

Proposition. Let W; C Wi be standard parabolic subgroups of W, with rings of
invariants W7 O WX on W. Then

(a) the elements {£¥}yews form a graded basis of W/ over B.

(b) the elements {£“}wew,nw form a graded WX -basis of W7.

Proof. If there were a non-trivial linear relation > £*a,, = 0 with all a,, € B, one
could choose u € W so I'(u) is maximal with a,, # 0 and apply A, -1 to the relation
to get the contradiction a, = a,£¢ = 0. Hence {£" },ecw is B-linearly independent;
in fact, it is a graded B-basis of W. Part (a) follows immediately from 4.1(iv)—(v)
on noting that WX = N, xW*. Now one sees by induction on I’(z) that

(1) Ap(P11h2) = 1Ay (o) for oy € WE 4py € W and z € W.

For any w € W, we may write (uniquely) w = wpw® where wx € Wy and
wi e WE. Note W/ = (W N WY )WX with uniqueness of expression of elements
from the left as a product of elements as on the right. Consider w € W*. Then wg,
w’ are both in W7. Write §wawK = > vewr §Yay for some a, € Bog(w)—1(v))-
We claim that a, = 0 unless v <" wg, and that a, = d,4 if v = wi (recall <’
denotes Chevalley order). To prove this claim, take 2 € Wg. Then A, (fwKﬁwK) =
Az (Y pews §lay) ie.

Tw wK Tv
ERE I e = E: I o £y
veWwJ
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by (1) and 4.1(1). For 7! €' wg (resp., 7! = wg) the left hand side of this
equation is 0 (resp. fwK). Examining the coefficient of £€*¥ on the right for v € W
with vg = 27! gives the claim. The claim just proved can be equivalently restated
as

(2) € e+ Y Brp(ayrry-ry forzeWgnW” andye Wk,

vew’
’UK</I

It follows that the elements {£%¢Y} with x € W N WY and y € WX form another
graded B-basis of W (related to the basis {¢“},cw by an infinite, upper unitri-
angular change of basis matrix, with respect to suitable row and column orderings).
Since the elements {£¥}, ey« form a graded B-basis of WX, (b) is proved.

4.3. Let W;, Wk be as in the preceeding proposition, and assume also that they
are finite. Denote their longest elements by w; and wg respectively. It is well-
known that the map z — &: Wi N W7 — Wi N WY given by & = wyjzwg is an
order-reversing (in Chevalley order) bijection of W N W with itself, satisfying
I'(z) + (&) = I'(wswi). In particular, I = wjwg is the maximum element of
Wx N W in the order induced by Chevalley order.

By 4.2(b) with J = 0, there are for x € WX unique WX-linear maps (of degree
ze10) ¢p: W — WX (20 (z)) such that ¥ = > _yx c2(¥)E" for all € W.

Proposition. If W; C Wy are finite, there is is an isomorphism of graded W -
modules 0: W’ — Homyx (W7, WE) (21" (wjwi)) given by 0(a)(b) = cuy (a&®7b)
for a,b € W7,

Proof. Note first that for v € W, Ay, () = Aup (O cwr Ca(¥)E7) = cux (V) by
4.1(1) and 4.2(1). Also, for a simple reflection s and any 1, 2 € W, we have

AS(AS('L/JI)Q/}Q) = AS(AS('(/Jl)AS('(/Q)) = As("/)lAs<"/}2))

since A2 = 0. We show now that
(1) Ay (678Y) = 0y if 2,y € Wi with I'(x) +I'(y) < U'(wk)-

In the proof, we write I(z <’ y) to denote £¢ if x <’ y and 0 otherwise. Now if
U(z) +U(y) <l'(wk), then (1) is trivial, so we assume '(x) + I'(y) = I'(wk) and
proceed by downward induction on I'(y). If I’(y) = I'(wk), then (1) is again trivial.
Otherwise, choose s € K with I'(sy) > I'(y) and observe that

wa (§x§y> = AwKsAs(ngs(gsy)) = AwKsAS(As(fw)gsy)
=I(sx <" 1) A4, (£57€%Y) = I(s2 <" )05z sywr = Os,sywic

as required to finish the proof of (1). For x,y € W N W7 with I'(x) + '(y) <
I'(wjwg), we now have

(2) AUJK (ggcngfy) = AUJKUJJ AwJ (gwgygwj) = AUJKUJJ (£x€y>

= AwKwJAwJ (gwngy) = AwK (gxfwﬂ/) = 596,?9
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by (1) and 4.2(1). This implies that the matrix (9(§E)(§9))z7y€WKmWJ of elements
of W is upper unitriangular for a suitable ordering of its rows and colums, in
particular it has determinant +£¢¢ € WX, Since the elements {& Y eewnw form
a WX basis of WY, it is clear that 6 is an isomorphism of ungraded W ;-modules.
Since 6 is homogeneous of degree zero, it is a graded isomorphism also.

4.4. From data W, B, W etc satisfying the conditions 4.1(i)—(v), one may obtain
similar sets of data by base change, under suitable conditions. For example, let C
be any commutative, graded B-algebra. Then

(1) if 2 is not a zero-divisor in C, the C-algebra W @ C' with natural C-basis
{€¥ ® 1¢ bwew, W-automorphisms w ® g Ide and operators Ay ® g Ide for simple
reflections s also satisfy the conditions 4.1(i)—(v).

Indeed, all conditions except (v) are clear without the hypothesis on 2 € C. For
(v), let f € W®p C and s be a simple reflection. If s(f) = f, then 2f = f+s(f) €
W* ®@p C and so Ag(2f) = 0. Since 2 is not a zero-divisor in C and W* ®p C is
a free C-module, A(f) = 0 as wanted. Conversely, suppose A,(f) = 0. Writing
J =2 wew §¥ ®cw with ¢, € C, one has ¢,, = 0 unless sw >’ w. Since s(§¥) = £
when sw > w, this gives s(f) = f.

Remark. If C is an ungraded B-algebra in which 2 is not a zero divisor, then
the data in (1) satisfies the ungraded analogues of 4.1(1)—(v) and the ungraded
analogues of conclusions of the Propositions 4.2 and 4.3.

4.5. This subsection describes some situations (a)—(¢’) in which the formalism from
4.1 can be applied. First, we have (a)—(c) immediately below.

(a) Let W = A, B = S, and define the elements £" as in 3.8. The operators w
and A, for w € W are as defined in 3.10. Then 4.1(i)—(v) hold. The only point
not previously checked is 4.1(v), which follows readily from the formula 3.10(f), for
instance.

(b) Take W = Ay, B = Sz, and ¥ as in 3.12. The Weyl group automorphisms and
operators A, are also as defined there. Again, 4.1(i)—(v) are easily seen to hold.

(c) Here we assume that W is finite with longest element w. Take W = S, with the
natural W-action induced by that on V = Sy, and let B denote the subalgebra of
W-invariant elements of S. Recall from 3.3 the elements t,, of the nil Hecke ring
and their action on S; for instance, for a parabolic subgroup Wy of W,

_ 1

(1) tuge (f) = (—D)! ().

+
HO‘E@K wEW K

_ SN )
Set A, = t, for r € S, and, for any y € W, set &Y% = tyfl(%D) where
D =[] ,co+ @ Then conditions 4.1(i)~(v) are known to hold; we indicate a proof
below.

First, for w € W, w(D) = (—1)"'®) D, so (1) shows that

(2) (%) = (—1)/ @) BV I -«
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and in particular £¢ = 1. Next, since &, t,, is equal to ty, if I'(wv) = U'(v) + ' (w)
and to 0 otherwise, one has t,1§" = I, , £¥* which proves 4.1(iv). For 4.1(v), note
that if a € I, then s, (f) = ats (f) + f for f € S, and S is an integral domain.
The part 4.1(ii) is trivial, 4.1(iii) is an easy computation from the definitions, and
clearly ¥ € Syr(y), 0 it remains to prove the claim in 4.1(i) that {{*},ew spans
S over B. Let F' = SSJKV be the ideal of S generated by homogeneous W-invariant
elements of S of positive degree. By well-known facts ([34, 4.2.6 and 4.2.8] and
10.1(2)), a family {d“},ew of homogeneous elements of S are a B-module basis
of § iff the classes d* + F of the d* in the quotient algebra S/F are R-linearly
independent. Now t,.(F) C F for r € S, so for w € W, t,, acts naturally on the
quotient S/F. Linear independence of the classes £¥ + F in §/F over R follows as
in the start of the proof of 4.2, so the £* are a B-basis of S as required to complete
the verification of the conditions 4.1(1)—(v) in the situation (c) above.

For later use, we record the following well-known fact (which can also be easily
seen from the above discussion):

(3) the map f + t,, (f) is a SE-linear surjection of S onto SX.

Of course, (3) requires only the assumption of finiteness of Wx and not of W.

Additional examples of data satisfying 4.1(i)—(v) arise from base change as in
4.4. In particular, we explicitly list the main examples (a')—(¢’) arising this way.
(a’) the example W = A ®s R, B = R obtained by base change ? ®s R from (a)
(t/) the example W = Ay ®s, Z, B = Z obtained by base change ? ®s, Z from (b)
(¢') for finite W, the example W = S®s R, B = R arising from base change ?®s' R
from situation (c), where S’ is the subalgebra of W-invariants of S.

The results obtained from the formalism in 4.1 may be summarized as follows.

Corollary. The conclusions of 4.1 and 4.3 hold in all situations 4.5(a)—(c’) listed
above.

Moreover, in situations (a) or (c), the canonical maps W' @5 C — (W®p C)”’
and (if tWx < 00) HOmWK(WJ7WK) ®@pC — HOmWK®BC(W'] ®p C, WK @p )
are graded B-algebra isomorphisms, for any commutative, graded B-algebra C'.

Proof. The first assertion is known, and the second claim follows from the fact that
in situations (a) or (c) one can actually apply base-change ? ® g C' as in 4.4(1) for
any graded B-algebra C.

Remark. In the situation (c¢’), there is a natural identification of W with the coin-
variant algebra S/F. The results in situations 4.5(c)-(¢’) comprise part of the
classical Schubert calculus (see e.g. [5], from which several of the proofs in this sec-
tion are adapted). Some of them hold in somewhat greater generality (see Section
10). The result 4.3 in situation (a) could also be deduced from 4.3 in situation (c),
using the proposition in the next subsection. In the situation (a), the result 4.2(a)
is proved in [26].

4.6. Regard A as a graded S ®g S algebra with (x ®r x')&° = x - (£°x/). We call
the S-algebra structure on A given by action of the subring S g R (resp., R ®@g S)
of S ® S the left (resp., right) S-algebra structure.

Corollary. Fiz finite standard parabolic subgroups Wy C Wy of W.
(a) The map x @r & — x - & for x € S, £ € A restricts to an isomorphism of graded
S’ ®r S-algebras 87 @gx A — A7,
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(b) If W dtself is finite and K = S, the map x @ X' — x-£°X’ for x, X' € S restricts
to an isomorphism of graded S; ®@r S-algebras S” @gx S — A”.

Proof. Note that if W = Wy is finite, then AKX = ¢S, so (b) is just a special case
of (a). Hence it will suffice to prove (a). First, we prove (a) in case J = (). For a
simple root « with s = s, € K, one has operators s ® Id and A; = é(s —e)®1d
on S ®r A%, and the operators s and s on A from the action of the nil Hecke
ring. From the definitions, one easily sees that these operators intertwine the map
m':S ®r AK — A given by x ®r £ — x - & for x € S, € € AK:

(1) m' o (s®1Id) = som’ and m' o (A;) = t; om’. In particular, the image of m’ is
closed under action by the operators w and t,, for any w € Wg.

This implies that the left graded S-algebra structure on A restricts to a left graded
SK_algebra structure on A¥, and so m’ factors through S®gx AX to give a S@gx S-
algebra homomorphism m: S ®gx AKX — A.

