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Abstract. Over the course of more than 150 years a beautiful theory of liaison has
emerged. Classically, complete intersections were used for the links. A systematic study
of liaison theory where one uses, more generally, arithmetically Gorenstein schemes was
begun only in the last few decades. It led to a flurry of new insights and applications. Af-
ter reviewing some needed concepts and results, several of these applications are discussed.
Topics include Hilbert functions and free resolutions, hyperplane arrangements, Gröbner
bases, Rees algebras, simplicial complexes and more.
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1. Introduction

Liaison theory has a long and rich history, with several periods of pronounced activity in
the last century and a half. Many important questions have been answered, and important
questions still remain. We refer the reader to [61], [63] and [67] for detailed treatments
of liaison theory, and the authors of this paper hope to update [63] in the coming years to
account for the progress made in the intervening years since its original publication, of which
there is quite a bit.
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What is less chronicled, though, are the many areas in which liaison techniques have been
applied. In this paper we have selected a handful of examples of such applications. We begin,
in section 2, by giving enough of a background to make the subsequent sections readable,
and then we describe just a few of the many directions in which these tools have led to
interesting, and perhaps surprising, contributions. The table of contents lists the topics that
we will cover, and will not be repeated here.

One of the breakthroughs in liaison theory came in 1983 by Lazarsfeld and Rao [58], and
in a sense it was intended as a warning that a classical idea for applying liaison was more
limited than was previously known. They say: Classically, linkage was seen as a method for
producing interesting examples of space curves starting from simpler ones. . . . A priori, one
could hope – as some of the classical geometers apparently did – that techniques of liaison
could be used to study space curves inductively, by linking a given curve to a (possibly very
special) curve of lower degree or genus. Believing that at least for general curves such an
approach is fundimentally flawed, Harris suggested that a general curve should in various
senses be minimal in its liaison class. Our results may be seen, then, as giving additional
support (if any is needed) to the philosophy that there is no easy way to get one’s hands on
a “general” curve.

In a sense, the book of Martin-Deschamps and Perrin [61] showed that this result of
Lazarsfeld and Rao was not restricted to general space curves, but in fact was just part of a
beautiful and much larger picture for space curves. The paper [5], appearing at about the
same time, showed that it was not even restricted to space curves.

The applications in this paper illustrate the fact that nevertheless, the classical ideas were
not so far off. In many situations liaison can be used to study general objects, and in any
case it can be used to produce examples of varieties or ideals with very nice properties, or
to produce interesting results of other kinds.

For many applications, it is essential to use a more general concept of liaison. Classically
and in the references above, complete intersections were used to link subschemes. However,
in [83] it is already discussed that one could use, more generally, arithmetically Gorenstein
subschemes to link. Several decades went by before a systematic investigation of Gorenstein
liaison was initiated in [54]. It led to a flurry of new results whose power we illustrate in
some of the following sections.

We end the paper with a short list of open questions from liaison theory, hoping that
they supplement the descriptions of known applications as a motivation for further study in
liaison theory, and that their eventual resolution will in turn lead to new applications. We
also include a long list of references for the interested reader.

2. Background

Let R = k[x0, . . . , xn], where k is at least an infinite field. In different parts of the paper
we make different assumptions about k.

Definition 2.1. Let C1, C2, X ⊂ Pn be subschemes of the same dimension, with X arith-
metically Gorenstein. Assume that IX ⊂ IC1∩IC2 and that IX : IC1 = IC2 and IX : IC2 = IC1 .
Then C1 and C2 are said to be (directly) algebraically G-linked by X, and we say that C2 is

residual to C1 in X. We write C1
X∼ C2. If X is a complete intersections, we say that C1 and

C2 are (directly) algebraically CI-linked.
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Suppose two subschemes C1 and C2 of Pn are directly G-linked by an arithmetically
Gorenstein subscheme X, and assume that the last twist in the minimal free resolution
of X is −t. Then it was shown in [83] that there is a short exact sequence of sheaves

(2.1) 0→ IX → IC1 → ωC2(n+ 1− t)→ 0.

Of course this gives a short exact sequence on global sections, since IX has vanishing first
cohomology. If furthermore C1 and C2 are arithmetically Cohen-Macaulay, and if we know
a minimal free resolution for IX and one for IC1 , then a mapping cone gives a free resolution
for the canonical module of C2, and the dual of this resolution is a free resolution for IC2 .
(Something more general holds, but we will not need it here.) This construction for the free
resolution of IC2 is called the mapping cone construction.

In some sense, the theories of CI-linkage and G-linkage have moved in different directions,
although in codimension two in projective space they coincide. Two important properties
that these two kinds of linkage have in common are the invariance of the deficiency module
under (even) liaison, and the formula for the Hilbert function of the residual scheme in the
arithmetically Cohen-Macaulay case.

We will see in a moment that the invariance of the deficiency modules implies that the
property of being arithmetically Cohen-Macaulay is preserved under liaison. Accepting this
for now, we first mention the Hilbert function formula. Suppose V and V ′ are arithmetically
Cohen-Macaulay schemes of codimension c directly linked by an arithmetically Gorenstein
scheme X. It turns out that linkage is also preserved under general hyperplane sections,
including Artinian reductions, so we can assume that J and J ′ are Artinian ideals directly
linked by an Artinian Gorenstein ideal I in a polynomial ring R.

Let c = (1, c, c2, . . . , cs−1, cs) be the Hilbert function of R/I (i.e. the h-vector of X).
Note that c is symmetric. Let a = (1, a1, . . . , at) be the Hilbert function of R/J and let
a′ = (1, a′1, . . . , a

′
u) be the Hilbert function of R/J ′. Note that a1 ≤ c, with equality if and

only if V is non-degenerate (and similarly for V ′). By [21] Theorem 3 (see also [63] Corollary
5.2.19) we have the following result.

Theorem 2.2. Under the above assumptions and notation, the h-vector of V2 is given by

a′i = cs−i − as−i
for i ≥ 0.

If C is a subscheme of Pn of dimension r, then for 1 ≤ i ≤ r we will denote by M i(C) the
i-th deficiency module, i.e. the graded R-module

M i(C) =
⊕
t∈Z

H i(IC(t)).

Recall that C is arithmetically Cohen-Macaulay (ACM) if and only if M i(C) = 0 for all
1 ≤ i ≤ r.

It was shown by Hartshorne and by Rao (cf. for instance [86]) that in any codimension
(assuming dimension r ≥ 1), up to shift M i(C) is an invariant of the even liaison class of
C. There is also a result relating the modules under an odd number of links, involving dual
modules. We omit this here, but note that it follows from this that the property of being
arithmetically Cohen-Macaulay is thus an invariant of a liaison class.

In fact, the whole configuration of modules is invariant up to shift. However, except in one
case (see below), they do not uniquely determine the even liaison class, and in codimension
≥ 3 we know very little about what invariant(s) uniquely determine an even liaison class.
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In [10] Proposition 1.4, it was shown that in fact there is a left-most shift for this config-
uration of modules within an even liaison class:

Proposition 2.3. Let L be an even liaison class of dimension r subschemes of Pn (1 ≤ r ≤
n− 2). Then there exists X ∈ L such that for all V ∈ L and for all 1 ≤ i ≤ r, we have

M i(V ) ∼= M i(X)(−d) for some d ≥ 0.

Note that it is the same value of d for each of the modules. This motivates the following
partition of a non-ACM even liaison class according to the shift of the modules:

Definition 2.4. Let L be an even liaison class of dimension r subschemes of Pn. Then L0

is the set of subschemes whose associated modules attain the leftmost possible shift, and Lh
is the set of subschemes whose associated modules are shifted h places to the right of the
leftmost shift.

We now consider curves in P3. As a special case, if C is a curve in P3, we set

M(C) =
⊕
t∈Z

H1(IC(t)).

This is the Hartshorne-Rao module of C. It serves (at least) two purposes in this paper:

• It is invariant for the even liaison class of C (Hartshorne-Rao), and in fact up to shift
it determines the even liaison class (Rao – see Theorem 2.5);
• It measures the failure of C to be ACM In particular,

C is ACM if and only if M(C) = 0.

For codimension two subschemes of a smooth arithmetically Gorenstein variety (in par-
ticular, codimension two subschemes of Pn), we have necessary and sufficient conditions for
two subschemes to be in the same even liaison class (cf. [86], [76], [79]). However, for the
purposes of this paper we focus on the necessary and sufficient condition found by Rao for
curves in P3.

Theorem 2.5 (Rao [85]). (i) Let C,C ′ be curves in P3 whose homogeneous ideals are
unmixed (i.e. the curves are locally Cohen-Macaulay and equidimensional). Then C
and C ′ are in the same even liaison class if and only if M(C) ∼= M(C ′)(δ) for some
δ ∈ Z.

(ii) Let M be a graded module of finite length over k[x0, x1, x2, x3]. Then there exists a
curve C ⊂ P3 and a positive integer δ such that M ∼= M(C)(−δ).

Rao has also solved this question for locally Cohen-Macaulay, codimension two subschemes
of projective space [86] in terms of stable equivalence classes of vector bundles. We omit
the details here, except to remark that both Nagel [76] and Nollet [79] extended the result
to codimension two subschemes that are equidimensional but not necessarily locally Cohen-
Macaulay.

We also remark that among curves in P3 (and indeed, among codimension two subschemes
of Pn), the ACM subschemes form an even liaison class. In higher codimension, it is an
interesting question to determine which ACM subschemes are licci (the CI-liaison class of a
complete intersection), or glicci (the G-liaison class of a complete intersection). We do not
deal with this question in this paper except to mention an important open question in the
last section.
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Next we recall the construction of Liaison Addition, which was discovered and first proved
by Phil Schwartau in his Ph.D. thesis in 1982 [88]. We note that while Schwartau never
published his thesis, the result has been generalized in the literature [10], [32], [47]. Below
we state the version proved in his thesis, very slightly revised to agree with our terminology.

Theorem 2.6 (Schwartau, [88] Theorem 50). Let C,C ′ be codimension two subschemes of
Pn. Let F ∈ IC and F ′ ∈ IC′ be homogeneous polynomials such that (F, F ′) forms a regular
sequence, defining a complete intersection Y . Assume that degF = d, degF ′ = d′. Let
I = F ′ · IC + F · IC′. Then

(i) I is a saturated ideal.
(ii) As sets, I defines C ∪ C ′ ∪ Y . This is also true as schemes if pairwise C, C ′ and Y

have no common component.
(iii) Let X be the scheme defined by the saturated ideal I. Then for 1 ≤ i ≤ n−2 we have

M i(X) = M i(C)(−d′)⊕M i(C ′)(−d).

(iv) In particular, if C and C ′ are ACM then so is X.
(v) The Hilbert function of X satisfies

hX(t) = hY (t) + hC(t− d′) + hC′(t− d).

The ideal I (or the subscheme X) is called the liaison addition of C and C ′.

The construction of Basic Double Linkage was introduced by Lazarsfeld and Rao [58] in
1982 in the context of curves in P3. We first state it in the context of codimension two
subschemes of Pn.

Theorem 2.7 (Lazarsfeld-Rao [58]). Let C ⊂ Pn be a codimension 2 subscheme. Let F ∈ IC
and let A be a form such that (F,A) is a regular sequence. Let Y be the complete intersection
subscheme defined by (F,A).

Consider the ideal J = A · IC + (F ). Then:

(i) J = A · IC + (F ) is a saturated ideal, defining a scheme X.
(ii) If IC is unmixed then X is CI-linked to C in two steps.

(iii) In particular:
– if C is ACM then so is X.
– If C ∈ Lh and degA = a then X ∈ Lh+a.

(iv) If C and Y have no common component then X = C ∪ Y as schemes.

The ideal J (resp. subscheme X) is called a Basic Double Link of IC (resp. of C).

Notice that this version of basic double linkage can be viewed as a special case of Liaison
Addition, by taking C ′ to be the empty set, with ideal R. This theorem has been generalized,
and we next give a more general version. This version was discovered by the two authors
with Kleppe, Miró-Roig and Peterson [54].

Theorem 2.8 ([54] Lemma 4.8, Proposition 5.10). Let S ⊂ Pn be a generically Gorenstein,
ACM subscheme. Let C ⊂ S be an equidimensional subscheme of codimension 1 in S, and
let A ∈ R be a homogeneous element of degree d such that IS : A = IS. Let

J = A · IC + IS.