Let D = % Ha@b} a. Write m(D ® £°) = ), £ a, for some a,, € S;
note a,, = 0 if 2I'(w) > degD = 2l'(wg). Using 3.10(h) and 4.5(2), one sees
that a,, = 1. From 4.2(b) and 4.2(2), it follows that d := m(D ® £¢) € &v% +

wewx  EYAK. Hence for any u € W, the image of m contains an element

U(w)<l'(wk)
A (d) € EV+Y wewr EVYAK. By induction on I'(u), it follows that £ is in
U (w)<l'(u

the image of m for ail L G( I/)VK. By 4.2(b), it follows that m is surjective. As Ag-
modules, both A and S®gx AX are free of the same finite rank §(Wx ) (by 4.2(b)). In
general, a surjective homomorphism of isomorphic finitely generated (free) modules
over a commutative ring is an isomorphism. Hence m is an isomorphism of ungraded
A% -modules, and so m is also an isomorphism of graded S ® gx S-algebras. This

proves (a) if J = (). Now for general J, note first that
(2) A is graded free as left SX-module.

Indeed, for any graded basis {d;}ic; of S over SX, the elements £“w™!(d;) for
i € I and w € WE are easily seen (using 4.2(a)) to form a graded basis of AK
as left SX-module. Now taking W invariants in the W -equivariant isomorphism
m above gives isomorphisms S’ @gx AK = (S ®gx AK)7 = A’ of the rings of
invariants (the first map is seen to be an isomorphism using (2), for instance). The
composite isomorphism is clearly the restriction of the map defined in (a).

4.7. Suppose given data W, W, B etc as in 4.1. We assume here also that B =
@®nenBn is positively graded. We give W and its subrings the discrete topology.
We assume for simplicity in the following results that I' = W;I'"; then T' = W,;T"/
for any J C L. We now consider any topological, graded W-module M = &,,cz M,
satisfying the following conditions (i)—(v) analogous to those imposed on W (the
intended examples will be described later).

(i) with the B-module structure induced by that on W, M is a B-submodule of
K;(I‘,n) (with the the subspace topology) and M,, consists of all formal sums
S er Nwbw € K5(T,n) with all by, € By,_o, (u)-

(ii) Wy, acts as a group of continuous graded B-module automorphisms of M; the
action satisfies w(yy)') = w(¥)w(y’) for any w € Wi, » € W and ¢’ € M

(iii) For each s € L, there is a given continuous, B-linear map Ag:M — M such

that As(vy) = As(¥)s(d) + PA(Y) = s()As(¥') + As(¥)y for all ¥ € W,
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P eM
(iv) for s € L and any w € W,

New 1f sSW <q4 w
As w) =
(1) { 0 otherwise.
(v) s(¥) = ¢ iff Ag(¢p) =0, for any s € L and any ¢ € W.

It follows that here is a continuous B-linear operator A,: M — M for each z €
Wi, defined by setting A, = Ag, ... Ag, for any reduced expression z = sy ... p.
One has

(1) Ay(ny) = I.f,ynmy
where Iﬁy is defined in 4.1.

4.8. For any J C L, denote the set of Wj-invariant elements of M by M”. Then
M is a graded B-submodule of M. Now we have the following result analogous to
4.2.

Proposition. Let W; C W C Wy, be standard parabolic subgroups of Wi,. Then
(a) M7 is a graded W’ -submodule of M, with M = ZLGFJ NwBr—21 4 (w) -

(b) the map ¢ @ ¢' +— !, for b € W’ and o' € M¥, induces an isomorphism
WY @ywx ME 2 M7 of graded W ;-modules.

Proof. The fact that M7 is a graded W/-module follows from 4.7(ii). The explicit
description of M7 in (a) follows immediately from the conditions in 4.7(iv)—(v) on
noting that M% = N,cxM?*. Next, we prove that

(1) each m € M,/ is uniqely expressible as a finite sum m = Y eewnwo §FMa with

K
my € Mn72l'(aj)'

By 4.2(b), which is actually a special case of (1), this will prove (b). In the proof,
for any v € T, write v = vgv® with vg € Wi and v5 € WI'K, so I4(v) =
I'(vk) + la(vE). First, note the formula

(2) AL (pm) = Ay (P)m for v € W, m € M¥ and 2 € Wi

which is proved by induction on I’(z). Consider z € Wx "W and y € I'*. As in
the proof of 4.2(b), one sees using (2) that

() Eny €Myt Y, MBayway  for z€ Wi NW and y € TX,
vel’
vg<'z
v >y

The uniqueness claim in (1) follows from this. For let m = >y s §%me =0

with m, € Man2l’(a:)' If some m, # 0, choose =’ of maximal length I’(z’) with

my # 0, and write my, = Z;eFK 7MyCy, Choose 3’ minimal in the order <4 with
¢y’ # 0. Then the coeflicient of 1,/ in the expression of m = 0 as a formal B-linear
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combination of elements 7, is ¢,s # 0 by (3), a contradiction. From (3), it follows
that for z € TV,

z T xr
(4) UF Ef Kner + Z 5 77yBZlA(ar:y,z)'

:cEWKrTW‘], r<2K
yer™, y>2"

Consider an element m = Zlelﬂ n.c. of M. Then c, € By _21,(z)- There are
elements z1,... , 2, of W+ such that ¢, = 0 unless z > z; for some 3. If ¢, # 0, then
2K > 2K for some i, and I'(2x) < 1a(2) —1a(2F) < n/2—14(2K); in particular, for
some N € N, I'(zg) < N for z € " with ¢, # 0. Note that there are only finitely
many elements w of Wy of length I"(w) < N. It follows that substituting (4) into
m = Zl cr N=C= gives an expression for m as required in (1), completing the proof.

4.9. We now describe the main situations to which the formalism from 4.8 can be
applied.

(a) Let W = A, B = S etc be as in 4.5(a), and M = Ar with 7, = 7/ as in 3.9.
The Wy -action and operators Ag; on M are as defined in 3.10. Then all conditions
4.7(1)—(v) hold.

(b) Take W = Az B = Sz, etc as in 4.5(b). Let M = (Ar)z with Wi -automorphisms
and operators Ag as in 3.12. Again, all conditions 4.7(i)—(v) hold.

Additional examples arise from (a), (b) by base change (to a commutative, pos-
itively graded B-algebra C' in which 2 is not a zero divisor) as follows. Let M(C)
be the right C-submodule of Ké(F, 1) with M(C),, = 32! MCn—21 4 (w)- Define the
continuous left A ® 5 C-module structure (and left action of Ay, for s € L, and
w € W) on M(C) as follows; define the structure constants of M(C') with respect
to standard elements £ ®1¢, 7., by applying the structural homomorphism B — C
to the corresponding structure constants of M with respect to standard elements
€% nA. The conditions in 4.7 are easily verified. We explicitly record the two main
examples arising by base change.

(a') the module M(R) arising by base change from B =8 to C =R in (a)
(b") the module M(Z) arising by base change from B = Sz to C' =Z in (b).
We summarize the results obtained with this formalism in the following proposition.

Proposition. The conclusions of propositions 4.8 hold in all situations (a)—(b")
listed above. In situation (a) with K C J C L and W finite (so M = Ar), M’
has a natural graded (S”7, S)-bimodule structure induced by its A’ -module structure,
and, moreover, SK @g; M7 = MX as graded (8%, S)-bimodule.

Proof. The first statement is known, and the second follows from 4.6.

Remark. Recall the Coxeter system (W', S’) from 2.15. If W, W, are finite par-
abolic subgroups of (W,S), (W', S’) respectively with W;I'W}, C T' (and T fi-
nite, for simplicity) there is a natural (S7,S*)-subbimodule M%) of M with
M = S @gs MUK @5k S as (S, S)-bimodule, and there is an interesting represen-
tation theory associated to shortest (W, W}, ) double coset representatives in I' for
which one might hope M(/%) might function as a dualizing object. The problem
of extending these definitions to infinite W}, motivated 2.16-2.17. For crystallo-
graphic W, this problem (for J = ) and W} = W) is expected to be relevant (see
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[16, 21]) to the study of the category O of modules for Kac-Moody Lie algebras
(W arises as an “integral Weyl group” of a weight A\ and W' arises as the reflection
subgroup of W generated by reflections fixing A, in the standard dot action of W
on the weights).

5. Extensions of some modules for the dual nil Hecke ring

This section gives some alternative descriptions of the nil Hecke ring and its
dual, and some calculations of certain Ext! groups (e.g. for some A-modules).
Throughout this section, we always assume (if the root system arises by extension
of scalars from an integral root system) that the roots are all indivisible elements
of the weight lattice.

5.1. Recall that @ is a Qw-module with (3 quwdw) - ¢ = >, cw Gw(g). For
B € &+, define the localization S®¥) := S[a~! | a € T\ {B}] of S; we regard it as
a subring of ). Then

(1) S =Ngea+SH.

Lemma. Assume that the fundamental chamber of W on V' is sufficiently large
(see 1.4). Then an element h = 3 quo, € Qw satisfies h - S C S iff for all
weW and a € D, one has ¢, € 15 and ¢, + Qs.w € Sla),

Proof. Let p be any prime element of S, and xz,y € W. Then p | (§, — d,)(x) for
all x € Siff p| (6, — d,)(x) for all x € V, which in turn holds iff p is associate to
some (unique) o € &+ and y = s,z, by 1.4. By 8.2, h-S C S iff (i)(ii) below hold:
(i) for each prime element p € S not associate to any root, g,dy - (S) C Sps

(ii) for each o € ®* and w € W, (quluw + @sowls,w) - X € Swiays for all x € S.

Here, S,s is the localization of & at the prime ideal generated by p. For fixed w
and «, condition (ii) is equivalent to

(lll) quX T QsqwSa (X) € Sas

for all x € S. Note § = &% + aS° where S° is the subring of s,-invariant
elements of S. The left hand term in (iii) is S®*-linear in y, so (iii) holds iff it
holds for x = 1 and for x = a. From this, it readily follows that (iii) holds iff
quw € 18,5 and ¢ + ¢s,.w € Sas. Now note that condition (i) is just g, € Sps
for any prime element p not associate to a root i.e. only products of roots occur
in the denominators of each ¢, (when written in lowest terms). The lemma now
follows immediately.

5.2. The following description of the nil Hecke ring H was obtained in [26] by a
more complicated argument.

Corollary. Assume that the fundamental chamber of W on V is sufficiently large.
Define H :=={h € Q| h-SCS}. Then
(a) H =H
(b) HNH =3 e 0uS.
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Proof. Let A denote the set of functions ¢: W — S satisfying the following condi-
tion:

(1) Y(w) = Y(wsg) (mod SS) ifweW and 3 € ®F

Regard A as a subset of Homg (Qw, Q) by setting f(>, dwGw) = >, f(W)qw; by
3.7(c) and 3.8(2), one has A C A.

Fix ¢ € A, and h = > @wdw € H'. Then h =3 8-1qw = Y., way, where
Ay 1= Q-1 satisfies a,, € a 18 and a,, + Goys, € S@ forallwe W, a e .
By definition of f\,

(W) + s, V(WSa) = (A + s, )1(w) =0 (mod S)
and 80 ), oy Gwtp(w) € Nacao+S@ = S. This shows that
(2) Y((h)C S for all h € H' and ¢ € A.

Now we can give the proof of (a). By 3.3, H C H’. Conversely, let h € H'.
Write b =, tuby, for some unique b, € Q. Then £*(h) = b,, € S by (2), and so
h € H as required.

For part (b), the inclusion of the right hand side in the left is clear since 0,
(for r € S) and S are contained in the intersection. Conversely, suppose h =
> Gwdw € HNH. Then for w € W and @ € &+, one has ¢, € a8 and
Guw + Qoo € S (since h € H'), and w(gqy-1) + (5aw)(q(sqw)-1) € S (since
h=3 ew W(qu-1)0w € H'). The last of these three sets of equations is equivalent
t0 Gu+5a(qs,w) € S@); together with the first and second sets, it implies ¢, € S(*),
hence ¢, € ﬂa€¢+8(°‘) = §. This completes the proof.