(i) J is unmixed (in particular saturated). Let Y be the scheme defined by J , so we have
J = IY .
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(ii) deg(Y ) = d · deg(S) + deg(C).
(iii) Y is ACM if and only if C is ACM.
(iv) Let CA be the subscheme of S cut out by A. We have ICA

= IS + (A). As sets,
Y = C ∪ CA, and if A does not vanish on any component of C then this equality is
also true as schemes.

(v) C and Y are evenly G-linked in two steps. When S is a complete intersection, C and
Y are evenly CI-linked in two steps.

The ideal J (resp. the subscheme Y ) is called a Basic Double G-link of IC (resp. of C).

Remark 2.9. We want to highlight the second half of item (v) of the above theorem. When
S is a complete intersection, then Y is not only G-linked in two steps, but in fact CI-linked
in two steps. In this case we call Y a Basic Double CI-link of C.

Example 2.10. As a first application, basic double linkage can be used in a simple way to
show that powers of complete intersections are saturated and Cohen-Macaulay, and with a
little more work, to find their graded Betti numbers. This was carried out in [37]. The main
tool is Lemma 1.4 of that paper, which applies Theorem 2.8 above and says the following.

Let F1, . . . , Fr be a regular sequence in R = k[x0 . . . , xn] with degFi = di. Set
I = 〈F1, . . . , Fr〉 and J = 〈F2, . . . , Fr〉. Then for each positive integer s,

Is = Js + F1 · Is−1.

Furthermore, we have the following short exact sequence

0→ Js(−d1)→ Is−1(−d1)⊕ Js → Js + f1 · Is−1 = Is → 0.

Using this sequence and induction, it is not hard to see that R/Is is Cohen-Macaulay (so in
particular Is is saturated), and using a mapping cone and an inductive argument, with a bit
of work one gets the graded Betti numbers.

The original significance of Theorem 2.8 is that it showed how Gorenstein liaison can be
thought of as a theory about divisors. Indeed, Corollary 5.14 of [54] gives that if S as above
satisfies property G1 and C is a divisor, then a divisor in the linear system |C + tH| (where
H is the hyperplane section class and t ∈ Z) can be obtained from C in two Gorenstein links.
The analogous statement for complete intersection liaison was already known (for instance
[61]). Hartshorne has further explored the consequences of this point of view (e.g. [46]). See
also [64].

As we saw above, in codimension two it is fairly well understood what determines an
even liaison class, while in higher codimension it is wide open. Another natural question
is whether the even liaison classes (say with fixed codimension) have a common structure.
This question has a long history [58], [5], [61], [10], [12], [76], [79], [47], [45], [59]. The
following was proposed in general in [10], although as we will see, the only positive result is
in codimension two.

Definition 2.11 ([10] Definition 1.8). Let L be an even liaison class of dimension r sub-
schemes of Pn. Then L has the Lazarsfeld-Rao (LR)-Property if the following conditions
hold.

(a) If V1, V2 ∈ L0 then there is a deformation from one to the other through subschemes
all in L0.
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(b) Given V0 ∈ L0 and V ∈ Lh (h ≥ 1), there exists a sequence of subschemes V0, V1, . . . , Vt
such that for all i, 1 ≤ i ≤ t, Vi is a basic double link of Vi−1 and V is a deformation
of Vt through subschemes all in Lh.

Remark 2.12. This definition was motivated by the paper [58] of Lazarsfeld and Rao, who
proved that this structure holds for a “general” curve in P3. Their motivation was not so
much to prove a general structure theorem as it was to prove a conjecture of Harris that a
“general” curve is the smallest in its (even) liaison class.

The first broad case not covered by [58] where this structure was proven was for arith-
metically Buchsbaum curves in P3 ([9]; see also Remark 2.14). Much more generally, this
structure (and more) was shown to hold for even liaison classes of unmixed curves in P3 by
Martin-Deschamps and Perrin [61], and at about the same time for locally Cohen-Macaulay,
equidimensional codimension two subschemes of Pn by Ballico, Bolondi and Migliore [5]. We
quote the latter result since we will refer to it.

Theorem 2.13 ([5] Theorem 2.4). Every even liaison class of codimension two, locally
Cohen-Macaulay, equidimensional subschemes of Pn has the Lazarsfeld-Rao property.

Earlier, a very special case (but the first for dimension ≥ 2) was proven in [10]. It was
generalized to unmixed codimension two subschemes by Nollet [79] and (separately) by Nagel
[76].

It is known ([47], [59]) that a G-liaison class in codimension ≥ 3 does not have such a
structure. It is an open question whether it holds for CI-liaison in codimension ≥ 3.

Remark 2.14. As already noted, for a curve C, M(C) is a graded module over the poly-
nomial ring, i.e. multiplication by a linear form L induces a homomorphism from any
component M(C)t to the next. However, it sometimes happens that this multiplication is
trivial for all L and all t. In this case, C is said to be a(n) (arithmetically) Buchsbaum curve.

Ignoring the shift, any finite sequence (d1, . . . , ds) of non-negative integers (say d1, ds 6= 0)
is the sequence of dimensions (up to shift) of the components of many possible graded
modules of finite length, of which one, say M , is the one with trivial multiplication by linear
forms. Ballico and Bolondi [4] have studied how these structures fit together, although we
will not go into this here. By Rao’s theorem (Theorem 2.5), there is a curve C so that M(C)
is some shift of M . By Basic Double Linkage, all rightward shifts of this module also exist
for some curves in P3. Of course if (d1, . . . , ds) 6= (e1, . . . , et) then the modules, and hence the
corresponding even liaison classes, are distinct. Thus each of these tuples represents a unique
Buchsbaum even liaison class. A good deal of work has gone into studying Buchsbaum even
liaison classes and Buchsbaum curves, some of which will be described here in passing. We
also refer to work of Amasaki (e.g. [2]) on this subject.

Buchsbaum curves have provided a setting in which progress on several interesting ques-
tions was made, and liaison tools have played an important role. They arise in several ways
in this paper.

Another liaison tool that has been very useful in the literature, in the construction of
arithmetically Gorenstein subschemes of projective (and graded Artinian Gorenstein alge-
bras) with desired properties, is often referred to as sums of linked ideals. We briefly describe
the background. Although this method has been in existence for a long time, our exposition
here is mostly from [33] and [68], and we will describe these applications in section 3.

It is well known that the sum of the ideals of two geometrically linked, arithmetically
Cohen-Macaulay subschemes of Pn is arithmetically Gorenstein of height one greater, whether
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they are CI-linked [83] or G-linked (cf. [63]). Harima ([39], Lemma 3.1) has computed the
Hilbert function of the Gorenstein ideals so obtained in the case of CI-linkage under a special
numerical assumption. Here we would like to record this result in a more general way, more
in line with our needs.

Lemma 2.15. Let V1
X∼ V2, where X is arithmetically Gorenstein, V1 and V2 are arith-

metically Cohen-Macaulay of codimension c with saturated ideals IV1 and IV2, and the link
is geometric (meaning that V1 and V2 have no common components). Then IV1 + IV2 is the
saturated ideal of an arithmetically Gorenstein scheme Y of codimension c+ 1. The Hilbert
functions are related by Theorem 2.2. Then the sequence di = (ai + a′i − ci) is the first
difference of the h-vector of Y .

Example 2.16. A twisted cubic curve V1 in P3 is linked to a line V2 by the complete
intersection of two quadrics. The intersection of these curves is the arithmetically Gorenstein
zeroscheme Y consisting of two points. This is reflected in the following diagram of h-vectors:

X : 1 2 1
V1 : 1 2
V2 : 1

∆Y : 1 0 −1

adding the second and third rows and subtracting the first to obtain the fourth, and so the
h-vector of Y is (1,1), obtained by “integrating” the vector (1, 0 − 1). The notation ∆Y
serves as a reminder that the row is really the first difference of the h-vector of Y .

It is well known that the h-vector of an arithmetically Gorenstein subscheme of projective
space is symmetric, and a lot of work has been done to try to describe the symmetric se-
quences (1, h1, . . . , he = 1) that arise as the h-vector of an arithmetically Gorenstein scheme
(which from now on we will call Gorenstein sequences). Note that the h-vector of an arith-
metically Cohen-Macaulay (e.g. arithmetically Gorenstein) scheme is the Hilbert function
of its Artinian reduction. Some of this work involves restricting to certain classes of arith-
metically Gorenstein schemes, for instance reduced ones. It is also interesting to understand
how “non-unimodal” a Gorenstein sequence can be, and many papers have explored this.

An important special case of a Gorenstein sequence is a so-called SI-sequence:

Definition 2.17. A symmetric sequence of integers h = (1, h1, . . . , h1, 1) is an SI-sequence
if

(i) h is an O-sequence (i.e. it satisfies Macaulay’s growth condition, and hence is the
Hilbert function of some Artinian algebra);

(ii) the positive part of the first difference, (1, h1−1, h2−h2, . . . ) is again an O-sequence.
In this case we say that h is a differentiable O-sequence.

Definition 2.18. An Artinian graded algebra R/I is said to have the strong Lefschetz
property (SLP) if there exists a linear form ` such that for all i and all d the homomorphism
×`d : [R/I]i → [R/I]i+d has maximal rank. It has the weak Lefschetz property (WLP) if the
above holds just for the case d = 1.

Remark 2.19. Notice that SI-sequences are always unimodal. They are important for (at
least) two reasons:

• When h1 = 3, they are exactly the set of Hilbert functions of Artinian Gorenstein
algebras [89], [94].
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• In any codimension they are exactly the set of Hilbert functions of Artinian Goren-
stein algebras with the Weak Lefschetz Property [39].

Interestingly, in codimension 3 it is not known if all Artinian Gorenstein algebras have the
Weak Lefschetz Property, in spite of the two bullet points above.

3. Stick figures, Zeuthen’s problem and configurations of linear
subvarieties

The question of when an irreducible flat family of subschemes of projective space contains
an element that is a union of linear varieties is a very classical one. In this case we say that
any element of the family specializes to the union of linear varieties. Throughout this section
we assume that our union of linear varieties is equidimensional.

The most desirable kind of union of linear varieties is one for which the singularities are
as “nice” as possible. We will see that different terminology has been used in different
situations. For curves, these are universally called stick figures,” i.e. configurations of lines
where at most two lines meet in a point. In higher dimension, we also want the components
to meet “nicely,” depending on the situation.

• In [11] the authors defined a good linear configuration of codimension two in Pn to
be a union of codimension two linear varieties such that the intersection of any three
has dimension at most n− 4. This was mentioned also in [33], Remark 2.5.
• In [33] the authors defined a good linear configuration of codimension three in Pn “in

the obvious way” without specifying it, but it is clear that it was meant that the
intersection of any three of the codimension three linear components has dimension
at most n− 5.
• In [68] the authors defined a generalized stick figure to be a union of linear varieties

of any dimension d such that the intersection of any three components has dimension
at most d− 2 (where the empty set is taken to have dimension −1).

The latter clearly includes all the previous special cases, so in this section from now on we
will use the term “generalized stick figure,” except for the case of curves where we simply
use “stick figure.”

3.1. Stick figure curves in P3. Returning to families, the most celebrated such problem
is the Zeuthen problem. Indeed, quoting [44], “at the suggestion of H.G. Zeuthen, the Royal
Danish Academy of Arts and Sciences proposed in 1901 a prize problem with a gold medal
[80] p. 29:

To determine if every family of space curves – after the customary division –
contains limit curves which are composed of lines. In the case of a negative
answer there should also be an investigation of conditions for the existence
of such limit curves, and possible restrictions on the results which have been
found using such limit curves.”

The first result in this direction was given by Gaeta [26], who showed that any arithmeti-
cally Cohen-Macaulay curve in P3 specializes to a stick figure.

The Zeuthen problem was solved in full by Hartshorne [44] (his solution appeared in 1997),
where he gives a careful discussion of the history of the problem, partial results, and the
significance of a possible positive answer. He points out that “(F)rom the earliest work on
this problem, it has been understood that a “curve composed of lines” should be taken to
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mean a stick figure, . . . and that “limits” should preserve the arithmetic genus, so that we
are dealing with flat families.”

In this subsection we mention a partial result on space curves predating Hartshorne’s
complete solution and generalizing Gaeta’s work. In the next subsection we will give some
results on arithmetically Gorenstein subschemes of higher codimension. These results used
different ideas from liaison.

In the spirit of Zeuthen’s problem, we first give a result for space curves. We refer to
Remark 2.14 for the definition of Buchsbaum curves and Buchsbaum even liaison classes.

Theorem 3.1 ([11] Proposition 3.4). Every Buchsbaum curve in P3 specializes to a stick
figure.

The proof is based on the following simple idea. Let C be a stick figure in P3 and assume
that C lies on a surface S consisting of a union of planes, no three containing the same line.
Assume further that no component of C lies in the singular locus of S. Let H be a general
plane. Then the union of C and S ∩H is again a stick figure. Notice that C ∪ (S ∩H) is a
basic double link of C.

Let L be an even liaison class of Buchsbaum curves (i.e. an even liaison class all of whose
elements are Buchsbaum with the same Hartshorne-Rao module). If we can show that L
contains a minimal element C0 ∈ L0 that is a stick figure, then the above idea, combined
with the Lazarsfeld-Rao property (Theorem 2.13), shows that every C ∈ L (and hence every
Buchsbaum curve in P3, since L is an arbitrary Buchsbaum liaison class in P3) specializes
to a stick figure. (Actually, it is a little more subtle than this. The construction also needs
the observation that the sequence of basic double links described in part (b) of Definition
2.11 can be chosen to be strictly increasing, in a sense that we omit here. See [63] Example
6.4.12 and [10] Corollary 5.3.)

So it remains to show that L0 contains a stick figure. This is done in [11] using Liai-
son Addition (Theorem 2.6) and induction (see in particular [11] Lemma 3.3). One first
notes that a set of two skew lines is a stick figure, and its Hartshorne-Rao module is one-
dimensional (occurring in degree 0). One then builds up any finite length module with trivial
R-multiplication using Liaison Addition, using surfaces of suitably chosen degree (but as ef-
ficiently as possible). The fact that if the choices are as efficient as possible then the stick
figure so constructed is minimal in its even liaison class is a consequence of the description
of Buchsbaum curves in [8] and [31].

Example 3.2. Let us construct a Buchsbaum curve C that is a stick figure, and such that
M(C) is a module whose dimensions are (1, 0, 2) (meaning 1-dimensional in some degree,
0 in the next degree, and 2-dimensional in the next). Let C1 and C2 be two sets of two
skew lines, chosen generally. Let Fi ∈ ICi

(i = 1, 2) be surfaces of degree 2, each a union of
planes. Then by Theorem 2.6, F2 · IC1 + F1 · IC2 is the saturated ideal of a stick figure Y of
degree 8, with dimM(Y ) = 2, and the only non-zero component is 2-dimensional occurring
in degree 2. (The fact that it is a stick figure of degree 8 is from the geometric interpretation
of Liaison Addition and is left to the reader.)

Now let C3 again be a sufficiently general choice of two skew lines, and let F3 be a union
of four planes containing C3, chosen so that one plane contains one component of C3, one
contains the other component, and the other two are chosen generally. Then F1F2·IC3 +F3·IY
defines a stick figure, C. Its module M(C) is the direct sum of a shift of M(Y ) and a shift
of M(C3). What are these shifts? M(Y ) is 2-dimensional in degree 2, and it gets shifted to
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the right by deg(F3) = 4 to degree 6. M(C3) is 1-dimensional in degree 0 and gets shifted
by deg(F1) + deg(F2) = 4 to degree 4. Thus M(C) has the desired dimensions, with the
1-dimensional component coming in degree 4. The fact that this is the minimal shift among
modules in the even liaison class of C follows from [31] Corollary 3.10. See also [8] for relevant
facts about the even liaison class of a Buchsbaum curve.

3.2. Arithmetically Gorenstein generalized stick figures of codimension three. It
is known from work of Stanley [89] and Buchsbaum and Eisenbud [15] exactly what Hilbert
functions can occur for codimension three arithmetically Gorenstein subschemes, and in fact
from their work we also know what sets of graded Betti numbers can occur. (From now on we
will refer to Betti diagrams as a way of collecting the graded Betti numbers for a given graded
module, in what is now a standard way. For Gorenstein algebras we will refer to Gorenstein
Betti diagrams.) Concerning the Hilbert functions, the corresponding Gorenstein sequences
are the SI-sequences (Remark 2.19). Diesel [22] described an algorithm to find all possible
Betti diagrams given the SI-sequence. She also showed that the Gorenstein algebras for such
a Hilbert function form an irreducible family.

Although the possible Betti diagrams for a given Hilbert function were known, it was not
known “how nice” the arithmetically Gorenstein subschemes are for any such Betti diagram.
In particular, does each such irreducible family contain a reduced set of points in the case of
arithmetically Gorenstein zero-dimensional schemes in P3, a stick figure in the case of curves
in P4, or a generalized stick figure in the case of codimension three subschemes in Pn? This
was shown in the affirmative in [33], and in fact not only for each family but indeed for each
possible Betti diagram.

Theorem 3.3 ([33] Theorem 2.1, Corollary 2.4, Remark 2.5). For any Gorenstein Betti dia-
gram for codimension three subschemes of Pn, there is a arithmetically Gorenstein generalized
stick figure having that Betti diagram.

The idea of the proof is as follows. We begin with a possible Gorenstein Betti diagram.
From this diagram one finds the Betti diagram of a suitable arithmetically Cohen-Macaulay
codimension two subscheme V1, a suitable complete intersection X containing it, and the
Betti diagram of the residual scheme V2 (using the mapping cone construction mentioned
above), so that the sum of the linked ideals is arithmetically Gorenstein and has the desired
Gorenstein Betti diagram. This is done using a certain mapping cone, building off of the
resolutions for the linked curves. (So far this is all numerical.) Then we use Gaeta’s result
mentioned above (generalized to Pn) to arrange that V1, X and V2 are all generalized stick
figures. This gives that IV1 +IV2 defines an arithmetically Gorenstein generalized stick figure
of codimension three with the desired Betti diagram.

With this result for codimension three Gorenstein subschemes, it is natural to wonder
what we can say about higher codimension.

3.3. Arithmetically Gorenstein (generalized) stick figures of any codimension.
Recall from Remark 2.19 that in codimension three, the h-vector of a (codimension three)
arithmetically Gorenstein subscheme is always an SI-sequence. We also noted that in higher
codimension, the SI-sequences are exactly the Hilbert functions of Artinian Gorenstein al-
gebras with the Weak Lefschetz Property. In this setting, though, the Artinian Gorenstein
algebras with the same Hilbert function do not in general form an irreducible family.
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Remark 3.4. It has also been asked (and we conjecture) whether a general Artinian reduc-
tion of a reduced, arithmetically Gorenstein subscheme of projective space necessarily has
the Weak Lefschetz Property in characteristic zero ([69] Question 3.8). Of course since Ar-
tinian Gorenstein algebras exist with non-unimodal Hilbert function, the extension of such
an ideal in a larger polynomial ring defines a non-reduced arithmetically Gorenstein sub-
scheme whose general Artinian reducton does not have the Weak Lefschetz Property. Also,
Mats Boij has shown us an example of a reduced, arithmetically Gorenstein set of points
in projective space such that a special Artinian reduction fails to have the Weak Lefschetz
property. Thus the assumptions general and reduced are important in this question. In any
case, the problem of classifying all possible Hilbert functions of Artinian Gorenstein alge-
bras is probably intractable, and the problem of classifying the Hilbert functions of reduced,
arithmetically Gorenstein subschemes of projective space is still open. Thus the fact that
we at least do know precisely the Hilbert functions of Artinian Gorenstein algebras with the
Weak Lefschetz Property is a very welcome result.

In view of Remark 3.4, it is natural to wonder whether every SI-sequence also occurs as
the h-vector of a reduced, arithmetically Gorenstein subscheme, and then it is worth asking
if it also occurs for a generalized stick figure. In this subsection we are also interested in the
question of whether there is a set of maximal graded Betti numbers among arithmetically
Gorenstein subschemes with the given Hilbert function which have general Artinian reduction
with the Weak Lefschetz Property.

The story starts with the paper [29] of A.V. Geramita, T. Harima and Y.S. Shin. In
that paper they used CI-liaison to construct certain Artinian Gorenstein algebras with the
Weak Lefschetz Property (and as such, whose Hilbert function is an SI-sequence). They were
not interested in generalized stick figures or reduced arithmetically Gorenstein algebras, and
most importantly they did not produce an example for every possible SI-sequence. They
did, however, prove the extremality of the graded Betti numbers for the class of algebras
that they constructed. The paper [68] goes beyond these results (and in fact Remark 10.2
of [68] shows that CI-links are not enough to produce all SI-sequences).

In fact, [68] was innovative in the application of liaison in two ways. First, it was one of the
first papers that applied G-liaison (rather than CI-liaison) to construct interesting objects.
Second, and more surprisingly, the approach was in some sense the reverse of the usual
one: instead of starting with a scheme and producing a Gorenstein scheme containing it to
produce a desired link, the approach was to first produce a totally reducible (i.e. union of
linear varieties) arithmetically Gorenstein scheme and find within it a suitable arithmetically
Cohen-Macaulay subscheme, and then perform the desired G-link. The scheme with the
desired Hilbert function is then obtained as a sum of G-linked ideals.

The first main result of [68] is the following. We will return to this paper when we discuss
simplicial polytopes.

Theorem 3.5 ([68] Theorem 1.1). Let h = (1, c, h2, . . . , hs−2, c, 1) be an SI-sequence and
let K be an arbitrary field containing sufficiently many elements. Then for every integer
d ≥ 0 there is a reduced arithmetically Gorenstein union of linear varieties, G ⊂ Pc+d, of
dimension d, whose general Artinian reduction has the Weak Lefschetz Property, and whose
h-vector is h.

Remark 3.6. 1. Of course the assumption that K has sufficiently many elements de-
pends on the choice of h.



APPLICATIONS OF LIAISON 13

2. The theorem does not, unfortunately, guarantee that the arithmetically Gorenstein
scheme produced is a generalized stick figure, only that it is reduced. However,
the “large” Gorenstein scheme referred to before the statement of the theorem is a
generalized stick figure, and this is what guarantees that when it is used to produced
a sum of linked ideals, the result will again be reduced. The authors conjecture that
the schemes are, in fact, again generalized stick figures ([68] Remark 6.5).

As mentioned, the arithmetically Gorenstein union of linear varieties produced in Theo-
rem 3.5 also has an extremality property. We remark that the schemes produced in [29] also
have such a property.

Theorem 3.7. Fix an SI-sequence h. The scheme produced in Theorem 3.5 with h-vector h
has maximal graded Betti numbers among arithmetically Gorenstein subschemes of Pn whose
general Artinian reductions have the Weak Lefschetz Property and Hilbert function h.

In a way analogous to the approach of [29], the idea is to arrange that the linked varieties
are not only arithmetically Cohen-Macaulay, but in fact have extremal Betti numbers for
their (prescribed) Hilbert functions.

4. The singular locus of a hyperplane arrangement

In this section we will assume that k has characteristic zero.
If A is a hyperplane arrangement in Pn, it is defined by a product, F , of linear forms such

that none is a scalar multiple of another. Let

J = 〈Fx0 , Fx1 , . . . , Fxn〉
be the Jacobian ideal, generated by the partial derivatives of F . Note that J is not necessarily
saturated, and that the saturation Jsat is not necessarily unmixed. It does, however, have
height two. Consider a primary decomposition of J ,

J = q1 ∩ · · · ∩ qs ∩ . . .
where q1, . . . , qs are all the primary components of height 2. For each such primary ideal,
let pi be the associated prime. Then set

J top =
⋂

1≤i≤s

qi and
√
J =

⋂
1≤i≤s

pi.

Both J top and
√
J are unmixed ideals of height 2. We denote by X top the scheme defined by

J top and by Xred the scheme defined by
√
J .

Remark 4.1. Although the saturation of J can still have embedded components, it is
interesting to study the unmixed singular locus of A, and this could refer to either X top

(which is not necessarily reduced) or to Xred. The results described here are a contribution
to this.