5.3. The following result is proved for finite Weyl groups in [2]; the proof there
easily extends to the general situation, but instead we obtain it as a “dual” version
of the lemma. We let either

(a) B=S,W=A

or, if our root system arises by extension of scalars from an integral root system,
(b) B=3S8z, W= Az.

In either case, let R denote the B-algebra of functions W — B with pointwise oper-
ations. By 3.8(2), 3.7(a) and 3.12, W can be naturally regarded as a B-subalgebra

of R, and hence so can the subring W7 of Wj-invariant elements of W for any
JCS.

Corollary. The homogeneous component W;. of degree n is identified by the above

with the functions ¥: W — B satisfying the conditions (1)—(iii) below;

(1) ¢ is constant on each coset Wyu with u € W

(i) Y(w) = Y(wsg) (mod BB) ifw e W, € d*

(iii) Y(w) € B, for allw € W.

Proof. Since W’ = {v € W | ¥(uw) = ¢(w) for all u € Wy}, we may assume

J = 0 without loss of generality. Let W denote the set of functions W — B

satisfying (ii)-(iii). By 3.8(2), 3.7(c) and 3.12(b), W C W. For the converse,
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suppose ¥ € W,,. Write V=3 pew £ quw for some g, € Q, possibly with infinitely
many ¢, non-zero.

Assume first that that we are in case (a) and moreover that the fundamental
chamber for W on V is sufficiently large. By 5.2(2) and 5.2(a), qw = ¥(tw) €
Sy —21'(w)- In particular, ¢, € S and g, = 0 for almost all w, so 1 € A. Now
in general (with J = (), Remark 1.4 says one can choose a R-space U 2 V, with
W-action from dual based root systems on U and V' so that the fundamental
chamber of W on U is sufficiently large. Then in either situation (a) or (b), B
may be naturally regarded as a subring of the symmetric algebra S’ of U over R,
and one may naturally identify the dual nil Hecke ring of W on U with A ®p &,
as S’-algebra. By the special case already considered, all ¢, € S ()" If some
qw € B, take w of minimal length {’(w) with this property. Then ¢,£¥(w) € B for
all v <" w and ¢,£"(w) = 0 for v € w, s0 ¢,&" (w) € Y(w) + B C B. Since £ (w)
is a product of (indivisible if B = Sz) roots and ¢, € &', it follows that ¢, € B, a
contradiction which completes the proof.

5.4. The next part of this section describes some variants and extensions of 5.1
and 5.2. In each of three specific (and closely related) situations we consider, there
will be a commutative ring R and a family ¢ := {0,:U — B},cx of distinct
R-algebra homomorphisms from a commutative R-algebra U into a commutative
domain (and R-algebra) B with quotient field K. In each case, one defines the
coalgebra K, & ®,cx0,K (consisting of certain functions U — K) and its B-
submodule B, of functions U — B as in 8.3. In particular,

(1) B, :={y €K, |yU)C B}
={ Z Ozay | ay € K, Z a0, (u) € B for all u e U }.
zeX zeX

We provide in each of the three cases a “local” description (analogous to 5.1) and
a B-basis of B,, and show B, may naturally be regarded as a coalgebra over B.
In each of the three cases, there will be a parabolic subgroup W of the Coxeter
group W such that X = W7 and a ring W on which W acts as a group of ring
automorphisms, such that U = W (the ring of W -invariants on W). There will be
ring homomorphisms ¢,: W — B for all z € W (satisfying in fact o} |ws = o |w-
whenever Wz = Wyy), and for + € W7, o, will be defined as the restriction
0r = ob|ws. Henceforward, we drop the notational distinction between o and o”.
We now describe R, W, B and the {0, },ew in each of the three cases (a)—(c) of
interest here.
(a) In this case only, assume that W is finite and that the fundamental chamber of
W on V is sufficiently large. Let R=R, W=B =S andforz e W,let 0,:§ — S
be the unique extension of the R-linear map z=*:V — V to a graded R-algebra
automorphism of S. If J = (), the results to be given for this case reduce to 5.1 and
5.2(a).
(b) In this case and the next, W need not be finite. Set W =A, R= B = S. For
x € W, x € W there is a unique o, (x) € B such that

(2) XE¥ € a(x)+ Y §'B.
y>'x
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Then o,: W — B is clearly a B-algebra homomorphism, and
(3) 0.(¢¥) = Py, = (-1)"@a'(S],)

By 3.6(g), the restriction of o, to A’ depends only on the coset Wz of x as claimed.
(c) In this third case, we suppose that the root system arises by extension of scalars
from an integral root system. We take R = B = Sz and W = Az. Then we define

the o, for x € W by the formula (2) again, and note that (3) still holds in this
context.

5.5. In any of these three situations 5.4(a)—(c), we regard the elements of &+
as pairwise non-associate, prime elements of B. For 8 € ®*, extend the earlier
notation S¥) by defining the localization B(®) := Bla™! | a € ®*+\ {8}] of B. One
has

(1) B = ﬂg€q>+B(g).

The following result (and its analogue in the sequel to this paper) is fundamental
in the study of the reprentation categories described in [21].

Theorem. Let {a;},cws be a family of elements of K, of which all but finitely
many are zero. Then in any one of the three situations 5.4(a)—(c) above, the fol-
lowing two conditions are equivalent:

(i) X sews @Geoo(u) € B for allu € W/

(ii) for any B in ®* and z,y € W7 with y € Wxsg, one has

{ a, € 37'BYW and a, +a, € B®  ifx#y
a, € BP ifx=y.

Proof. Consider first the situation of 5.4(a). If J = 0, the Theorem reduces to
5.1. Now consider arbitrary J with W finite. Extend the a, for € WY to a
W-indexed family {a, twew constant on cosets Wyw. Recall that W = B = S.
Since the map W — W given by u — >y 0w(u) has W as image, it follows
that (i) is equivalent to ), .y @w0ow(u) € B for all w € W, and this is equivalent
in turn to (ii), by the equivalence for J = () of (i) and (ii).

Now we prove the equivalence in the situation of 5.4(b). Fix 3 € ®*. For
the remainder of this proof, for any w € W, we denote the unique element of
Wywsg N WY by w'. Define AP € K, for we W by

) A _ { (0w —ow)g Hfw < w

w .
Ow otherwise

(note that w' <’ w iff wsg <’ w). It follows immediately from 3.7(c) that
(3) AP wWycB  ie. AP eB,.

We now prove the following claim:

(4) if elements {aq }pew s of K, almost all zero, satisfy (3, cyys AP ay,)(x) € B®
for all x € W/, then all a,, € B®).
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For this, it suffices to show that if ¢ is any prime element of B, not associate to
any element of ®* \ {3} and elements {b,},ews of B, almost all zero, satisfy
X wew Aq(f)bw)(x) € ¢B for all x € WY, then ¢q | b, for all w. In fact, it
will even be enough by (3) to show that in this situation, ¢ | b, if v € W is of
maximal length I'(v) with b, # 0. Fix any such v. There are unique ¢,, € B with

Yow AP pb,, = Y w OwCw. In fact,

b ifw <’ w
Cw =1 Ppby — by ifw > w
by, if w' = w.

We have by 3.6(b) and 3.2(3) that

pq | ZpbwASf,’)(g“) = cpd where d = £+ H .
w 'yE‘i’+
VS, <Y

Now we consider the following three cases (~ denotes the relation of being associate
in the unique factorization domain B). If v' <’ v and p ~ ¢, then ¢ divides d at
most once, so q | ¢, = b,. If v/ <’ v and p % ¢, then ¢ doesn’t divide d at all, so
q | ¢y = b, again. Finally, if v' >’ v, then neither p nor ¢ divides d since vsg >’ v,
so pq | ¢, = pb, and again ¢ | b,. This completes the proof of the claim (4).

Now to finish the proof of the theorem in the situation 5.4(b), note that by (1)
and (4), condition (i) of the theorem is equivalent to the condition that for each

BeDT, > Tuwaw =, A&,?)b%’), for some b?) € B®). This in turn is easily seen
to be just a restatement of condition (ii) of the theorem.

Finally, the proof of the theorem in the situation 5.4(c) is essentially the same
as for 5.4(b), substituting a reference to 3.12(b) for the one to 3.7(c).

5.6. Now define elements n, € K, for v € WY in each situation 5.4(a)-(c) as
follows:

(1) noi= 3 oy ( 2 () TS, ).

yewJ ueWy
Clearly, {ny},ew is a K-basis of K,. In fact, using 3.2(2) and 2.14, one checks
(2) oy = > (=) Wy (STL).
zeW/
From (1), (2), 3.2(2) again and 3.5, one easily sees that
(3) A(n,) = Z ne @ ny Py,
z,yeWJ

in the comultiplication defined as in 8.3 (note that the coefficients on the right of
(2), (3) are in B). By 3.2(6), if W is finite, then

@ m= 3 o (St IT o).

yeWwJ ae@}r
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Proposition. In each situation 5.4(a)—(c), the elements {n,},cws form a B-
module basis of the B-module B, = {¢ € K, | ¢(U) C B}.

Proof. First, consider the situation 5.4(a). As is well known (see 4.5(3)) the map
t,,:S — S is a surjection S — S7. Set D = Haeq,}r a. Using 4.5(1) and 3.2(2),

one computes that for y € S,

i)=Y y*(sg,wD)y*(% S (e )

yewJ ueEWy

= ()P ST (1) ) (uy) (S0, ) ()T ()

yeWJ ueW;
= ()" (0.

Suppose n. = Y s Nwby € K, with the b, € K. Then n € B, iff for all x € S,
Y vew s butw,o(x) € Sie. iffall b, € S, by 5.2.
Now consider cases 5.4(b) and 5.4(c). For w € W, 3.2(1) and 2.14 give

(€)= 30 (3 (u) 7180, (-1 Py (ST,

yeWJ ueW;y

S (2 D ) (S, S 0)) = G

yeW’J ueW,

and the result follows easily (see 8.4(1)) since the ¢ for w € W form a B-basis
of WY and the o, are B-linear.

Remark. In situation 5.4(a) (resp., (b), (¢)), one may dualize B, as in 8.3 to obtain
a B-algebra B} = Homp(B,, B). Then by (3), A (resp., AJ, A”) may be identified
naturally with a B-subalgebra of B}, identifying ¢¥, for w € W+ with the element
ny, of B defined by nf (n,) = dyw-

5.7. By 8.12, Theorem 5.5 reduces the calculation of certain Ext!-groups of im-
portance in studying the representation categories from [21] to the simultaneous
solution of certain explicit congruences. The most important special case is the
following (stated in [21] in cases 5.4(a) and (b), with a proof given fully only for
J =0 in case 5.4(a)).

Define the ring Ugp = U ®g B; in 5.4(b)—(c), one has Ug = U naturally since
R = B. For x € W, define the Ug-module (which we regard also as (U, B)-
bimodule) B, which is equal to B as right B-module and has left U-action given
by (u,b) — bog(u) for w € U and b € B,. Then B, = B, if x € Wyy.

Corollary. Let z,y € W. Then as right B-modules,

(a) Homy, (B, By) = B if v € Wy and is zero otherwise.

(b) if x & Wyy, then Ext%}B (Bz, By) = B/vB if y € Wyxs, for some (necessarily
unique) v € ®1 and the Ext-group is zero otherwise.

Proof. The result follows immediately from Theorem 5.5 and the general description
of such Hom and Ext!-groups in 8.6(1)—(2).

5.8. Finally in this section, we record a basic technical fact with applications to
the study of the conjectural dualities in the representation categories from [21].
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We define first in each case 5.4(a)—(c) a Ug-module (i.e. a (U, B)-bimodule)
M. In situation 5.4(a), we regard the A’-module M = Ar as a Up = S’ @ S-
module M by means of the S’ ®g S-algebra structure on A’ as in 4.6. Define the
Up = ANV ®sS = AV-module M = Ar in case 5.4(b), and the Up = A% ®s, Sz = A%—
module M = (Ar)z in case 5.4(c). We write @ for the quotient field of B in each
case 5.4(a)—(c) (this is contrary to our usual use of Q) in case 5.4(c)).