As a first step to studying the schemes X top and Xred, one asks if they are necessarily
ACM. If they are not, are there conditions that guarantee that they are ACM? And in
terms of the invariants M i(C) (which we saw in section 2 is a measure of the failure to be
ACM), how far can these schemes be from being ACM? In this section we address all of
these questions.

We first give a version of Liaison Addition (Theorem 2.6) in the language of arrangements,
that we will use in the rest of this section.
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Theorem 4.2 (Arrangement version of Liaison Addition in P3). Let A1 =
⋃s1
i=1Hi and A2 =⋃s2

i=1H
′
i be plane arrangements in Pn with corresponding schemes X top

i , Xred
i (i = 1, 2).

(∗) Assume that no plane of A1 contains a component of Xred
2 and vice versa.

Let A = A1 ∪ A2, with schemes X top and Xred. Then for each 1 ≤ i ≤ n− 2,

M i(X top) ∼= M i(X top
1 )(−s2)⊕M i(X top

2 )(−s1).

Similarly,
M i(Xred) ∼= M i(Xred

1 )(−s2)⊕M i(Xred
2 )(−s1).

In particular, if X top
1 and X top

2 (resp. Xred
1 and Xred

2 ) are ACM then also X top (resp. Xred)
is ACM.

We also give a version of Basic Double Linkage (Theorem 2.7) in the language of arrange-
ments.

Theorem 4.3 (Arrangement version of Basic Double Linkage in Pn). Let A be an arbitrary
hyperplane arrangement in Pn with corresponding schemes X top and Xred. Let H be a plane
not containing any component of Xred. Let A′ = A ∪ H, with corresponding schemes Y top

and Y red. Then X top and Y top are linked in two steps, as are Xred and Y red. In particular:

(i) We have isomorphisms

M i(Y top) ∼= M i(X top)(−1) and M i(Y red) ∼= M i(Xred)(−1)

for 1 ≤ i ≤ dimX = dimY .
(ii) X top (resp. Xred) is ACM if and only if Y top (resp. Y red) is ACM.

A very special case of Theorem 4.3 is the following.

Corollary 4.4 ([27]). Let A be a hyperplane arrangement in Pn and assume that no three
hyperplanes contain the same codimension two linear subvariety. Then X top = Xred is ACM.

Proof. One simply notes that the intersection of two planes is ACM, and then applies The-
orem 4.3 successively for the remaining planes. �

Remark 4.5. The schemes described in Corollary 4.4 are called codimension two star config-
urations. Theorem 2.8 can be used to extend this result. Assume that the intersection of any
j of the hyperplanes of A is either empty or of codimension j. Then for any 1 ≤ c ≤ min(s, n)
let Vc(A) be the union of the codimension c linear varieties defined by the intersections of
these hyperplanes, taken c at a time. In [27] these were called codimension c star config-
urations. Then it was shown in [27] (among other results) that Vc(A) is also ACM. The
machinery of Theorem 2.8 can also be used to give Hilbert functions and Betti numbers of
Vc(A), which we omit here.

Our first main result is obtained by combining Liaison Addition (Theorem 4.2) and Basic
Double Linkage (Theorem 4.3). It says that under a condition on the hyperplanes, X top and
Xred are both ACM.

Theorem 4.6 ([71]). Let A be a hyperplane arrangement in Pn. Assume that

(∗)
{

no linear factor of F is in the associated prime of any two non-reduced components
of J top.

Then both R/J top and R/
√
J are Cohen-Macaulay (i.e. X top and Xred are ACM).
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If (∗) fails then both X top and Xred may fail to be ACM.

Remark 4.7. In 1983, Hiroaki Terao [92] conjectured that the freeness of a hyperplane
arrangement is a combinatorial property, i.e. whether it is determined from its intersection
lattice. The above result does not address freeness. Nevertheless, notice that (∗) is a combi-
natorial property of the intersection lattice of A. Thus one can also ask whether the property
that X top (resp. Xred) is Cohen-Macaulay is a combinatorial property of the intersection
lattice of A. Theorem 4.6 says that the answer is yes provided that condition (∗) holds, so
the issue is whether it is true without condition (∗).

We now focus on arrangements in P3. As indicated in Theorem 4.6, if condition (∗) fails
then it is possible for either X top or Xred or both to fail to be ACM. The first example, where
X top fails, was given in [75] Example 4.5 for hyperplane arrangements in P3, and in their
example Xred is ACM. Experimenting with subarrangements of their example, we were able
to find examples for Xred to fail to be ACM while X top is ACM, and examples where both
fail to be ACM. In all cases, the dimension of the Hartshorne-Rao module was 1. As such,
these curves are automatically Buchsbaum.

This leads to the question of by how much the Cohen-Macaulay property can fail to hold,
and one answer is provided by another application of Liaison Addition:

Theorem 4.8. Let r ≥ 1 be a positive integer. Then:

(i) There exists a positive integer N and an arrangement A in P3, such that

dimM(X top)i =

{
r if i = N ;
0 if i 6= N

(ii) The same result holds for Xred, although the value of N is not necessarily the same.
(iii) For each h ≥ 1 we can replace N by N + h and obtain the same result.
(iv) The curves obtained above are all in the same even liaison class.

The proof involves making sufficiently general “copies” of the curves described before the
statement of the theorem, and applying Liaison Addition r − 1 times, keeping careful track
of the degrees. Then part (iii) is obtained by basic double linkage using general linear
forms (i.e. adding general hyperplanes to A). The conclusion (iv) is a direct application of
Rao’s theorem (Theorem 2.5). Notice that the curves described here are again automatically
Buchsbaum, having only one non-zero component in the Hartshorne-Rao module.

Remark 4.9. It is natural to ask which other even liaison classes arise among the schemes
X top or Xred for arrangements in P3. We have found several examples to show that the curves
in Theorem 4.8 are not the only non-ACM examples. However, a classification remains out
of reach. We would be very interested to know, for example, whether any arithmetically
Buchsbaum curve whose Hartshorne-Rao module is non-zero in more than one degree can
arise in this way.

5. The Eisenbud-Green-Harris conjecture and Cayley-Bacharach

It is hard to imagine a more appropriate topic, in a paper on applications of liaison
theory, than a description of the paper “An application of liaison theory to the Eisenbud-
Green-Harris conjecture” [17] by Ernest Chong.

The classical Cayley-Bacharach theorem (see [23] Exercise 21.24) says the following. Let
Z be a reduced complete intersection of two plane cubics in P2. Let P ∈ Z be any point and
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let Y = Z\P . If F is any cubic vanishing at the eight points of Y , then F must also vanish
at P . Another way to say this is that the Hilbert function of Z and the Hilbert function of
Y agree in degrees ≤ 3. More precisely, the Hilbert function of Z is (1, 3, 6, 8, 9, 9, ...) and
the Hilbert function of any eight points of Z must be (1, 3, 6, 8, 8, . . . ).

Remark 5.1. It is beyond the scope of this paper to discuss all the different directions
beyond this result that have been studied, but we make a few comments.

The classical Cayley-Bacharach theorem has led to the notion of the Cayley-Bacharach
property for a set of points, defined as follows. It is not hard to show that given any reduced
subset of degree d in any projective space Pn (not only P2) with Hilbert function

(1, n+ 1, h2, . . . , ht−1, ht = d, d, . . . ),

with ht−1 < d, there must be at least one subset of d− 1 points with the truncated Hilbert
function

(1, n+ 1, h2, . . . , ht−1, ht − 1 = d− 1, d− 1, . . . ).

(See for instance [34].) The set Z has the Cayley-Bacharach property if this is true for every
choice of d − 1 points. A standard fact, which follows easily from liaison (specifically from
Theorem 2.2) is that any arithmetically Gorenstein set of points in any projective space
has the Cayley-Bacharach property. One generalization has been the notion of the uniform
position property, which has been important in the study of the genus of space curves (see
for instance [41]). A set of points Z in Pn has the uniform position property if, for any
fixed cardinality p, all subsets of p points have the same Hilbert function (which must be
the truncation at level p of the Hilbert function of Z).

The Cayley-Bacharach property has been studied in many papers, for example [16] and
[55] (both of which use liaison as a tool).

The fact that the Cayley-Bacharach property is closely related to liaison has been stud-
ied for many years (see for instance [21]), but in 1996 David Eisenbud, Mark Green and
Joe Harris wrote the beautiful paper [24], starting with historical versions of this result
and developing the theory until they arrived at several versions of what is now called the
Eisenbud-Green-Harris (EGH) conjecture. We refer the reader to [24] for all of the beauti-
ful intricacies and interrelations between the different ideas, and here we will focus on the
version addressed by Chong.

Let S = k[x1, . . . , xn], where k is an infinite field. The version of the conjecture quoted by
Chong is the following.

Conjecture 5.2 (Eisenbud-Green-Harris Conjecture [24]). Let 2 ≤ e1 ≤ · · · ≤ en be integers.
If I ( S is a homogeneous ideal that minimally contains an (e1, . . . , en)-regular sequence of
forms, then there exists a homogeneous ideal J ( S containing xe11 , . . . , x

en
n , such that I and

J have the same Hilbert function.

Some special cases of this conjecture have been proven (we refer to [17] for a partial list).
Chong’s idea is to prove it for a new special case using a result of the current authors in [70].
His main theorem proves it for height three Gorenstein ideals:

Theorem 5.3 ([17] Theorem 1). Let 2 ≤ e1 ≤ e2 ≤ e3 be integers. If I ( k[x1, x2, x3] is
a homogeneous Gorenstein ideal that minimally contains an (e1, e2, e3)-regular sequence of
forms, then there exists a monomial ideal J in k[x1, x2, x3] containing xe11 , x

e2
2 , x

e3
3 , such that

I and J have the same Hilbert function.
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As noted, Chong’s idea was to use liaison to prove this result. First, it follows immediately
from Theorem 2.2 that if I1 and I2 are two Cohen-Macaulay ideals (of any codimension) with
the same Hilbert function, and if c1 and c2 are complete intersections in I1 and I2, respectively,
of the same type, then the linked ideals c1 : I1 and c2 : I2 have the same Hilbert function.

The key ingredient of Chong’s proof is the notion of minimal linkage, which we now
describe. Given an ideal I, there is certainly an initial degree d1 in which I is non-zero (i.e.
the initial degree of I). Then there is a smallest degree d2 ≥ d1 such that I contains a regular
sequence of type (d1, d2). Continuing in this way, there is a smallest c-tuple (where c is the
codimension of I) (d1, d2, . . . , dc) for which I contains a regular sequence of those degrees.
Certainly such a regular sequence can be used to perform a link of I := I1, obtaining a
residual ideal I2.

Next, one can apply the same construction to the residual I2. The resulting tuple is
lexicographically smaller than or equal to the original one. One sequentially applies this
construction (in [62] it was called the minimal link procedure) until one of two things happens.
Either the smallest tuple is no smaller than the one just before, or else one arrives at a
complete intersection ideal.

In the former case, if R/I is not Cohen-Macaulay one can hope that the final ideal is
minimal in its even liaison class, in the sense of Definition 2.11. It was shown in [70] that
among curves in P3, in some even liaison classes this is true, and in others it is not true.
In the latter case, i is said to be licci (i.e. in the linkage class of a complete intersection)
in particular, and hence R/I is Cohen-Macaulay. We now focus on the Cohen-Macaulay
situation.

In codimension two, Gaeta proved that this procedure always leads to a complete inter-
section. In codimension 3, an example was given in [28] of a licci ideal that could not be
minimally linked to a complete intersection, but no proof was given. This was remedied in
[49], where it was even shown that for the Hilbert function (1, 3, 6, 8, 7, 6, 2) there exist three
ideals I1, I2, I3 such that all three quotients have this Hilbert function, but one is not licci,
one is licci but cannot be linked to a complete intersection by minimal links, and one is licci
and can be linked to a complete intersection by minimal links. The latter two even have the
same graded Betti numbers.

This all goes to show that it is interesting to study what properties of an ideal give that
it can be minimally linked to a complete intersection. (The example just mentioned shows
that the Hilbert function and the graded Betti numbers are not enough, in general.) One
such property is that of being Gorenstein of codimension three.

J. Watanabe showed in [93] that any such ideal is licci, but he did not consider minimal
links. Watanabe’s result is extended to minimal links:

Theorem 5.4 ([70] Theorem 6.3). If I ⊂ k[x1, x2, . . . , xn] (n ≥ 3) is a homogeneous Goren-
stein ideal then I can be minimally linked to a complete intersection.