Recall our spherical poset I' and L C S with W I' C I', and take J C L.
For a formal symbol 6”7, consider the topological right @Q-module K g (T'7,67) de-
fined in 2.10. It has a stucture of topological left U = W”-module structure with
Y] §lay) = ZLGFJ 87 a0y (1) for p € W’ and a,, € Q supported in a finitely
generated coideal of '/, and therefore it becomes a Up-module by restriction.

Corollary. In each case 5.4(a)—(c), there is a continuous embedding
MJ N K(g (FJ, 6J)

of Ug-modules mapping n — ! 8y where ay ., = v_l(Sg}UA/SE\A).
Moreover, if v #w € 'Y and § € &t are such that w € Wyvsg, then ay, ., =

(mod B®) for some unit u € BP),

u
B

Proof. The case 5.4(a) follows just by restricting scalars from the result in case
5.4(b), so assume we are in case 5.4(b) or (¢). Note that by construction of M, there
is certainly such an embedding in case J = 0); take 68 = (—1)ll(y)Dyy*1(S;§\A)
in 3.9(7). For general J, one easily sees it is enough to treat the special case
with I'/ finite. By 5.7 and 8.8, there is some embedding M’ — KCB(FJ,(;J) of
(W, B)-bimodules mapping 7 — >,crs 040 (sy,0) for some s,., € Q with
Sww =1 and s,,, = 0 unless w <4 v. Now for any ¢y € W, w € I' one may write
YmA = Zler 0 Q0 () for (unique) Q. (1Y) € B. Since Q. (¥) = 0 if p € W,
w € I'Y and u € T'\ 'Y, and since the corollary holds for J = (), it follows by the
discussion in 8.6 applied to M and M that Syw = SvT,z\,fq/SZ\A for v,w € TV. Now
the second claim follows using Lemma 3.4 and 3.4(2).

6. The Iwahori-Hecke algebra and bimodules for the dual nil Hecke ring

In this section, we construct a homomorphism between the Iwahori-Hecke algebra
of W and a Grothendieck group of graded bimodules for the dual nil Hecke ring A
under tensor product.

6.1. Recall the definition of the Iwahori-Hecke algebra H of W. Let v be an
indeterminate. Then H is the Z[v,v~!]-algebra (with identity T.) generated by
elements {7} },cs subject to quadratic relations

(1) T? = v*T, + (v* = )T}, forr € S

and the braid relations on the T, for r € S.

By the monoid lemma, for any w € W, there is a well-defined element T, of
‘H such that T,, = T;,,T,,...T,, for any reduced expression w = riry...7, for
w. It is known that the family {7, }wew is a Z[v,v~!]-basis of H. Another basis
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{Cl Ywew of H over Z[v,v~1] is defined in [25]; we don’t repeat the definition here
in general.

6.2. Since the only order on W considered in this section will be Chevalley order,
we denote it here by <, and the standard length function by [, contrary to our
usual conventions. Throughout this section, let B be a N-graded S-algebra; the
main cases of interest are B = S or B = R, and so we assume for simplicity that
By = R, and that dimg B,, is finite for all n. Let W/ = (A ®s B)’ = A’ ®@s B,
regarded as a B-algebra. We do not distinguish notationally between 1) € A7 and
Y ® 1 € WY; in particular, we often write y for the image of Y € S under the
structural homomorphism & — B. In the following sections, tensor products are
over W unless otherwise indicated.

For any s € S, define the graded (W, W)-bimodule B, = W Q. W(—1). Let
D denote the full subcategory of graded (W, W)-bimodules consisting of all graded
bimodules B isomorphic to (W, W)-bimodule direct summands of finite direct sums
of tensor products B, ® ... ® B, (m), for all m € Z, n € N and sequences
$1,...,8, € S. Let H' denote the split Grothendieck group of D; this is an abelian
group with generators [B] for the (isomorphism classes of) objects B of D and a
relation [B] = [B'] + [B”] for each split exact sequence 0 - B’ — B — B” — 0
(with maps homogeneous of degree 0) in D. Then H’ becomes an an algebra over
Z[v,v~] with [B][B’] = [B ®w B'], identity [W], and v"[B] = [B(n)].

Theorem. Let H be the Iwahori-Hecke algebra of W over Z[v,v~]. Then there
is a Z[v,v~1]-algebra homomorphism £:H — H' with E(CL) = [B.] for all s € S,
where Ct = v} (T + T,).

Remarks. The proof and its corollaries will occupy the remainder of this section.
The same statement is true with W = S instead (see [32], [21]) and can be deduced
easily from the theorem here. Over W = &, it is known from [21] as well that
if the fundamental chamber for W on V is sufficiently large, there are graded
indecomposable (W, W)-bimodules B,, such that any direct summand of any B,, ®

.. B, (m) is a finite direct sum with uniquely determined multiplicities, of modules
B, (m), and that £ is an isomorphism. It may be conjectured that similar B,, exist
for W = A®s B as well, and may be chosen (in either case) so that the £(C!,)) = [B.,]
where {C/ }wew is the Kazhdan-Lusztig basis of H.

6.3. In subsequent subsections, we will define for each J C S with £(J) < 2 and
each w € W a graded (W, W)-bimodule B,, with the following property; for r € S
one has

(1) B, =B, B.oB, =B.()oB(-1)
and for w € Wy, r € J C S with #(J) <2 and rw > w, one has

(2) Br & IBu) = @UEWJ, ro<v Bv~

v<w or w<v

The theorem (and also the statement that £(CJ) = [B,,] for all w lying in any
rank two standard parabolic subgroup of W) then follows from the lemma below.

Lemma. As Z[v,v~!]-algebra, H is generated by generators C! , for w € Wy for

some J C S with §(J) < 2, subject to the relations (C, =1d and) (i) and (ii) below:
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(i) C/2=(v+v 1Tl forr e S.
(ii) forr € J C S and w € Wy with §(J) < 2 and rw > w, one has C.C!, =

O/
ZvEW‘], ro<v Ly -
v<<w or w<v

Proof. Since the non-zero Kazhdan-Lusztig polynomials for a dihedral group are
all equal to 1, it follows from [25] that the elements C! of H for w in some W;
with §(J) < 2 generate H and satisfy the relations (i)—(ii). Under replacement of
C! by v (T, +T.), (i) is obviously equivalent to the quadratic relation for 7T}, and
it remains to show that (if r # s and rs has finite order n = n, ) (i)—(ii) imply the
braid relation on 7. and 7.

Let r; = r for even 7 and r; = s for odd i. Then (i)—(ii) imply that for m < n, one
has Cp. ...Cl. € Cl . + > cpem Lv,v"tCy . and that a similar formula

holds for C}, ...C;. . Hence relations (i)-(ii) imply

! _ ! / _ / /
Crl...rn - E amcrl e CTm = g amCro e CTm—l

1<m<n m<n

for some a,, € Z[v,v~!] with a, = 1 Multiplying the rightmost two terms of this
equality by v", making the substitution C,, = v=1(7T}.. + T.) and simplifying using
just the quadratic relations on the T, must give the braid relation 7, ...T, =
T, ...T, or else one would have a contradiction to linear independence over

c T Tn—1

Z[v, Uﬁl] of {Tw}wew-

6.4. We introduce some notation to be used in the proof of the theorem. Let
Z[[v]][v™!] denote the ring of Laurent power series (with poles of finite order). It
will be convenient to write p(M) = >, ., dimg M,,v™ € Z[[v]][v™"] for the Poincaré
series of a graded R-vector space M = @,z M, with M,, = 0 for n << 0 and
dimp M, finite for all n. Also, set p(y) =>_, -, 0! =2U=) for any y € W. For two
elements f, g of Z[[v]][v™!], we write f < g if g — f has non-negative coefficents.

Fix s € S. We use frequently below without explicit mention the facts that
£%s(8°) e W* €5+ 5(€°) e WP, Letes =1®1 € B and f, = - @1+ 1®s(£°) =
s(€%)®@1—1®¢&° € B,. Now 4.2(b) implies

(1) {es, fs} is a basis of B, as left W-module, and also a basis as right W-module.

Moreover, one has

(2) yfs = fsy

for all y € W, since this holds for y = £* with x € W* and for y = £°*. We also note
the following characterization of B/, for s € S:
(3) B., is the graded (W, W)-bimodule generated by an element b = e, of degree —1
subject to relations £*b = b&* for x € W*.

We can now prove the second assertion in 6.3(1). Indeed, let B (resp., B’) denote
the subbimodule of B, ® B/, generated by es ® es (resp., by e; ® f5). A simple
computation shows that in B, @ B,

es @ fs — fs ®es = —s(£%)(es @ es) + (es ® €5)s(£7),

fs @ fo ==& (es @ fs) + (es @ fo)s(E%).
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Now by (1),

(4) B, ® B, is a free left W module of rank 4 (with basis consisting of the four
elements z ® y where x,y € {es, fs}).

It follows that B, @ B, = B+ B’. Also, by (2) and (3), one has that B (resp., B') is
isomorphic to a quotient of B/ (—1) (resp., of B (1)). But by (1) and (4), one has
p(BL ®@B.) = (v+ v 1)p(B,). This implies that B = B.(—1), B’ = B/ (1) and that
B, ®B, =BoB =B (-1) ®B(1).

6.5. We now begin work on 6.3(2). Fix J C S with §(J) = 2, say J = {r, s} where
T = 54, § = sg with a, 3 € II. For i € Z, define a;; = 3 for i odd, a; = o for i even
and s; = 8,,. Consider the polynomial algebra Wt] over W in the indeterminate

t. Define elements y§m) €W, for j €N, by

(1) (t2m — D)ty — 1) .. (tz1 — 1) = Y 5™,

(m) . h
i 1S homogeneous

where 1 = &" and x; = s;5;_1...52(§") for j > 1. Note that y
of degree 2j. We claim that

(2) g™ e We

To see this, note that the action of W as an automorphism group of W extends to
one on W[t] with w(t) = ¢ for all w € W. The claim (2) holds since if m is even,
Sm permutes the factors on the left of (1) in pairs, while if m is odd, s,, fixes the
last factor on the left of (1) and permutes the remaining factors in pairs.

6.6. From 3.6(a), for any K C S, the S-module Ix spanned by the elements &%
with w & Wi is an ideal of W. It is easily seen that the quotient algebra W/Ik is
naturally isomorphic to A’ ® s B where A’ is the dual nil Hecke ring of (W, K) (in
its reflection representation on V). Moreover, the elements £¥+ 1k (w € Wk) of the
quotient may be identified with the standard basis elements " ®s1p with w € Wi
for A®s B. The automorphisms z (and operators ) for x € Wi preserve the ideal
Ik, and the induced operators on W/l may be identified with the corresponding
operators on A’ ®s B.

6.7. For the proof of 6.3(2), we need certain properties (8)—(9) below which hold
in the special case in which (W,S) is dihedral; this gives some information for
general W by means of 6.6. Suppose for this subsection only that II = {a, 8} where
ro = 7 and rg = s. We assume to begin with that we are in the symmetric case
(a, BY) = (B,aV). Set v = {a, 8Y) and define a sequence {p, }nen in R recursively
by po =0, p1 =1 and p, = YPpn_1 — Pn_o for n > 2 Set p_, = —p, so that
Pn = YPn—1 — Pn—2 for all n € Z. By induction, for all integers n, k, one has

(1) DPnPn+k — Pn—1Pn+k+1 = Pk+1 OF, equivalently, pkpn — Pr—1Pn—1 = Pntk—1-
It is easily seen ([13]) that

(2) Say Savg -+ - Say_1 (Qn) = PO + Pp—1Q2 for n > 0,
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(3) pp=0ifn=n,,<oo, p,>0if1<n<n,,.