We now return to Chong’s nice idea to use this result to prove Theorem 5.3. He first
weakens the notion of minimal links down to a complete intersection.

Definition 5.5. Let I be a licci ideal of height r. Suppose there exists a sequence of CI-links

I = I0
J1∼ I1

J2∼ · · · Js∼ Is

where Is is a complete intersection. Say the type of Ji is a(i) ∈ Zr+, and assume

a(1) ≥ · · · ≥ a(s)
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in the lexicographic order. Then I is said to be a sequentially bounded licci ideal. If, further-
more, J1 is a minimal link, we say that I is a sequentially bounded licci ideal that admits a
minimal first link.

Chong then proves the following important theorem.

Theorem 5.6. Let 2 ≤ e1 ≤ · · · ≤ en be integers. If I ( S = k[x1, . . . , xn] is a sequentially
bounded licci ideal that admits a minimal first link and minimally contains an (e1, . . . , en)-
regular sequence of forms, then there exists a monomial ideal J ( S containing xe11 , . . . , x

en
n

such that I and J have the same Hilbert function.

The proof is a bit technical, but essentially the existence of the specified sequence of links
starting with I down to a complete intersection allows one to construct a numerically equiv-
alent sequence of links using monomial ideals.

Once this is established, Theorem 5.3 follows immediately from Theorem 5.4.

6. The genus of space curves

A very classical problem, going back well over a century, is to classify the smooth curves
in P3 (also called space curves). In particular, one can ask which pairs (d, g) occur for a
smooth space curves, and what role is played by the least degree of a surface containing the
curve. Furthermore, what Hilbert functions can arise for such curves, or for their general
hyperplane sections? This can also be extended from smooth curves to locally Cohen-
Macaulay, equidimensional curves (see for example [43]), but we consider here only the
smooth case.

As of about 1980, two outstanding references for much of what was known at the time
were Hartshorne’s book [42] (Chapter IV, section 6) and Harris’s Montreal Notes [40]. And
of course one can extend all this to curves in Pn, where open questions remain. It is very
far beyond the scope of this paper to describe this rich history, but two results in fact are
connected (and use) liaison, and we will describe these. The first was written by J. Harris
[41] and appeared in 1980, and the second was written by R. Maggioni and A. Ragusa and
appeared in 1988.

The first complete answer to the question of which pairs (d, g) occur for smooth, non-
degenerate space curves is due to Gruson and Peskine [36], and we omit the slightly technical
statement. A weaker question is to ask for a bound on the genus of a smooth curve of degree
d, and this was settled many years ago:

g(C) ≤

 (d
2
− 1)2, d even

(d−1
2

)
(
d−3

2

)
, d odd

with equality if and only if C lies on a quadric surface and is either a complete intersection
(in the even case) or residual to a line (in the odd case) in a suitable complete intersection
with a quadric. See [41] or [45]. The latter attributes this result to Castelnuovo (1893).

Among curves not lying on a quadric but lying on a cubic surface there is a new bound:

g(C) ≤


d2

6
− d

2
+ 1, d ≡ 0 (mod 3)

d2

6
− d

2
+ 1

3
, d ≡ 1, 2 (mod 3)
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and Harris notes that these three values represent (respectively) (i) the genus of the complete
intersection of a cubic and a surface of degree d

3
, (ii) the genus of the residual to a conic in a

complete intersection of a cubic and a surface of degree d+2
3

, or (iii) the genus of the residual

to a line inside a complete intersection of a cubic and a surface of degree d+1
3

(see [41]).
Notice that in some sense what matters is not so much that the extremal curves in the

latter case fail to lie on a quadric surface as that they do lie on an irreducible cubic surface.
So, for instance, if d = 10 then such a curve may lie on a quadric surface, but then (by
Bezout’s theorem) it has no hope of lying on an irreducible cubic surface. If d = 5, on the
other hand, then the argument is a little bit more subtle: Bezout’s theorem does not rule
out the possibility that C lie on both a quadric surface and an irreducible cubic surface,
but the residual must be a line, which is arithmetically Cohen-Macaulay, so C also must
be arithmetically Cohen-Macaulay and we must have that C has genus 2, which is extremal
using either formula.

Harris’s idea was to extend this to higher degree surfaces. He produces a formula (which
we will not repeat here, but which is analogous to the two formulas above) which gives an
upper bound for the genus of a smooth curve lying on an irreducible surface of degree k. His
argument breaks into two cases, namely d > k(k − 1) and d ≤ k(k − 1), as one might guess
from the preceding paragraph. Furthermore, he shows that the extremal curves are always
residual, in a suitable complete intersection, to a plane curve of degree n = dd−1

k
e+ 1.

Central to Harris’s argument was an approach using hyperplane sections, and studying
the Hilbert function (or more precisely the h-vector) of the corresponding points in H = P2.
It was in this paper that he introduced the crucial notion of points being in uniform position,
meaning that all subsets of m points (for any m) have the same Hilbert function. One also
says that the points have the Uniform Position Property. Harris showed that the general
hyperplane section of a reduced, irreducible curve C ⊂ P3 has this property. Furthermore,
he shows that the h-vector of the general hyperplane section of C is of (what has come to
be called) decreasing type. This means that the beginning of the h-vector agrees with the
polynomial ring, i.e. (1,2,3,4,...), then is possibly flat at the highest point, and after
that is strictly decreasing. So for example (1,2,3,4,5,5,5,3,2) is of decreasing type, while
(1,2,3,4,5,5,5,3,2,2) is not.

A more general bound for the genus (now for curves in Pr) was given in [40], by Eisenbud
and Harris. In this book the authors ask what may be the Hilbert function of the general
hyperplane section of a reduced, irreducible curve in Pr. Furthermore, what may be the
Hilbert function of a set of points in Pr−1 with the Uniform Position Property? And are the
two answers the same?

This question was the launching point for the second liaison-related result that we describe
here, namely the paper [60] of R. Maggioni and A. Ragusa. In this paper the authors show
that when r = 3, the answers are indeed the same and the possible h-vectors are exactly those
of decreasing type. Part of this of course was done by Harris, and the task remaining for the
authors was to show that given an h-vector of decreasing type, there exists a smooth curve
(in fact an arithmetically Cohen-Macaulay smooth curve) whose general (in fact arbitrary)
hyperplane section has the given h-vector.

As mentioned, the proof uses liaison. One starts with an h-vector h of decreasing type.
From h one can read the least degree, a1, of a minimal generator of the ideal IC of any
arithmetically Cohen-Macaulay curve C with this h-vector. One can also read the degree,
a2, where such curve would have its second minimal generator. In general it is not necessarily
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true that IC contains a regular sequence of type (a1, a2), but it is true if C is irreducible,
and it is true for the general hyperplane section of C. One then formally produces the
“residual” h-vector to h, by a complete intersection of type (a1, a2), using Theorem 2.2. Call
this sequence h′.

Next, the authors construct a reduced, ACM union of lines, C ′, in P3 whose h-vector is h′.
They show that C ′ lies on a smooth surface, S, of degree a1. They do this with a variation of
Bertini’s theorem. Finally, they look at the general residual to C ′ in a complete intersection
of S and a surface of degree a2; that is, they look at the linear system |a2H − C ′| on S
and show that the general element is smooth. This general element is the desired smooth
arithmetically Cohen-Macaulay curve C.

Remark 6.1. In the above argument we have ignored the issue of why we need decreasing
type. As the authors remark, in this case it can never happen that C (with h-vector h) lies
in a complete intersection of type (a1, a2).

7. Liaison and Graded Betti Numbers

Liaison theory has been used in a number of contexts in order to achieve information on
minimal free resolutions. We will highlight a few instances.

It is useful to recall a module version of the exact sequence of sheaves (2.1). Let I, J be
ideals of a polynomial ring R = k[x0, . . . , xn] that are directly linked by a Gorenstein ideal
c ⊂ R, that is, c : I = J and c : J = I. Then there is a short exact sequence (see, e.g., [76,
Lemma 3.5])

(7.1) 0→ c ↪→ I → ωR/J(−t)→ 0,

where t is the integer such that ωR/c ∼= R/c(t) and ωR/J ∼= ExtcR(M,R)(−t) is the canonical
module of R/J with c = n+ 1− dimR/J , the codimension of J . If R/J is Cohen-Macaulay
then the Betti numbers of R/J and those of its canonical module determine each other.
Explicitly, if

(7.2) 0→ Fc → · · · → F1 → R→ R/J

is a graded minimal free resolution of R/J over R, then dualizing with respect to R gives a
graded minimal free resolution of ExtcR(M,R),

0→ R→ F ∗1 → · · · → F ∗c → ExtcR(M,R)→ 0.

Consider an ideal I of R that is minimally generated by s homogeneous polynomials of
degrees d1, . . . , ds. This is not enough information to determine the Hilbert function of R/I.
However, if the generators of I are sufficiently general polynomials with the specified degrees,
then the Hilbert function of R/I depends only on the integers n, d1, . . . , ds. In fact, Fröberg’s
conjecture (see [25]) predicts this Hilbert function. This conjecture is known in a number of
cases, but open in general.

The graded Betti numbers of such ideals are much less understood. In fact, one can
show that the graded Betti numbers of an ideal I generated by sufficiently general forms are
determined by n and the generator degrees d1, . . . , ds. However, even in interesting special
cases there is not even a conjecture that gives a precise description of the minimal graded
free resolution of I. Note that the ideal I is resolved by a Koszul complex if s ≤ n+ 1. Thus
the first interesting case is s = n+ 2, that is, I is an almost complete intersection. Although
even in this case the graded Betti numbers are not known in general, many partial results
have been established by the first author and Miro-Roig in [65] (see also [66]). Most notably,
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if n = 2 and so s = 4 the Betti numbers have been determined in [65, Theorems 4.2]. In any
case, the authors obtain very good upper bounds on the Betti numbers. The basic strategy
is to use induction on the number of variables.

Consider a complete intersection c and an almost complete intersection I = (c, f). Then
I is linked by c to a Gorenstein ideal J = c : I = c : f . Using duality, the exact sequence
(7.2) becomes

(7.3) 0→ R/J(− deg f)→ R/c→ R/I → 0.

Now assume that f and the generators of c are sufficiently general. Then R/c has the Strong
Lefschetz Property, and thus so does R/(c : f) = R/J because f is generic. Moreover,
one gets [R/J ]j = [R/c]j if j ≤ 1

2
(d0 + · · · + dn − n − 1 − deg f), where d0, . . . , dn are the

degrees of the generators of c. Let ` ∈ R be a generic linear form. The last equality implies
[R/(J, `)]j = [R/(c, `)]j if j ≤ 1

2
(d0 + · · · + dn − n − 1 − deg f). Using that R/J has the

Weak Lefschetz Property, one knows the Hilbert function of R/(J, `). Moreover, R/(c, `)
is isomorphic to a quotient of R/`R ∼= k[x0, . . . , xn−1] by an almost complete intersection
whose generators have degrees d0, . . . , dn. Thus, by induction on n we have information on
the graded Betti numbers of R/(c, `), and so on the graded Betti numbers of R/(J, `) in low
degrees. Invoking [68, Proposition 8.7], this gives upper bounds on the graded Betti numbers
of R/J in low degrees. Since the resolution of R/J is self-dual as R/J is Gorenstein, one
obtains upper bounds on all graded Betti numbers of R/J . Finally, using Sequence (7.3),
this gives information on the resolution of R/I. The base case for the induction is n = 2,
where R/J is a Gorenstein ideal of codimension three. Thus, its minimal free resolution is
known by work of Diesel [22].

It turns out that the obtained bounds are optimal in several situations, once cancellations
in the mapping cone procedure are taken into account. In general, it is a difficult problem
to establish if a cancellation occurs or not. Since I is a generic complete intersection, one
may hope that its minimal free resolution has few if any ghost terms, that is, free summands
that appear in consecutive homological degrees. Note that ghost terms cannot be entirely
avoided. For example, if I has two generators of degree 5 and one generator of degree
10, there is a Koszul syzygy of degree 10 producing a ghost summand R(−10). A natural
conjecture, due to Iarrobino [21], predicted that these Koszul syzygies are the only source
of ghost terms. However, this is too optimistic. Consider, for example, a generic almost
complete intersection I in three variables with generator degrees 4, 4, 4, 8. Its minimal free
resolution has the form (see [65, Example 4.3]):

0→
R(−10)
⊕

R(−11)2
→

R(−8)3

⊕
R(−9)2

⊕
R(−10)

→
R(−4)3

⊕
R(−8)

→ I → 0.

It has a ghost term R(−10), which is not a consequence of a Koszul syzygy. The presence
of ghost terms makes it challenging to predict the minimal free resolution when the number
of variables is large.

More recently, liaison theory has been used with regards to a conjecture of Mustaţă [74] on
the minimal free resolution of a general set of points X on an irreducible subvariety S ⊂ Pn.
Essentially, the conjecture posits that the top part of the Betti diagram of R/IX is the Betti
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diagram of R/IS and the bottom part has only two rows with no ghost terms. Although it
is not true in general, this conjecture has motivated several investigations.

Assume X is a general set of points on a surface S of P3. In this case, Mustaţă’s conjecture
has been established if S is a smooth quadric [34], a smooth cubic (see [72] and [73]) or a
general quartic surface [6]. The last two results use liaison theory in order to prove the
conjecture by induction on the number of points on X. Once the result is shown for a
certain number of points this set is linked by a suitable Gorenstein set of points to a larger
set of points. Sequence (7.1) is used to guarantee that the new set of points satisfies the
conjecture as well. Establishing the existence of suitable Gorenstein sets of points is rather
subtle. Thus, in [6] the conjecture is first shown for sets of points on a carefully constructed
quartic surface. Semicontinuity implies then the desired result on a general quartic surface.

As indicated in Theorem 3.5 above, a different set of tools from liaison theory has been
used in order to construct reduced Gorenstein schemes with prescribed properties. In fact,
the methods also provide information on their graded Betti numbers.

A key is to use geometric linkage. Suppose ideals I and J are geometrically linked, that
is, I and J do not have associated prime ideals in common and I ∩ J is a Gorenstein ideal
of codimension, say, c. Then Sequence (7.1) implies

ωR/J(−t) ∼= I/I ∩ J ∼= (I + J)/J.

It follows that I+J is a Gorenstein ideal of codimension c+1 that fits into an exact sequence

(7.4) 0→ ωR/J(−t)→ R/J → R/(I + J)→ 0.

As pointed out above, if R/J is Cohen-Macaulay, then a resolution of R/J determines a
resolution of its canonical module ωR/J . Using Sequence (7.4), one obtains upper bounds
on the graded Betti numbers of I + J . If the Castelnuovo-Munford regularity of J is large
enough compared to the regularity of I ∩ J , then these bounds are sharp by [68, Corollary
8.2]. This is an important ingredient of the following result.

Theorem 7.1 ([68, Theorem 8.13]). Let A be a graded Gorenstein k-algebra whose Artinian
reduction has the Weak Lefschetz Property. Then for any integers i, j, there is an upper
bound on dimk[TorRi (A, k)]j depending on the Hilbert function of A.

Moreover, given any Hilbert function of a graded Gorenstein k-algebra of positive dimen-
sion whose Artinian reduction has the Weak Lefschetz Property, there is a reduced Goren-
stein algebra with these properties such that the above bounds are equalities for every i and
j, provided the field k has sufficiently many elements,

The Gorenstein algebras proving sharpness of the bounds are constructed using sums
of geometrically G-linked ideals. The bounds are a consequence of [68, Proposition 8.7]
that compares the graded Betti numbers of an Artinian Gorenstein algebra with those of
A/`A, where ` ∈ [A]1 is sufficiently general. Since A/`A is Cohen-Macaulay its graded Betti
numbers are bounded above by whose of R/L where L is a lexicographic ideal such that R/L
has the same Hilbert function as A. The graded Betti numbers of a lexicographic ideal were
explicitly computed in [77, Proposition 3.8].

The above result has consequences for the theory of simplicial polytopes. Consider a d-
dimensional simplicial polytope P . Let ∆(P ) its boundary complex. The Stanley-Reisner
ring k[P ] = R/I∆(P ) is a Gorenstein ring of dimension d. The so-called g-theorem classifies
face vectors of simplicial polytopes, equivalently, Hilbert functions of k[P ]. In particular,
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Stanley showed in [90] that a general Artinian reduction of k[P ] has the Weak Lefschetz
Property if k has characteristic zero.

Theorem 7.2 ([68, Theorem 9.5]). Suppose k has characteristic zero. If P is a d-dimensional
simplicial polytope then there is an upper bound for any graded Betti number of the Stanley-
Reisner ring k[P ] that depends only on the face vector of P .

Moreover, for every face vector of a simplicial polytope, there is a simplicial polytope with
the given face vector such that the above bounds are all simultaneously sharp.

As pointed out in [77], any empty simplex of a simplicial polytope P corresponds to a
minimal generator of the monomial ideal I∆(P ). Hence, Theorem 7.2 implies a conjecture by
Kalai, Kleinschmidt and Lee on the number of empty simplices of a simplicial polytope (see
[77, Theorem 2.3]). Additional work is needed to establish the following result:

Theorem 7.3 ([77, Corollary 4.16]). Let P be a d-dimensional simplicial polytope with n
vertices, which is not a simplex. Then P has at most

(
g+k
g−1

)
+
(
g+k−1
g−1

)
empty simplices of

dimension ≤ k, where g = n− d− 1.

8. Gröbner bases and Rees algebras

Suppose I ⊂ R is a homogeneous ideal with a generating set G whose initial monomials
(with respect to some monomial ordering on R) generate a monomial ideal I ′. Using Buch-
berger’s classical criterion in order to decide whether G is a Gröbner basis of I is often not
feasible. In interesting cases, liaison theory offers an alternate approach. In fact, if I and I ′

can be linked to complete intersections of the same type and both chains of links have the
same pattern, then this implies that both, R/I and R/I ′, are Cohen-Macaulay ideals with
the same Hilbert function. Hence the inclusion I ′ ⊂ I must be an equality, and G is indeed
a Gröbner basis of I.

In order to implement this basic idea it is often enough to leave out every other ideal in
a chain of direct links by using suitable generalizations of basic double links as discussed in
Theorems 2.7 and 2.8. Here we give a more algebraic version.

Definition 8.1. (i) Let a ⊂ I ⊂ R be homogeneous ideals such that codim a + 1 =
codim I and R/a is Cohen-Macaulay. If f ∈ R is homogeneous with a : f = a, then
the ideal fI + a is called a basic double link of degree deg f on a.

(ii) Let a, I, J be unmixed homogeneous ideals of R such that a ⊂ I ∩ J , codim a + 1 =
codim I = codim J and R/a is Cohen-Macaulay. If there is an isomorphism of graded
R-modules J/a ∼= (I/a)(−t), then it is said that J is obtained from I by an elementary
biliaison of height t on a.

The above names are motivated by the following result.

Theorem 8.2. (a) Suppose J = fI + a is a basic double link of I height t = deg f .
(i) If I is a perfect ideal, then so is J . Moreover, their Hilbert functions are related

by

hR/J(j) = hR/I(j − t) + hR/a(j)− hR/a(j − t) for all j ∈ Z.
In particular, I and J have the same codimension.

(ii) If I is unmixed and R/a is generically Gorenstein then J is unmixed and Goren-
stein linked to I in two steps.

(b) Suppose J is obtained from I by an elementary biliaison of height t.
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(i) The Hilbert functions are related by

hR/J(j) = hR/I(j − t) + hR/a(j)− hR/a(j − t) for all j ∈ Z.
(ii) If If I and J are unmixed and R/a is generically Gorenstein then I and J are

Gorenstein linked to I in two steps.

Proof. (a) Claim (i) is part of [54, Lemma 4.8] and (ii) is shown in [54, Proposition 5.10]
(b) The first assertion is an immediate consequence of the definition. The second assertion

is shown in [46]. �

The concepts of basic double links and elementary biliaison are closely related.

Remark 8.3. (i) If fI + a is a basic double link of I, then there is a graded isomorphism
(I/a)(− deg f) ∼= J/a. Thus, basic double linkage is a special case of elementary biliaison.

(ii) If J is obtained from I by an elementary biliaison of height t, then there are homoge-
neous polynomials f, g ∈ R with deg f = t + deg g, a : f = a = a : g and fI + a = gJ + a.
Thus, I and J are related via two basic double links, and, by Theorem 8.2(a), J can be
obtained (not optimally) from I by four Gorenstein links.

The above result implies a sufficient condition for a set of polynomials to be a Gröbner
basis (with respect to a given term order) for the ideal that they generate. We denote by
in(I) the initial ideal of I with respect to the chosen term order.

Lemma 8.4 ([35, Lemma 1.12]). Fix a monomial order on R. Consider an ideal J that is
obtained from I by an elementary biliaison of height t on a. If the initial ideals in(I) and
in(a) are perfect and there is a monomial ideal J ′ ⊂ J that is obtained from in(I) by an
elementary biliaison of height t on in(a), then J ′ = in(J).

Following [35], we illustrate the use of this Gröbner basis criterion in a simple well-known
case.

Theorem 8.5. Let X = (xi,j) be an m × n matrix with m ≤ n whose entries are distinct
variables. Then the set of maximal minors of X forms a Gröbner basis of the ideal Im(X),
generated by the maximal minors of X.

Sketch of Proof. Fix a monomial order such that the product of the variables on the main
diagonal of any maximal minor is its initial monomial, and denote by J ′ the ideal generated
by these monomials. We want to show that in(Im(X)) = J ′.

We use induction on |X| = mn. If m = 1, then J ′ = I1(X) is generated by variables.
Let m ≥ 2. If n = m, then Im(X) is a principal ideal. Let n ≥ m + 1. Denote by Z

the m × (n − 1) matrix obtained from X by deleting the last column, and let Y be the
(m−1)× (n−1) matrix obtained from Z by deleting the last row. The induction hypothesis
implies that the maximal minors of Y and of Z are Gröbner bases of Im−1(Y ) and Im(Z).
It follows by inspection that

J ′ = in(Im−1(Y )) + xm,n in(Im(Z)).

Since xm,n does not appear in Y , we get in(Im−1(Y )) : xm,n = in(Im−1(Y )). Moreover, we
have codim Im−1(Y ) = m − n + 1 = 1 + codim Im(Z). Hence J ′ is a basic double link of
in(Im−1(Y )) of height one on in(Im(Z)). The proof of [54, Theorem 3.6] shows that Im(X) is
obtained from Im−1(Y ) by an elementary biliaison of height one on Im(Z). Hence Lemma 8.4
gives J ′ = in Im(X). �
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Even if a linkage pattern of an ideal is not known, variations of the above aproach can
be productive. We illustrate the idea by explicitly determining equations of some blow-up
algebras. If I is an ideal of R, then its Rees algebra is the ring R[It] =

⊕
j≥0 I

jtj ⊂ R[t],
where t is a new variable. The special fiber ring of I ⊂ R is the algebra

F(I) =
⊕
j≥0

Ij/mIj ∼= R[It]⊗R R/m,

where m = (x0, . . . , xn) is the unique maximal homogeneous ideal of R. Both rings are finitely
generated k-algebras, and so they are quotients of polynomial rings by suitable ideals. One
often refers to generators of these ideals as equations of the Rees algebra and the special
fiber ring, respectively. Determining these equations is typically a challenging problem. We
describe a solution for some important classes of monomial ideals.

Given a partition λ = (λ1, . . . , λn), let µ = (µ1, . . . , µn) ∈ Zn be a vector such that
0 ≤ µ1 ≤ · · · ≤ µn < λn and µi ≥ i− 1 for i = 1, . . . , n. Set m = λ1. Following [19], define a
generalized Ferrers ideal Iλ−µ as

Iλ−µ := (xiyj | 1 ≤ i ≤ n, µi < j ≤ λi) ⊂ k[x1, . . . , xn, y1, . . . , ym].

It is isomorphic to a Ferrers ideal as considered in [18]. Substituting yj 7→ xj gives the
specialized Ferrers ideal

Iλ−µ := (xixj | 1 ≤ i ≤ n, µi < j ≤ λi) ⊂ K[x1, . . . , xmax{n,m}].

Note that any squarefree strongly stable monomial ideal corresponds to a unique ideal Iλ−µ
with µ = (1, 2, . . . , n).