By 3.10(f), 7(£") = —ag® — " + v&° and r(£°) = &°. Using this, one verifies by
induction that

(4) Zpm = SmSm—1...52(") = —(Proa+ ...+ Pm_10m) — Dm—1§°" + P&t

By 3.10(g), for n < n, s, one has

(5) &t = (prag + .o P10 )70 4 pp £t

(6) gré-sl...sm _ (p1a2 NI +pm71am)£sl...sm + gso.i.sm _,'_pmgsl“.strl.

By induction using (5) and (6) one has for finite m with 1 < m < n, , that

(7) 12 ... Tm :p1p2~..pmfs’”“'--32

In particular, the above results give that

(8)

T1Xo ... Ly € REEIMH1-52 Ty € RO L RE™ 4 VE® for 1 <m < nys.

Note also that (5), (6) imply that
(9) the ideal of W generated by &” has {£Y | y > « } as B-basis.

Now consider the case of dihedral W without the symmetry assumption (o, 3V) =
(B,a"). Replacing a by car and o by ¢~ taV for some ¢ € Rsq, leaves the W-action
on V and hence the dual nil Hecke ring A unchanged, whereas the basis elements
&Y remain the same only up to multiplication by non-zero elements of R. Choosing
c appropriately reduces us to the symmetric case considered earlier, so we may
conclude that (8) and (9) hold in the general dihedral case.

6.8. We now return to 6.3(2) for general W, keeping notation from 6.5.
Let n = n, . Define a graded (W, W)-bimodule B,, for w = s, ...s251 € Wy
with 0 < m = {(w) < n (and m finite, of course) as follows. First, if m = 0, set
=W. If m > 0, let B,, denote the graded (W, W)-bimodule generated by an
element b of degree —m subject to the relations

(1) Z yb(E ™I =0, €% = b€, for z € W

Note that if m > 0, then setting v’ = x,,,b — b€", one has

,_.

m—

@) YO (E) T =0, e =K form e W,
7=0
m+1
m-+1 rym+1—j
(3) Zy]( +)b(f) +1-j — (.
j=0

The rest of this subsection is devoted to the proof of the following.
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Lemma. Let notation be as above. Then
(a) By, is a graded free right W-module with (homogeneous) basis { £*b }p<w-
(b)Y if m<n, t=8mt1 and w = Sy, ... 51 then

/ o~
Bt ® IB2)w = EBU/GWJ, tw’ <w’ B’w"

w’ <w or w<w’

Proof. To begin, we show that the elements {*b with x < w span B,, as right
W-module, implying

(4) P(By) < p(w)p(W).

Firstly, by 4.2(b) and the second relations in (1), the elements £*b with © € W,
span B, as right W-module. Also, by 6.7(8), 6.6 and 4.2(2), the first relation in
(1) is equivalent (in the presence of the second relations in (1)) to a relation of the
form

(5) £Yb — Z £ X, =0, where y = $p1... 52

<y

for certain X, € W. Suppose that y' € W; with ¢ > y. By 6.7(9), 6.6 and
4.2(2) again, one may choose a homogeneous z € ZveWJ &YB such that z&Y €
v+ Zx<y, €W/, Now for ¢ < y, one has 2% € Zr/<y, W’ by degree
considerations; hence multiplying (5) by 2z and using the second relations in (1),
one obtains a relation of the same form as (5) with y replaced by 3. The claim at
the start of the proof of this lemma follows. Moreover, if m = 1, the above implies
that p(B,) < (v=! 4+ v)p(W). But by 6.4(3), B, = W ®yw: W(—1) is a quotient of
B, so these two modules can be identified. Note that this proves the first assertion
in 6.3(1) and establishes that (a) holds if m = 1.

Assume now that 1 < m < n,,. Let B (resp., B’) denote the subbimodule of
B; ® B, generated by e; ® b (resp., e; ® b’ where b’ = z,,,b — b€"). Then by 6.7(8),
B + B’ is also the subbimodule generated by e; ® b and e;£! ® b, so it contains the
elements £%e;£Y @ bEY and %, £1¢Y @ bEY with z,u € W and y € Wt. Therefore by
4.2(b) we get

(6) B+ B =B, ®B,.

We now claim that
(7) B (respectively, B’ ) is a quotient bimodule of By, (respectively, of B, where
’LU/ = Sm—-1--- 8281).

We give the proof for B. Clearly, if x € W then £%(e; ®b) = (e; ® b)£%. Now using
6.5(2) and 6.8(3),

m—+1 m+1

Z y](-erl)(et ® b)(fr)m+1—j _ Z e ®y§m+1)b(€r)m+l—j =0.
=0 3=0

Since ¢, ® b € B_,,,—1, (7) follows for B by definition of By,,. The proof of (7) for
B’ is similar.
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Now if m = 1 in the above, then &’ = 0 so B = B; ® B,,. This implies that
p(B: ® By) = p(t)p(w)p(W) = p(tw)p(W). But we've already shown that By,
is spanned as right W-module by the elements £*b with z < tw, and p(By,) <
p(tw)p(W). Tt follows from (7) that B; ® B, = By,, proving (b) for m = 1.
Moreover, one has (still with m = 1)

(8) P(Biw) = p(tw)p(W),

so the elements £%b, x < tw are in fact a basis of By, as right W-module, proving
(a) with m = 2.

We can now prove (a) and (b) together by induction. Assume inductively that
(b) holds for all @ = sy ...s281 € Wy with m’ < m where 2 < m < n, s and (a)
holds for all such @ with m’ < m. Then the inductive assumption, (4), (7) and (6)
give

p(B: @ By,) = p(t)p(w)p(W) = (p(tw) + p(w'))p(W)
> p(Biw) + p(Bur) > p(B) +p(B') > p(B; @ By,)

where w’ is as in (7). It follows from this that B 2 By,,, that B’ = B,,, and that the
sum in (6) is direct. This establishes that (b) holds for w = s, ... s2s1. Moreover,
this also proves (8), and therefore that (a) holds for w = s,,41 ... s281, completing
the inductive proof of (a) and (b).

As a corollary, we observe that

(9) if W is finite (of rank at most two) with longest element wy, then B, is the
(W, W)-bimodule generated by an element b of degree —I(w;) subject to relations
£%b = b¢® for v € W7,

Indeed, this is trivial or known for §(J) < 1. For rank two, note using 4.2(b)
that the bimodule with presentation in (9) is spanned as right W-module by the
elements £7b, © € Wy, and it has B,,, as a quotient.

6.9. We now complete the proof of 6.3(2) and hence Theorem 6.2. For any w
contained in some W with §(J) < 2, one has a graded (W, W)-bimodule B,, defined
by B, = W if I(w) = 0 and by the presentation 6.8(1) (with J = {r,s}, w =
Sm ... 5251, m < ord(rs)) otherwise. Note that B,, is well-defined by 6.8(9). Finally,
the properties 6.3(1)—(2) have been previously established.

6.10. For a finite sequence X:71,...,r, in S, let Wx denote the subbimodule of
the (W, W)-bimodule Bx :=B,, ® ... ® B, generated by bx =¢,, ®...®e¢, (by
convention, Wy = W where () denotes the empty sequence). One has the following
corollary of the above proof.

Corollary. For each x € W, there exists a (W, W)-bimodule W, such that if
T=7T1...Ty 1S a reduced expression, then W, 2 Wx for X:ry,...  ry.

Proof. Suppose w = xyz where x,z € W, y is the longest element of a rank two

finite standard parabolic subgroup Wy of W and I(w) = I(z) + I(y) + I(z). Write

J={r,s},m=mn,,. Sett; =rif i € Nisodd, and ¢; = s for even i € N, and let YV’

(resp., Y') denote the sequence t1,... ,t,, (resp., ta,... ,tmt1). Choose sequences

Xiri,..o,rn, Zis1...sp with e =r1...rp, n = (x) and 2 = s1...5,, p = {(2).
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Now from the proof of 6.2, it is clear that By = Wx @& B for some subbimodule B
of By, where Wx = B,. Indicate the operation of concatenation of sequences by
“”  Now Wx.y.z is the subbimodule of Bx.y.z =& Bx ® By ® Bz generated by
bx ® by ® bz, so is isomorphic to the sub-bimodule of Bx ® B, ® Bz generated by
bx ®b® bz for any non-zero b € (B,)_;(,). By symmetry, this last subbimodule is
isomorphic to Wx.y.z, hence Wx.y.z &2 Wx.y,.z. The corollary now follows from
1.3(ii).

Remark. Consider an arbitrary finite sequence X:rq,...,7, in S. By 6.4(1), the
elements 71 ® ... ® x, with each z; € {e,,, f,} form a W-basis of Bx as left W-
module (and as right W-module). Fix z1,...,2, and write {i | 2; = ¢e,,, 1 <
it <n}={i1, .., in} where 1 < i3 < ... < iy, < n. It is well known that
{51...8m | each s; = 1 or s; = r;, } has a unique maximal element in Chevalley
order, say y. An argument similar to that in the proof of the corollary above
shows that the subbimodule of Bx generated by =1 ® ... ® x,, is isomorphic to
W, {I(y) + 1 — 2m).

7. Polyhedral cones

This section briefly sketches the analogues for polyhedral cones of some of the
preceeding results in sections 2-5. As a general reference, one has for instance [8].

7.1. Consider a real Euclidean space V'; we denote the inner product by (-|-). Now
fix a polyhedral cone C C V; that is, C is the intersection of finitely many closed half-
spaces C = NI, H,, for a; € V\{0}, wherefora € V, H, :={v eV | (v,a) >0}.
The dual polyhedral cone CV is defined by

(1) CV:={aeV|(av)>0forallvecC}.

A face of C is by definition a subset F' C C of the form F ={v e C | (v,a) =0}
for some « in CV. It is known that the map F — F’ := CY N F* is an inclusion
reversing bijection between the faces F of C and F’ of CV, with F =Cn (F')*.

Fix a set I' with a given bijection x +— F, between X and the set of faces of C.
We order I' by setting < y iff F;, C Fy; I'' is then a finite lattice, called the face
lattice of I'. For z,y € T, we define I(z) to be the dimension of the linear subspace
(F,.) of V spanned by F,. We write 2 < y to indicate that z < y and there is no
z € I' with < z < y; this holds iff z < y and I(y) = I(z) + 1.

7.2. For # € T, let o/, denote the orthogonal reflection in F;- i.e. the unique R-
linear map V — V which fixes F;- pointwise and acts by multiplication by —1 on
F,.

Let S denote the symmetric algebra of V' graded as usual so Sp = R, and S; =V,
and extend o/, to a graded R-algebra automorphism o, of S.

For x # y in I, define d, , € V C S as follows. If z < y, let d; , be the unique
unit vector o in (F,)N(F,)* such that (a,v) > 0for allv € F,, and set dy, , = d -
If x # y and neither z < y nor y < x, set d;,, = 1. It is not hard to see (details
are left to the reader) that

(1) for x # y in X, d,, is a greatest common divisor in S for the elements of

(02 —y)(S)-
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7.3. Let U = {d,, | 2 <y € T'}. For each a € ¥, let S be the localization
S@) =8B~ | B € U\ {+a}] of S, regarded as a subring of the quotient field K
of S.

Proposition. For a family {q,}zcr of elements of K, one has ), ¢.0.(x) € S
for all x € S iff the following two conditions hold for all v € ¥ and x € T':

(i) if there is no y € I with dy , = £, then ¢, € SM

(ii) if y # x satisfies dy, = £, then ¢, € v~'S(7) and ¢, +q, € SV

Proof. Note that there can be at most one y € I satisfying d, , = £+~ (for fixed =
and 7). The proof using 7.2(1) and 8.2 is very similar to that of 5.1, and details
are therefore omitted.

7.4. We recall from [20] the definition of a graded (S, S)-bimodule M = M associ-
ated to the polyhedral cone C and the inner product on V' (we regard M equivalently
as a (S8,8) bimodule when convenient, via ymyx’ = (x ® x’)m for x,x’ € S and
m € M). First, M has a graded basis {m; }scr as right S-module, with m, € My;(g).
The left S-action is given by

(1) XMz = Mgz (X) — Z (x| d¥7y ymy, for x e V
yelx<y

where d | = 2d,, for r <y.