The above ideals can be visualized using a suitable tableau. Form a skew shape Tλ−µ,
obtained from the Ferrers diagram Tλ by removing the leftmost µi boxes in row i. Then the
generators of Iλ−µ and Iλ−µ correspond to the boxes of the Tλ−µ, where the rows are labelled
by x1, . . . , xn and the columns by y1, . . . , ym and x1, . . . , xm, respectively. We may also label
a box in position (i, j) of Tλ−µ by a variable Ti,j. Thus, it corresponds to a polynomial ring

k[Tλ−µ] := K[Tij | 1 ≤ i ≤ n, µi < j ≤ λi].

The symmetrized tableau Sλ−µ is obtained by reflecting Tλ−µ along the main diagonal.
It may have holes along the main diagonal. For example, if λ = (6, 6, 6, 6, 6) and µ =
(1, 4, 4, 5, 5), one gets

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6

Tλ−µ

x1

x2

x3

x4

x5

x1 x2 x3 x4 x5 x6

T12 T13 T14 T15 T16

T12 T25 T26

T13 T35 T36

T14 T46

T15 T25 T35 T56

T16 T26 T36 T46 T56
Sλ−µ

Observe that in general neither Tλ−µ nor Sλ−µ is a ladder. Denote by I2(Tλ−µ) and
I2(Sλ−µ) the ideals in K[Tλ−µ] generated by the determinants of 2× 2 submatrices of Tλ−µ
and Sλ−µ, respectively. For instance, if λ = (5, 5, 4) and µ = (1, 3, 3) we obtain
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T12 T13 T14 T15

T24 T25

T34

Tλ−µ

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25
Sλ−µ

and so
I2(Tλ−µ) = (T14T25 − T15T24)

and
I2(Sλ−µ) = (T14T25 − T15T24, T12T34 − T13T24).

We need one further construction. Given vectors λ, µ ∈ Zn as above, set

λ′ = (λ1 + 1, λ1 + 1, λ2 + 1, . . . , λn + 1) ∈ Zn+1

and
µ′ = (1, µ1 + 1, µ2 + 1, µn + 1) ∈ Zn+1.

Augment the tableau Sλ−µ with a new top row and a new leftmost column. Leave the new
northwest corner empty and fill the new top row with the variables x1, . . . , xm from left to
right and the leftmost column with x1, . . . , xm from top to bottom. Up to the names of the
variables, the augmented tableau is the same as Sλ′−µ′ .

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25

Sλ−µ

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25

The augmented tableau Sλ′−µ′

Theorem 8.6 ([20, Theorem 4.2 and Corollary 4.6]). The special fiber ring and the Rees
algebra of Iλ−µ are determinantal rings.

More precisely, there are graded isomorphisms

F(Iλ−µ) ∼= k[Tλ−µ]/I2(Sλ−µ)

and, if µ1 ≤ n,
R[Iλ−µt] ∼= F(Iλ′−µ′) ∼= k[Tλ′−µ′ ]/I2(Sλ′−µ′).

By [20, Remark 4.5], the above result also gives a description of the special fiber ring and
the Rees algebra of a generalized Ferrers ideal Iλ−µ as established first in [18]. In particular,
one has F(Iλ−µ) ∼= K[Tλ−µ]/I2(Tλ−µ).

As explained in [20, Remark 4.5], the assumption µ1 ≤ n for the second isomorphism is
harmless. Its proof is similar to that of the first isomorphism. The latter is shown as follows.
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By [20, Theorem 2.4] the 2-minors of Tλ−µ and Sλ−µ form a Gröbner basis of I2(Tλ−µ)
and I2(Sλ−µ), respectively. Their initial ideals can be obtained from ideals generated by
variables via sequences of basic double links, which, in particular, allows one to determine the
codimension of these ideals (see [20, Theorem 3.3]). Consider now the algebra epimorphism

π : k[Tλ−µ] � k[xixj | xixj ∈ Iλ−µ] ∼= F(Iλ−µ),

induced by π(Tij) = xixj. Since π maps all 2-minors of Sλ−µ to zero we get I2(Sλ−µ) ⊂ kerπ.
Both ideals are prime ideals (see [20, Proposition 3.5]). Thus, the desired equality follows
if the two ideals have the same codimension. This is indeed true as a comparison of the
codimension of I2(Sλ−µ) and dimF(Iλ−µ) reveals.

9. Vertex decomposability

The use of liaison-theoretic methods to study simplicial complexes has been pioneered in
[78]. The starting point is a well-known bijection between squarefree monomial ideals and
simplicial complexes.

Recall that a simplicial complex ∆ on n vertices is a collection of subsets of [n] = {1, . . . , n}
that is closed under inclusion. The elements of ∆ are called the faces of ∆. The dimension
of a face F is |F |−1. The Stanley-Reisner ideal of ∆ is I∆ = (

∏
i∈F xi | F ⊆ [n], F 6∈ ∆) ⊂

R = k[x1, . . . , xn], and the corresponding Stanley-Reisner ring is k[∆] = R/I∆. Note that
the dimensions of ∆ and k[∆] determine each other because dim ∆ = dim k[∆]− 1. We say
that ∆ has an algebraic property such as Cohen-Macaulayness if K[∆] has this property. For
more details on simplicial complexes, Stanley-Reisner rings and their algebraic properties we
refer to the books of Bruns-Herzog [14] and Stanley [91].

Following [78, Definition 2.2], a squarefree monomial I is said to be squarefree glicci if I
can be linked in an even number of steps to a complete intersection I ′ generated by variables
such that every other ideal in the chain linking I to I ′ is a squarefree monomial ideal. In
other words the simplicial complex ∆ corresponding to I can be “linked” to a simplex in an
even number of steps, where every other step corresponds to a simplicial complex.

Example 9.1. Denote by ∆ the simplicial complex on [4] consisting of 4 vertices. Its Stanley-
Reisner ideal is I∆ = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4). It is squarefree glicci because

I∆ = x4 · (x1, x2, x3) + (x1x2, x1x3, x2x3)

implies that I∆ is a basic double link of (x1, x2, x3).

Provan and Billera introduced in [84] an important property of a simplicial complex. To
state it recall that, given a vertex j of a simplicial complex ∆, the link of j is

lk∆(j) = {G ∈ ∆ | {j} ∪G ∈ ∆, {j} ∩G = ∅},
and the deletion with respect to j is

∆−j = {G ∈ ∆ | {j} ∩G = ∅}.
A pure simplicial complex ∆ is said to be vertex decomposable if ∆ is a simplex or equal to
{∅}, or there exists a vertex j such that lk∆j and ∆−j are both pure and vertex-decomposable
and dim ∆ = dim ∆−j = dim lk∆j + 1.

Every vertex decomposable simplicial complex is shellable, and so Cohen-Macaulay. Thus,
the following concept, introduced in [78, Definition 3.1], is less restrictive. A pure simplicial
simplex ∆ 6= ∅ on [n] is said to be weakly vertex decomposable if there is some j ∈ [n] such
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that ∆ is a cone over the weakly vertex-decomposable deletion ∆−j or there is some j ∈ [n]
such that lk∆(j) is weakly vertex decomposable and ∆−j is Cohen-Macaulay of the same
dimension as ∆.

We now relate these combinatorial concepts via liaison theory. For a simplicial complex ∆
on [n], consider any vertex j ∈ [n]. Then the cone over the link lk∆(j) with apex j considered
as complex on [n] has as Stanley-Reisner ideal Jlk∆(j) = I∆ : xj. Denote by J∆−j

⊂ R the
extension ideal of the Stanley-Reisner ideal of ∆−j considered as a complex on [n] \ {j}.
Note that xj does not divide any of the minimal generators of J∆−j

, thus J∆−j
: xj = J∆−j

.
Furthermore, it follows that

(9.1) I∆ = xjJlk∆(j) + J∆−j
.

Comparing with Definition 8.1 and Theorem 8.2, this equation implies that ∆ is a basic
double link of the cone over its link lk∆(j) and Gorenstein linked to it in two steps if ∆ is
pure and if the deletion ∆−j is Cohen-Macaulay and has the same dimension as ∆ when
both are considered as complexes on [n]. These observations lead to the following result.

Theorem 9.2 ([78, Theorem 3.3]). If ∆ is a weakly vertex decomposable simplicial complex,
then ∆ is squarefree glicci. In particular, ∆ is Cohen-Macaulay.

This result applies to a number of well-studied classes of simplicial complexes. In fact, it
is known that any pure shifted complex, any matroid complex, any Gorenstein complex and
any 2-Cohen-Macaulay complex (see [3] for the definition) is weakly vertex decomposable.

It has been observed in [78] that in general both of the properties considered in the above
theorem depend on the characteristic of the ground field.

Example 9.3 ([78, Example 5.5]).
(i) Consider a tringulation ∆ of the real projective plane P2 with six vertices. Using the

notation from [14, p. 236], its Stanley-Reisner ideal in k[x1, . . . , x6] is

I∆ = (x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6).

If char k 6= 2 this is a 2-dimensional Cohen-Macaulay complex, whereas ∆ is not Cohen-
Macaulay if char k = 2.

(ii) Let R = k[x1, . . . , x7] and denote by a the extension ideal of I∆ in R. Set J =
(x1, . . . , x4) ⊂ R. Consider the squarefree monomial ideal

I = x7J + a.

Since R/a is Cohen-Macaulay if and only if char k 6= 2, I is a basic double link of the complete
intersection J if char k 6= 2. It follows that in this case I is squarefree glicci and that the
induced simplicial complex ∆′ is weakly vertex-decomposable. However, if char k = 2 then
∆′ is not Cohen-Macaulay and so neither (squarefree) glicci nor weakly vertex decomposable.

Example 9.3(i) also gives rise to a challenging problem. One of the main open questions
in liaison theory is whether every Cohen-Macaulay ideal is glicci. In view of the above
dependence of the Cohen-Macaulayness of k[∆] on the characteristic, the following problem
was proposed in [78, Problem 5.3]:

Problem 9.4. Decide whether the Stanley-Reisner ideal of the above triangulation of P2
R is

glicci if char k 6= 2.
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Recently, in [52] Klein and Rajchgot established a vast generalization of Theorem 9.2. To
discuss it, it is useful to rewrite Equation (9.1) as

(9.2) I∆ = Jlk∆(j) ∩ (xj, J∆−j
).

Note that (xj, J∆−j
) = (xj, I∆) is the Stanley-Reisner ideal of the deletion ∆−j when it

is considered as a simplicial complex on [n]. We also observed that Jlk∆(j) = I∆ : xj.
Knutson, Miller, Yong introduced in [51] geometric vertex decomposition as an analog of the
decomposition in Equation (9.2) for an ideal I ⊂ R = k[x1, . . . , xn] that is not necessarily
homogeneous. We need some notation.

Let y be any variable of R. Any nonzero polynomial f ∈ R can be uniquely written as
f = ydq+r with polynomials q, r ∈ R and d ∈ N0 such that no monomial in q 6= 0 is divisible
by y, no monomial in r is divisible by yd if d > 0 and r = 0 if d = 0. Set iny f = ydq and
define the initial ideal of I with respect to y as

iny I = (iny f | f ∈ I) ⊂ R.

A monomial order < on R is said to be y-compatible if in< f = in<(inf f) for every f 6= 0 in
R. Consider now a Gröbner basis G of an ideal I ⊂ R with respect to a y-compatible order.
Write each element of G as above, that is,

G = {ydiqi + ri | 1 ≤ i ≤ s},

and so in particular iny(y
diqi + ri) = ydiqi. Define the following ideals of R:

by,I = (qi | 1 ≤ i ≤ s) and ay,I = (qi | di = 0).

Note that these definitions do not depend on the choice of Gröbner basis G because one has
by [51, Theorem 2.1],

by,I =
⋃
i≥1

(iny I : yi) and (y, ay,I) = (y, iny I).

Definition 9.5 ([51]). If

(9.3) iny I = by,I ∩ (y, ay,I)

then this is called a geometric vertex decomposition of I with respect to y.