Denote by m/, be the standard basis element in Mcv corresponding to the face
F] of CV. and let {m}},cx denote the dual right S-basis of the graded right S-
dual M* := Homggs(M, S) defined by m?(m,) = 6,,. Give M* the non-standard
(S, 8)-bimodule stucture with (xfx')(m) = —f(xmy') for x eV, x' € S, f € M*
and m € M. Then one can check that there is an isomorphism of (S, S)-bimodules

(2) M* = Mev (—2dim(V))
mapping m* to (—1)@m/ .

7.5. We may naturally regard M as a (S, S)-subbimodule of the (S, K)-bimodule
M’ :=M®gs K. Now by 7.2(1), 8.6 and 8.8, there is a basis d,, for x € T, of M’ as
right K-space with the following properties;

(1) X6z = 6z04(x) for x € S

(ii) m, = Zy€F 0yQg y for some a,, € K with a; , =1 and a,,,, = 0 unless z < y.

By 8.10, the elements §, are uniquely determined by these conditions. One may
also write 0, = ZyEX Myb, 4 for some b, , € K with b, , = 1 and b, , = 0 unless
Tz < y.

Forx <z<yinT,set I,(z,y) :={d.»» #1 |2 <2 <y, 2/ # z}. Then (see
18]) if x < z <y I,(z,y) (resp., I.(x, z)) is the set of unit vectors of V' lying in the
extreme rays (i.e. one-dimensional faces) of the polyhedral cone F, N F- (resp.,
FrnFE,).

Proposition. For any x <y in T, one may write a, , = fxvy/(naely(a:,y) a) (re-

spectively., by , = (_1)l(y)*l(1)gxy/(Haelm(myy) «) for some non-zero, homogeneous

element foy € Sas(1,(z.v)~1w)+1(@) (T€SP-s oy € S2(3(1, (2.9)~1y)+i(x)) ) which is
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expressible as a linear combination with non-negative coefficients of products of
elements of I (x,y) (resp., In(x,y)).

Proof. The proof is a refinement of that of 8.10. For x < y, 7.4(1) gives

(1) ooy () —0u(0) == D (x| dy.)azy

zelix<z

for x € V. Assume inductively that the result for a,, holds with = replaced by
any ' with < 2/ < y. Choose x = d,,, for some z < u < y. Then (see [18])
(x,dY.)=0if z < z < uwhile (x,dY_) >0 forz < z <y with z £ u. Also,
oy(x) = —02(x) = —duy. The result for a,, follows immediately by induction,
and then that for b, , follows by 7.4(2).

7.6. For x € T', define the (S, S)-bimodule S, which is equal to S as right S-module,
and with left S-module structure ym = mo,(x) for m € S;, x € S. The following
result is the analogue in this context of 5.7-5.8.

Corollary. Let z,y € I'. Then as right S-modules,
(a) Homgg,s(Sz, Sy) = S if x =y and is zero otherwise.
(b) if x #y, then Extsy §(Sz,Sy) = S/dyyS.

() If dpy # 1 with, say, x <y, then azy = —byy =d, .

8. Generalities from commutative algebra

In this section, we make some mostly trivial remarks concerning certain rings
defined by extending one definition of the nil Hecke ring to the general context of
a family of ring homomorphisms U — B between commutative rings U and B.
We also describe some general features of certain (U, B)-bimodules associated to a
suitable ordered family of such ring homomorphisms.

8.1. Throughout this section, U denotes a commutative ring and B denotes a
commutative domain with quotient field K. We suppose given a family o =
{0:U — B}ger of pairwise distinct ring homomorphisms, where I' is now any
set. If {c; }rer is a family of elements of K, almost all zero, we define the function
Y wer 02Ce: U — K by u— > cy0.(u). The set K, of all functions U — K so
arising has a natural (U, K)-bimodule structure given by (ufk)(u') = kf(uu') for
u,u €U, k€ K, f € K,; one has

u(z OpCz )k = Z opCrkoy(u).

By Dedekind’s lemma, the elements o, for z € T" form a right K-module basis of
K. In this subsection and the next, we give some useful extensions of this fact.

For an ideal b of B and z,y € TI', define the equivalence relation =, on I' by
setting « =y y if (0, —0y)(U) C b.

Lemma. Suppose that B is a local ring with mazimal ideal m, and that a is any
B-submodule of K. Then for a family {c;}zer of elements of K, almost all zero,
the following conditions (1)—(ii) are equivalent:
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(1) (Zper 0)(U) C a
(ii) for each y €T, (3 zer 0.¢:)(U) C a.

T=mY
Proof. Obviously (ii) implies (i). For (i) implies (ii), suppose that I' = {1,... ,n}
with 0; #n o for i < p and j > p, where p > 1. Assuming (3., 0;¢;)(U) C
a, it is enough to show (32 ., 0s¢;)(U) C a. If p = n this is certainly true,
so suppose that p < n. Choose y € U so (07 — 0,,)(y) € m. For any u € U,
we have (31, 0ic;)(uy) € a and (3], ¢ioi(u))on(y) € a. Subtracting gives
(" oieid;)(U) € awhere d; = (03— 0,)(y) € B and d; is a unit in B. Repeating
this argument n — p — 1 more times gives (}>.7_, o;¢;¢;)(U) C a for some elements
e; of B with e; € B®. Multiplying this relation by el_l and subtracting from
(X 0ic)(U) C a gives a relation (3.1 ,0;¢;)(U) C a for some ¢ € K (i =
2,...,n) with ¢; = ¢; for i > p. Repeating the entire argument p — 1 more times
shows that (3°;_,,, 0ic;)(U) C a as required.

8.2. We maintain the general notation U, B etc from 8.1, but do not assume that
B is local.

Corollary. Suppose that a ia a B-submodule of K and that P is a set of prime
ideals of B such that a = Nyecp a, as B-submodules of K (a, denotes the localization
of a at p, regarded as a subset of K ). Then for a family {c;}zcr of elements of K,
almost all zero, the following conditions are equivalent:
(i) (Zgger 0.cz)(U) Ca
(ii) for each y €T andp € P, (3 zer 0z¢)(U) C ay.

T=pY
Proof. The proof is immediate from the assumption a = Npecpa, and Lemma 8.1,
on noting that (o, — 0,)(U) C pB, iff z =, y.

Remark. The hypotheses of the corollary hold in the following situations (a)—(b):
(a) P is the set of maximal ideals of B and a is a principal fractional ideal i.e.
a = Bk for some k € K.

(b) B is a Krull domain, a is (zero or) a divisorial fractional ideal in K and P is the
set of height one prime ideals of B. This includes the case where B is a UFD (then
the divisorial fractional ideals are the principal fractional ideals Bk for k € K*°,
and the height one primes are the ideals Bp for p a prime element of B).

8.3. For the remainder of this section, we assume that both U and B are algebras
over a commutative ring R, and that I' is a set of pairwise distinct R-algebra
homomorphisms U — B (e.g. R = Z). Then K, is naturally a U ® g K-module.
We make K, into a coalgebra over K, with the standard K-basis elements o, € o of
K, grouplike i.e. the comultiplication A: K, — K,®x K, is given by A 0,¢,) =
> 0s ® 04¢, and the counit e: K, — K given by €(>_, 0.¢,) = >, ¢;. Define the
Up := U ®g B-submodule B, :={f € K, | f(U) C B} of K,, and consider the
following condition:

(i) B, is a free (or projective) B-module and, under the natural inclusion B, ®p
B, — K, ®k K,, one has A(B,) C B, ®p B,.

Suppose that (i) holds. Then B, is naturally a coalgebra over B and we denote
by B! := Hompg(B,,B) the dual B-algebra. In fact, the Ug-module structure
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on B, gives B} a natural Ug-algebra structure, and one can consider the further
condition

(ii) the Up-algebra structural homomorphism Up — B is surjective.

The condition (i) (and sometimes (ii)) holds in a number of specific situations
associated to Coxeter groups studied in this paper and its sequel.

8.4. This subsection and the next lists some observations concerning conditions
8.3(1)—(ii); the observations are not used essentially in this paper (or the sequel), and
proofs are left to the interested reader. Maintain the notation from the preceeding
subsection.

(1) If there is a K-basis {e;}zer of K, with all e, € B, and elements {u, },cr of
U such that e, (u,) = 05, then 8.3(i)(ii) both hold (using “free” in (i)).

(2) If T is finite and B is a discrete valuation ring, then (1) holds. Hence 8.3(i)—(ii)
both hold (using “projective” in (i)) if T is finite and B is a Dedekind domain.

8.5. In this subsection, we discuss a special case of the situation considered above.
Suppose that B is a commutative R-algebra which is a domain with quotient field
K, and G is a group of R-algebra automorphisms of B. For any finite subgroup H
of G and g € G, let gy denote the restriction of g to a R-algebra homomorphism
Bf — B; then gy = gl iff gH = ¢H. We let oy == {gu | g € Ty } where
Ty := G/H denotes a set of coset representatives of H in G.

One may define B,,, and the B ®pc B-algebra B}, as above (assuming that
the family oz of homomorphisms B — B satisfies 8.3(i); we also assume this
for o := o(cy). Then B, is naturally a ring (under composition of functions) and
B therefore acquires a natural stucture of right B,-module. In particular, there
is a natural action of G as a group of algebra automorphisms of B} defined by
(gf)(b) = f(g~'b) for g € G, f € B: and b € B,. One can therefore form the B-
algebra (B)# of H-invariant elements of B}. In a number of situations associated
to Coxeter groups considered in this paper and its sequel, one (or more) of the
following related conditions holds for certain finite subgroups H' C H of G;

(i) the structural homomorphism B¥ ® e B — B, is an isomorphism of rings

ii) By, = (B;) as B¥ ®pc B-algebras

Tt

iv) Homp: (B;,, . B;,) =B, as B}

(
(iii) B} , is a free (or projective) B -module
( -

o .,~module.

Using 8.4(2), one can show that

(1) if G is finite and B, B are both Dedekind domains, then (i)—(iii) hold for any
subgroups H' C H C G (using “projective” in (iii)).

Another situation in which the study of the conditions in 8.3 and this subsection
might be of interest is mentioned in 10.5.

8.6. Maintain notation from 8.3. Identify the category of (U, B)-bimodules (with

left and right R action coinciding) with the category of left Up := U ® g B-modules.

For x € T', let B, denote the Ug-module which is equal to B as right B-module,

with left U-action given by xm = mo,(x) for m € B, and x € U. If y € I as well,
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then (see [21])

B ifz=y

1 H B,,B,) =
L omu ( 2 {0 otherwise,

(2) Exty, (B, By) = {ke€K |k(oc, —0y)(u) € BforallueU}/B ifex#y

as right B module. Regarding o,:U — B as a homomorphism U — K, one can
identify the Ug-bimodule K, with B, ® 5 K. Note that in general, (2) gives

(3) Exty, (Kg, K,) =0 forxz #£y

8.7. For the remainder of this section, we assume that I' is endowed with a fixed
partial ordering < such that the (pairwise distinct) R-algebra homomorphisms
{04:U — B},er satisfy the condition

(1) Ext}; (B, By) =0 ife £Lyandy £ x.

We also assume (just for simplicity) that T is finite.

Remark. If B is Noetherian, a representation category can be associated to such
data as in [20]. The general questions considered in this section are of potential
interest in situations where there are “natural” choices satisfying (1) of the partial
order on I, since for these it is possible the representation category itself may be
of interest.

8.8. Consider a Ug-module M equipped with a fixed finite basis {m;};cr as right
B-module, indexed by a finite set I (disjoint from T') with a function i — i:1 — T’
such that

(2) xm; € mioz(z) + Z m;B

i

7>
for y € U. For acoideal Y in I, M(Y) := 3, =y m; B is then a Up submodule of
M. Any sequence I' =Y, D ... D Yy = 0 of coideals of I" for which Y;\Y;_1 = {y;}
has one element for each j, gives a filtration M = M(Y,,) 2 ... 2 M(Yy) = 0 of
M with each successive subquotient M (Y;)/M (Y,_1)) isomorphic to a finite direct
sum of Ug-modules By,. By 8.6(3), M’ := M ®p K = @; (M(Y;)/M(Y;—1)®5 K)
as Ug-module, where M (Y;)/M(Y;_1)®p K is a direct sum of finitely many copies
of K. Since M is free as right B-module, M may be naturally identified with the
Up-submodule M ®p B of M'. It follows from this that there is a basis of M’ as
right K-vector space with the following two properties:
(1) x0; = d;07(x) fori € [ and x € U
(il) m; = Zjel 0ja;; for some a;; € K satisfying a;; # 0, and a; ; = 0 unless ¢ = j
or j > i.

In fact, one may take all a; ; = 1, but we do not necessarily assume that this is

done.
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8.9. Conversely, suppose given a Ux-module M’ with basis {§; }ier as right K-
space satisfying 8.8(i) for some function i — i:1 — I'. Let m; be defined as in
8.9(ii) for some constants a;; satisfying the conditions there, and let M be the
right B-submodule of M’ spanned by the m;. We will determine the condition on
the a; ; for M to be a Up-submodule of M’ (it will then necessarily be of the type
considered in 8.8).

Since the matrix (a; ;) is upper triangular with non-zero diagonal entries, with
respect to a suitable ordering of I, it is invertible, so the m; form a K-basis of M’
as well. Hence
(1) i = X2 e; mybi,; for some b; ; € K satisfying b;; # 0, b; j = 0 unless i = j or
Jj >
Then for x € U, xm; = 3_;6;07(x)ai,j = > Mk (Z] ai,;bj ko3(x)). Thus,

(2) M is a Ug-submodule of M’ iff for all ¢, k € I, the element Q, ;, of K, defined
by Q= Zj d7a;,jbj 1 satisfies Q;x(U) C Bie. ift Q; ;, € B, as defined in 8.2.

8.10. Suppose M is as in 8.8. The functions ; , defined by 8.9(2) satisty

(1) xm; = ijQiyj(x) for x € U.
J

Replacing the basis elements m; by their expressions in terms of the J;, recalling
X0; = 6;07(x) and taking the coefficient of J; on both sides gives

(2) (o7 —=0())ai; = > Qr()ar;.
1053

It follows that all the a;; are recursively determined by the structure constants
Q; x(x) and the a; ;. For specified values of a;; # 0, the K-basis elements ¢; of M’
satisfying 8.8(i)—(ii) are therefore uniquely determined by the B-basis elements m;
of M.

8.11. The functions Q; j also arise also arise naturally as follows. Note that M’
above naturally becomes a right comodule for C' := K,, with comodule structure
map A: M’ — M' @k C given by A(> d;¢;) = > 6; ® d;¢; (this comodule structure
is independent of the choice of K-basis d; for M’ satisfying 8.8(i)—(ii)). Since the
m; are also a K-basis of M’, there are unique elements €2, ;, € C such that

(1) Alm;) =Y @my
k
The definitions immediately give that
(2) ;’,k = Z(%ai,jbj,k = Qi,k~
J
Note also that from (1), (2)

(3) AQr) =) Q@
J
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or equivalently €; x(xx") = >, Q:;(X)Q256(X") for x,x € U.

8.12. Consider a Ug-module M with B basis {m;};c; as in 8.8. Write xm; =
>-;m;8%,5(x) as in 8.10(1). Suppose there is some non-empty coideal Y C I' such
that M(Y) =0, and fix x € Y. Let K’ denote the B-module consisting of I-tuples
(¢i)icr of elements of K and E, be the B-submodule of K consisting of those

I-tuples (¢;)ier with

(1) ci(os —07) =Y Qijc; € B, forallicl.
i€l
J>i

The following result generalizes 8.6(2).

Lemma. As B-module, Ext{; (M,B,) = E,/B" where B is the submodule of K"
consisting of I-tuples of elements of B and E, is as defined above.

Proof. Choose in the module B, a basis element ¢ as right B-module. Note (M ®p
K) @ K, is a Ug-module. For ¢ = (¢;)ier in K¥, let M C (M ®p K) ® K, be
the B-submodule spanned by elements m; = m; + d¢; for i € I, together with 4.
Then by 8.9(2), M is a Ug-module (i.e. is stable under the U-action) iff ¢ € E,.
In that case, there is an obvious exact sequence 0 — B, — M — M — 0 of Up-
modules which is seen to split iff ¢ € B!. This gives an injective homomorphism of
B-modules E,/B' — Exty; (M, B,), which is surjective as follows from 8.8.

8.13. The following trivial observations are sometimes useful. Consider a Up-
module M with B basis {m;};c; as in 8.8, and the Ux-module M’ := M ®@p K.
The dual K-vector space M"* := Homg (M’, K) has a natural Ux-module structure
induced by that on M’; one has xdf = dfo;(x) for x € U, where the ¢} are the
basis of M"* dual to the ¢;. Define m; =37, d7b;; € M"™, so also 07 = >, mja;;.
The m} are of course the basis of M* := Homp(M, B) dual to the basis m; of M
(under the obvious identification of M* with a Up-submodule of M'*). One has
xm; = >, m;Q j(x). Note that the right B-basis m; of M* satisfies the same
conditions as assumed in 8.8 for the basis m; of M, but for the opposite poset I'°P
instead of I'.

8.14. Here, we assume that B is a UFD. Note then that the B-module on the right
hand side of the formula 8.6(1) is isomorphic to B/Bd, , where d, , is a greatest
common divisor for the elements (o, — o,)(u) of B for u € U (or for u in a set of
R-algebra generators for U).

Lemma. Let M be as in 8.8, and choose bases {m;};cr for M and {d;}ics for
M ®p K as in that subsection, related by the equations m; = > dja;; and

0i = > ey mybij. Then for anyi,j € I with i < j o
(a) aij € aj; (Hzgy<3 dyj)ilB

(b) bi € bisi ([Ticy<y d;,y>_1B.

(€) Qij € Xricass 5z(ﬁ3

yAzi<y<joTy
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Proof. By 8.13, part (b) follows from (a). Also, (c¢) follows from (a) and (b). To
prove (a), suppose i < j and assume inductively that (a) is true with i replaced by
any i’ € I with j >4’ > i. Using induction to give a common denominator, 8.10(2)
can be written as
fxajj
X)) =7
H}/EXL dy,j

i<y<j

a; j(o5 — 03

for some f, € B. Now (a) follows on recalling the definition of d; 5.

9. Appendix: A monoid lemma for “mixed” braid relations

This appendix discusses a variant of Matsumoto’s monoid lemma for Coxeter
groups which can in special cases be used to give alternative constructions of the
modules considered in Section 2 of this paper.

9.1. Note that there is an action of W on P(T) defined by w- A = N(w) +wAw~*
forwe W, ACT (see 1.3(e)). We consider the following condition on a subset A
of T

(i) For each finite rank two parabolic subgroup W’ of W, there exists an element
w' € W with N(w)NW'=AnW".

Since we assume the condition in (1) for all dihedral parabolic subgroups (not just
the standard ones), it follows that

(1) if A C T satisfies (i), so does w - A for any w € W.

Indeed, it is enough to check this for w € S, which is easy. The condition (i)
is equivalent to the corresponding condition with “rank two” omitted from the
statement, though we shall not need this fact, and holds if A is any initial section
of a reflection order on T

Fix for now two distinct simple reflections r,s € S whose product has finite
order m = n, 5. Set r; = r for i odd and r; = s for ¢ even. Let M be a monoid
and z, = (r*,r7) € M x M, z4s = (sT,s7) € M x M be two ordered pairs of
elements of M. We say that x,,x, satisfy the mixed braid relations for r and s if
the following condition holds:

(ii) for any sequence of symbols €1, €a,... , €, from {+,—} with at most one pair
of unequal consecutive terms (i.e. €; # €;41 for at most one 1 <i <m — 1),

€1 ,.€2 €m __ .€m €m—1 €1
" Tm—1---71 *TerlTnZLn e Ty

In particular (ii) implies that the elements r* (resp., r~) satisfy the ordinary
braid relations of (W, S).

Lemma. Let M be any monoid and z, = (r*,r=) € M x M, for r € S, be pairs
of elements of M satisfying the mized braid relations (i.e. x,. and xs satisfy the
mized braid relations for r, s whenever r, s in S with 1 < n, s < 00).

Then for any A C T satisfying (i), there exist unique elements x4 € M forx € W
such that es is the identity element of M and if r € S, x € W with I'(ra) > l'(x),
then (rx)a = réx s where € denotes “—” if r € x - A and “4” otherwise.
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Proof. If the x4 exist, then for any reduced expression x = rq...r,, one has

(2) xa =1

where €; denotes “—” if r; € ryy1...7 - A (ie. if rpp...7 ..., € A) and denotes
“+” otherwise. To prove the lemma, it will suffice to show the right hand side of
(2) is independent of the choice of reduced expression for z. By 1.3(ii), it is enough
to prove the right hand side of (2) does not change when the reduced expression for
x is changed by a braid relation. By the definitions, the proof of this immediately
reduces to the case when x is the longest element of a dihedral standard parabolic
subgroup W/ = W, s of W, with m = n,, < co. By (1), ANW' = N(w) N W’
for some w € W’ with I"(w) = p. If p < m, interchange r and s if necessary and
suppose without loss of generality that I'(rw) > I’(w). Then the equality of the
expression (2) for the two reduced expressions of x is just the mixed braid relation
(ii) for a sequence €1, ... , €, of p “=” signs followed by m — p “+” signs.

9.2. Obviously, if 7T = r~ for all r € 9, one just has the monoid lemma. We now
discuss another example. The group B generated by elements 7 for r € S, subject
only to the braid relations of (W,.5), is called the braid group of W. There is a
natural surjective homomorphism B — W, with 7 — r for all r € S.

Lemma. Suppose that G is a group and that there are elements 1 € G, forr € R,
satisfying the braid relations for W (e.g. G = B, the braid group of W ). Then the
pairs v, = (7,77 1) € G x G satisfy the mized braid relations for W.

Proof. Each of the mixed braid relations for (z,,z), for r # s in S, is equivalent
to the usual braid relation on 7 and $, in this case.

9.3. In this subsection, we discuss the relevance of 9.2 to construction of the el-
ements m’ in the Qu-module Qu from Section (i), in the situation 2.2(ii). In
this case, the invertible elements ¢, of Qu, for r € S, satisfy the braid relations.
Acting on the left on a completely arbitrary element h € Qw by the elements in
Qw whose existence is given by 9.1, one gets elements m,, € Qw for w e W, with
me = h, satisfying

5 M if rw >4 w

trmy, = {

2 ~ .
X*M,, otherwise.

Write my = Y, o 0oz (s ,,) with s € @ (this is a possibly infinite for-
mal sum, with no conditions on supports). The sf’w satisfy the same recurrence
equation 2.5(5) as Sﬁw and the initial values sfye for x € W could be arbitrarily
prescribed. Hence if sge =1 and sf’w =0 for  £4 w, it would follow follow that
Sf’w = sfyw for any [z, w] € Pa. It may be conjectured that there exists a choice
of initial values 5;4’ . for x € W (i.e. effectively, a choice of the element h € QW)
so that 5?,5 =1 and s‘f’w = 0 for z £4 w. If the whole of W is spherical in the
order < 4, the conjecture is true (for unique elements sﬁe). In general there may be
many choices of the s2_ to satisfy the conjecture, and it seems unlikely that there is
any “natural” choice in general (an interesting question, however, is whether there
is such a natural choice in the special case of the standard order on the alcoves
of an affine Weyl group, see [29]). Although the need for proof of this conjecture
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has been circumvented in this paper, there are closely analogous situations in the
sequel where corresponding difficulties remain unresolved except in special cases.

9.4. The remainder of this subsection describes some additional matters related to
9.1, none of which are used anywhere else in this paper. Suppose G = B is the
braid group of W in Lemma 9.2. For A C T satisfying 9.1(i) and for any reduced
expression y =71 ...7T,, one has

(1) ya =75

where ¢; denotes —1 if r,...7;...7, € A and denotes +1 otherwise. It can be
shown from (1) (cf. [9]) that

(2) if v,w € W and A, C are two subsets of T satisfying 9.1(i), then vq4 = we iff
v=wand Nw H)NA=NwHnC.

Let us write ¢ := yg = 71 ... 7. From the definitions, one sees
(3) (zy™ )N =4y~ for y € W.

Now any finite A C T satisfying 9.1(i) is of the form A = N(y) for some y € W.
Hence if W is finite, (3) determines the wy (for all such A satisfying 9.1(1) and all
w € W) in terms of the usual cross-section {w},ecw of W in the braid group.

Remark. If W is a finite Weyl group, combining (2) and (3) gives another formu-
lation of the necessary and sufficient condition #3~! = 2w ™! for isomorphism of
certain principal series modules I(x,y) and I(z,w) for an associated semisimple

complex Lie group (see [9]).

9.5. Next, we apply 9.1 to the the Iwahori-Hecke algebra H of (W,S) over the
ring Z[v,v~!] of integral Laurent polynomials in an indeterminate v, to give the
following minor refinement (and alternative proof) of [16, (4.1)].

Proposition. For any initial section A CT' of a reflection order , there exists a
Zlv,v™1]-basis {Ty atwew of H with T, 4 = T., such that forr € S and w € W,

e T, fTw >4 w
TT‘Tw7A _ ~Tw,A - f .A
Trwa+ (—v" )Ty a otherwise.

Proof. Take z, = (v='T,,vT, 1) (elements of the unit group of H) in 9.2. These
elements satisfy the mixed braid relations so we obtain elements x4 € H for x € W
which we denote by TI A = x4. These satisfy the multiplication formula in the
proposition. Moreover, T, = Tu,@ = v V(T where the T, are the standard
basis elements of H over Z[v,v~']. From 9.4(1), it follows that T, 4 € T, +
21 (o)< (w) Z[v,v T, so the T, 4 form a basis of H as well.

9.6. Finally, we mention one other general class of elements satisfying mixed braid
relations.
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Proposition. If A, forr € S, are idempotent elements satisfying the braid rela-
tions in a unital ring R, then the pairs x, = (Ap,1 — A,) satisfy the mized braid
relations in the multiplicative monoid underlying R.

Proof. In the Iwahori-Hecke algebra H of W over Z[v], the elements z, = (T;, T, —
(v? — 1)) satisfy the mixed braid relations for W, since (using 9.2) the pairs
(T, v*T,~ ') satisfy the mixed braid relations in H ®z,) Z[v, v~ ']. The result follows
on applying the ring homomorphism H — R determined by v — 1 and T, — —A,
for r € S.

10. Appendix: Polynomial invariants of pseudoreflection groups

In this section we obtain some results in the invariant theory of finite pseu-
doreflection groups (rederived for Coxeter groups in Section 4) as specializations of
general facts from commutative algebra. As general references for the (well known)
facts quoted in this section, one has [3] or [7]. The section finishes with some obser-
vations suggesting that some of the questions from Section 8 studied in this paper
for Coxeter groups may also be of interest more generally e.g. for finite complex
pseudoreflection groups.

10.1. Let K be a field of characteristic p > 0, and V be a finite-dimensional vector
space over K. An element g € GL(V) is said to be a pseudoreflection if the linear
map g — Idy:V — V has one-dimensional image. Let & denote the symmetric
algebra of V over K, given the grading & = ®,enS,, with S = K and S = V.
Thus, S is non-canonically isomorphic to the graded polynomial ring in dim V'
indeterminates of degree 2. For any subgroup G of GL(V), , the G-action on V
extends uniquely to an action of G as a group of graded K-algebra automorphisms
of S. Let

(1) S ={feS|g(f)y=fforallge G}

denote the subalgebra of G-invariants of S. Recall the following well-known theorem
of Shephard and Todd, Chevalley and Serre.

Theorem. Suppose that G is a finite pseudorefiection group i.e. G is finite and
generated by pseudoreflections. Then the following conditions (1)—(ii) are equivalent,
and hold in coprime characteristic (i.e. if either p =0, or p > 0 and the order of
G is coprime to p).

(i) S is graded free of finite rank as a module over S¢

(ii) S is a graded polynomial ring in n = dimV indeterminates i.e. it is generated
over K by n algebraically independent homogeneous elements x1, ... ,x, of positive
degree.

Let ng denote the number of pseudoreflections in G. It is also known that in
coprime characteristic,
n n

2) 2n¢ = Z(deg(xi) - 2), rankge (S) = #(G) = H(deg(xi) /2).

i=1 i=1

10.2. In general, let B = ®,cnyB, be a positively graded algebra over a field
K, with By = K. Assume that B is generated as a K-algebra by finitely many
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homogeneous elements of positive degree. Let n denote the Krull dimension of B
i.e. the maximum number of elements of B which are algebraically independent
over K. We use below the following general fact.

Proposition. In the above situation, the following two conditions are equivalent:
(a) there exist homogeneous elements 61, ... ,0, of B generating a polynomial sub-
ring K[01,...,0,] of B over which B is a finitely generated free module
(b) whenever 601,... ,0, are homogeneous elements of B generating a graded poly-
nomial subalgebra K101,... ,0,] of B over which B is a finitely generated module,
B is actually a free K[y, ... ,0,]-module.

If (a)—(b) hold, B is called a graded Cohen-Macaulay K -algebra. There is then
a graded B-module w(B) (the “canonical module for B”) such that for any graded
polynomial subring C = Klb01,...,0,] of B over which B is a finitely-generated
module, there is an isomorphism

n

w(B) = Home (B, C) (3 (deg(6;) - 2))

i=1

of graded B-modules.

10.3. Now we have the following.

Proposition. Let G be a finite pseudoreflection group acting faithfully on the K
vector space V' in coprime characteristic, and let H be any subgroup of G which is
also generated by reflections. Then

(a) ST is a graded free S -module of rank [G : H|

(b) Homge (8*,8%) = SH(—2(ng — ny)) as graded S¥ -modules.

Proof. First, B = S¥ is a graded polynomial ring B = Klyi,... ,y,] by 10.1; in
particular, it is Cohen-Macaulay by 10.2(a). Of course, A = S¢ is also a graded
polynomial ring. Recalling 10.1(2), (a) is now immediate from 10.2(b), and (b)
follows on applying the last statement in 10.2 with C'= B and C' = A in turn.

10.4. For a finite subgroup G of GL(V), define the element Jg € S as follows.
For each pseudoreflection g € G, choose ¢, € V* and a4 € V such that g(v) =
v+ (¢g,v)ay for all v € V. Then define Jg as the product of the elements a, for
all pseudoreflections g in G. We can now give the following more explicit version
of 10.3(b) (with a different proof).

Proposition. Assume G is a finite pseudoreflection group on V in coprime char-
acteristic, and let H be a subgroup of G generated by pseudoreflections. Then the
map

0: S — Homge (ST, 8%)(2(ng — n))

with O(b)(V') = Jg' > gecym det(9)g(bJub’) (where the sum is over a set of coset
representatives of H in G ) is an isomorphism of graded S™ -modules.

Proof. In general, let B/A be a finite extension of normal domains (so B is finitely

generated, in particular integral, as an A-module) with quotient fields F/E. For

example, if B is a normal domain, finitely generated as algebra over a Noetherian

ring R, one could take A = B for any finite group G of R-algebra automorphisms
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of B, in which case F/FE is Galois with Galois group G. In general, we denote by
Trp/p or Trp, 4 the trace map F' — E for the (finite) field extension F/E.

Define as usual the inverse different Dg} 4 and different D,y by

(1) DE}A ={felF|Trpp(fB) C A}, Dpja ZZ{fEF\fD]}}AQB}.

Note that any A-module homomorphism B — A is the restriction of a unique
E-linear map F' — F; since the trace form of F/FE is non-degenerate if F/FE is
separable,
(2) If F/FE is separable, the map ¢¢D§}A — Homx (B, A) given by (f)(b) =
Trp/(bf) is an isomorphism of B-modules.
The different and inverse different are known to be divisorial ideals of K in par-
ticular,
(3) if B is a unique factorization domain (UFD), one has DE}A = d~ !B for some
0£deB.

We apply below the following special case of the general transitivity property for
the inverse different,
(4) If C/B/A are finite extensions of Noetherian UFD’s, with corresponding quo-
tient fields L/F/E, and L/FE is separable, then DE}A = DE}BDE}A.
(if we did not have UFD’s, the right hand side would be replaced by its divisorial-
ization).

Now return to the situation of the proposition. One has from [3, 7] that

(5) Ds/sc = JaS ={be S| g(b) =det(g " )bforall ge G}

and of course the analogous statements for H. By (3)—(4) and 10.1,

(6) D g0 = (Ja/Jm) 7' S™.
Hence multiplication by d := (Jg/Jg)~! gives an isomorphism of S¥-modules
P SH — Dg},/sc. We claim that as a map of ungraded S¥-modules, § = 1) o ¢/

where wngé/sc — Homgo (S”,8%) is the isomorphism given by (2). For let
b,b' € SH. Using (1) for both H and G, one has

(6 W) B)W) = Trsn s bb) = sz 3 alha)) = 5= 3~ det(g)g(bTb).
geG geG/H

It now follows that # is an isomorphism of ungraded modules; as a map from the
graded module S to Homge (S¥,8%)(2(ng — ng)) it is homogeneous of degree
zero, hence a graded isomorphism.

10.5. Finally, we make some suggestive observations concerning particular cases of
some questions in Section 8.
Let V and V' be finite-dimensional vector spaces over a field k and let S, &’
be their respective symmetric algebras graded as usual in this paper. For I' C
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Homyg (V,V’) and for 2 € T, denote by 0,: S — S’ the graded R-algebra homorphism
restricting to x as a map V — V' on the homogeneous components of degree 2. Let
U=S8,B=8",R=Rand o := {0, }rer. Define B, and the equivalence realtions
=, as in 8.1-8.5. We claim that the following statements hold;

(1) For a prime element p of &’ and z,y € I, one has z 2,5 y iff p € V' and
(z —y)(V) C kp.

(2) Suppose that T is finite and there is 0 # « € V' C &' such that © 2,5/ y for all
x,y € I'. Then the condition in 8.4(1) holds, and hence so do 8.3(i)—(ii).
)

3) Suppose that V =V’ (so § = &’) and that T is a subgroup G of GL(V'). Let
N be the (normal) subgroup of G generated by the pseudoreflections in G. Let
o' := {04 }zen; one may naturally regard B,  as a subring of B,. Then as right
S-modules, B, = ©4en\gBsr0g where the sum is over a set of coset representatives
for N in G} in particular, B, is a free left B,,-module and 8.3(i) holds for the family
o iff it holds for o’.

Indeed, (1) is obvious (cf. the start of the proof of 5.1), and (3) follows by (1)
and 8.2. The remaining fact (2) is not used in any essential way below, and its
proof is left to the reader. In the situation (3), the results (1), 8.2 and (2) imply
that 8.3(i) holds “after localization at any height one prime ideal of §” for any
finite G in any characteristic. I don’t know for which G 8.3(i) itself holds, except
for the following very special case.

Proposition. Make the assumptions as in (3) above, and also assume that G is
finite and K = R. Then 8.3(1) holds.

Proof. By (3), one may assume without loss of generality that G = N. So by
the classification of finite real reflection groups, G is a finite Coxeter group in
a reflection representation on V. One may choose a system of simple roots for
G; the fundamental chamber on V' is automatically sufficiently large, and so the
Proposition follows from [26] (or 5.2, 2.12 and 3.7(a) of this paper).

Remark. It would be interesting to know, in the situation (3) with K = C, if 8.3(i)
and 8.5(i) hold for G, H finite complex pseudoreflection groups on V.
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