Comparing with Equation (9.2) and the discussion below it, it follows that Equation (9.2)
is a geometric vertex decomposition of I∆ with respect to xj. Using the definition of a vertex
decomposable simplicial complex as a role model, one says (see [52, Definition 2.6]) that an
unmixed ideal I of R is geometrically vertex decomposable if (i) I = R or I is generated
by variables, or (ii) for some variable y of R, iny I = by,I ∩ (y, ay,I) is a geometric vertex
decomposition and the contractions of by,I and ay,I to k[x1, . . . , ŷ, . . . , xn] are geometrically
vertex decomposable. By induction, it follows that every geometrically vertex decomposable
ideal is radical.

Similarly to weakly vertex decomposable simplicial complexes, there are also weakly geo-
metrically vertex decomposable ideals, see [52, Definition 4.6]. Analogously to Theorem 9.2,
one has:

Theorem 9.6 ([52, Corollary 4.8]). Any weakly geometrically vertex decomposable ideal
I ⊂ R is both radical and glicci. In particular, R/I is Cohen-Macaulay.
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This result applies, for example, to Schubert determinantal ideals and homogeneous ideals
of lower bound Cluster algebras [52, Propositions 5.2 and 5.3]. The key observation for
establishing Theorem 9.6 is that a geometric vertex decomposition often gives rise to an
elementary biliaison (see Definition 8.1(ii)).

Theorem 9.7 ([52, Theorem 4.1]). Suppose an unmixed ideal I ⊂ R has a geometric
vertex decomposition with respect to some variable y of R such that neither by,I = ay,I
nor by,I = R. If I, ay,I and I, ay,I are homogeneous then there is a graded isomorphism
I/ay,I ∼= (by,I/ay,I)(−1).

Remarkably, some form of converse to this result is true as well.

Theorem 9.8 ([52, Theorem 6.1]). Fix a y-compatible monomial order and consider ideals
I, b, a with a ⊂ I ∩ b. Suppose that y2 does not divide any term of any element of the
reduced Gröbner basis of I and that no term of any element of the reduced Gröbner basis
of a is divisible by y. If there is an isomorphism of R/a modules I/a → b/a induced by

multiplication with f
g

with iny f

g
= y then iny I = b∩(y, a) is a geometric vertex decomposition.

Combining these results with Lemma 8.4, allows one to determine Gröbner bases of further
classes of ideals (see [52, Corollary 4.13] and [53]).

10. Unprojections

In 1983 Kustin and Miller introduced a construction of Gorenstein ideals in local Goren-
stein rings, starting from smaller such ideals. More precisely, given Gorenstein ideals b ⊂ a
with grades g and g − 1, respectively, in a Gorenstein local ring R, in [56] they construct a
new Gorenstein ideal I of grade g in a larger Gorenstein ring R[v]. Here v is a new inde-
terminate. In [57] they give an interpretation for their construction via liaison theory. The
Kustin-Miller construction has been used to produce many interesting classes of Gorenstein
ideals. In birational geometry it is known as unprojection (see, e.g., [81, 82, 13]). Following
[38], we discuss a modification of the Kustin-Miller construction in the case of graded rings
within the framework of Gorenstein liaison theory.

Let R be a graded Gorenstein k-algebra. Let a and b ⊂ a be homogeneous Gorenstein
ideals in R of codimension g and g − 1, respectively. The embedding b ↪→ a induces the
following commutative diagram, where the rows are minimal free resolutions of R/b and
R/a, respectively:

0 −−→ Bg−1 = R(−u)
bg−1−−→ .... −−→ B1

b1−−→ R −−→ 0y yαg−1

yα1

yα0=id

0 −−→ Ag = R(−v)
ag−−→ Ag−1

ag−1−−−→ .... −−→ A1
a1−−→ R −−→ 0

(10.1)

Fixing bases for all the free modules, we identify the maps with their coordinate matrices.
As above, we denote by ωM the canonical module of a graded R-module M . It is isomorphic
to the k-dual of the local cohomology module HdimM

m (M).

Theorem 10.1 ([38, Theorem 3.1]). Assume d = u − v ≥ 0. Let y ∈ a be a homogeneous
element such that b : y = b. The embedding µ : (b, y) ↪→ a induces an R-module homomor-
phism ωR/a → ωR/(b,y) that is multiplication by some homogeneous element ω ∈ R. Its degree
is d+ deg y.
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Assume there is a homogeneous element f ∈ R of degree d such that b : (ω + fy) = b.
Consider the ideal I obtained from a by the two Gorenstein links

a ∼(b,y)∼(b,ω+fy) I,

that is, I = (b, ω+ fy) : [(b, y) : a]. Then I is a Gorenstein ideal with the same codimension
as a. It can be written as

I = b + (α∗g−1 + (−1)gfa∗g) = (b, α∗g−1 + (−1)gfa∗g),

where α∗g−1 and a∗g are interpreted as row vectors and “+” indicates their component-wise
sum whose entries, together with generators of b, generate I.

Observe that a sufficiently general choice of the element f always gives a desired element
ω + fy in Theorem 10.1, at least if the field k is infinite.

We illustrate the result by a simple example.

Example 10.2. Consider the complete intersections a = (x, y, z) and b = (x2−z2, y2−z2) in
the polynomial ring k[x, y, z], where k is a field of characteristic zero. Linking a by b+ (z2),
we get as residual J = b + (z2, xyz). Choosing f = 5z, we link J by b + (xyz + fz2) to

I = b + (xf + yz, yf + xz, zf + xy) = (x2 − z2, y2 − z2, xz, yz, xy + 5z2).

Notice that for the second link we cannot take f = z because xyz + z3 is a zero divisor
modulo b.

Given a minimal free resolution of b, it is easy to determine minimal free resolutions of
the ideals (b, y) and (b, ω + fy) that are used for the links in Theorem 10.1. Combined
with the mapping cone procedure applied twice to sequences as in (7.1), one obtains a free
resolution of I. However, this resolution is not minimal if g ≥ 3. In fact, by identifying the
construction in Theorem 10.1 as an elementary biliaison one gets a smaller free resolution.

Theorem 10.3 ([38, Theorem 4.1]). Adopt the notation and assumptions of Theorem 10.1.
Then there is a short exact sequence of graded R-modules

0 −−−→ (a/b)(−d) −−−→ R/b −−−→ R/I −−−→ 0.

Moreover, the ideal I has a graded free resolution of the form

0 −→ Bg−1(−d) −→
Ag−1(−d)
⊕

Bg−2(−d)
−→

Bg−2

⊕
Ag−2(−d)
⊕

Bg−3(−d)

−→ . . . −→

B2

⊕
A2(−d)
⊕

B1(−d)

−→
B1

⊕
A1(−d)

−→ I −→ 0.

Notice that the maps in the constructed free resolution of I are described in the proof of
the statement.

Corollary 10.4 ([38, Proposition 4.3]). The homogeneous Gorenstein ideal I = (b, α∗g−1 +
(−1)gfa∗g) in Theorem 10.1 is obtained from a by an elementary biliaison on b.

Proof. The short exact sequence in Theorem 10.3 gives a graded isomorphism a/b(−d) ∼=
I/b. Since b is Gorenstein the claim follows directly from the definition of an elementary
biliaison. �
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The free resolution constructed in Theorem 10.3 is often minimal. In fact, if the polynomial
f is not a unit and each map αi in Diagram (10.1) is minimal whenever 1 ≤ i ≤ g − 1, that
is, Imαi ⊂ mAi, then the resolution of I described in Theorem 10.3 is a graded minimal free
resolution of I (see [38, Corollary 4.2]).

We illustrate the versatility of the above construction by some examples. Even if one
starts with complete intersections the resulting Gorenstein ideal is more complicated.

Example 10.5 ([38, Example 51]). Let R = k[x1, . . . , xn be a polynomial ring. For an
integer g with 2 ≤ g ≤ n, consider two ideals that are generated by regular sequences

b = (xm1
1 , xm2

2 , · · · , xmg−1

g−1 ) ⊂ (xn1
1 , x

n2
2 , · · · , xng

g ) = a.

If d :=
g−1∑
i=1

mi −
g∑
i=1

ni ≥ 0 then, for a sufficiently general polynomial f ∈ R of degree d,

I = (xm1
1 , · · · , xmg−1

g−1 , fxn1
1 , · · · , fx

ng−1

g−1 , fx
ng
g +

g−1∏
j=1

x
mj−nj

j )

is a Gorenstein ideal. Moreover, if mj > nj for each j = 1, . . . , g − 1, then the resolution in
Theorem 10.3 is a minimal free resolution of I.

The next example shows that every Artinian Gorenstein ideal whose Castelnuovo-Mumford
regularity is three can be obtained by one elementary biliaison from a complete intersection.

Example 10.6. Consider an ideal I ⊂ R = k[x1, . . . , xn] such that R/I is a graded com-
pressed Gorenstein algebra with h-vector (1, n, 1). According to Sally [87, Theorem 1.1],
after a suitable change of coordinates any such ideal is of the form

I = (xixj | 1 ≤ i < j ≤ n) + (x2
1 − c1x

2
n, . . . , x

2
n−1 − cn−1x

2
n),

where c1, . . . , cn−1 ∈ k are suitable units. It can be obtained by an elementary biliaison as
in Theorem 10.1 from a = (x1, . . . , xn) on bR, where b is a Sally ideal in n − 1 variables,
namely

b = (xixj | 1 ≤ i < j ≤ n− 1) + (x2
1 −

c1

cn−1

x2
n−1, . . . , x

2
n−2 −

cn−2

cn−1

x2
n−1).

More precisely, there are the following links

a ∼(b,xn) (b, xn, x
2
n−1) ∼(b,x2

n−1−cn−1x2
n) I.

Note that (b, xn, x
2
n−1) = (x1, . . . , xn−1)2 + (xn).

We now consider some codimension four Gorenstein ideals with 9 generators and 16 syzy-
gies. Such Gorenstein ideals are investigated in depth from the point of view of unprojections
in [13].

Example 10.7. Let R = k[a, b, c, d, e, f, x, y, z] be a polynomial ring in 9 variables over a
field k. Consider a generic 3× 3 symmetric matrix A and a generic skew-symmetric matrix
B:

A =

a b c
b d e
c e f

 and B =

 0 x y
−x 0 z
−y −z 0

 .
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For λ 6= 0 in k, define a 6×6 skew-symmetric matrix N =

[
B A
−A λB

]
. The ideal a generated

by the 4× 4 Pfaffians of N is a homogeneous Gorenstein ideal of grade 4:

a =(b2 − ad+ λx2, bc− ae+ λxy, c2 − af + λy2, cd− be+ λxz, ce− bf + λyz,

e2 − df + λz2, cx− by + az, ex− dy + bz, fx− ey + cz).

It is the defining ideal of the Segre embedding of P2 × P2 into P8 and a typical case of a
Tom unprojection (see [13, 82]). In particular, a is equal to the ideal generated by the 2× 2
minors of a 3×3 generic matrix A+

√
−λB. Hence, the Gulliksen and Negȧrd complex gives

its minimal free resolution:

0 −−−→ R(−6)
a4−−−→ R9(−4)

a3−−−→ R16(−3)
a2−−−→ R9(−2)

a1−−−→ a −−−→ 0.

In order to perform the construction of Theorem 10.1, we choose the first three listed gen-
erators of a to define a complete intersection

b = (b2 − ad+ λx2, bc− ae+ λxy, c2 − af + λy2)

inside a. Then we link as follows:

a ∼(b,cd−be+λxz) (b, cd− be+ λxz, ax) ∼(b,ax+(cd−be+λxz)) I.

Explicitly, the resulting ideal I is

I =(e2 − df − cx+ by + az + λz2, ce− bf + ay + λyz, cd− be+ ax+ λxz,

c2 − af + λy2, bc− ae+ λxy, ac+ λfx− λey + λcz, b2 − ad+ λx2,

ab+ λex− λdy + λbz, a2 + λcx− λby + λaz).

It has the same Betti table as a. In fact, I is generated by the 4× 4 Pfaffians of the matrix

M =


0 x y a b c
−x 0 1

λ
a+ z b d e

−y − 1
λ
a− z 0 c e f

−a −b −c 0 λx λy
−b −d −e −λx 0 a+ λz
−c −e −f −λy −a− λz 0

 .

Using the description of the minimal free resolution in Theorem 10.3, one can compare
the Castelnuovo-Mumford regularities of the ideals involved in Theorem 10.1. In fact, one
has (see the proof of [38, Corollary 4.4])

regI − rega = 2d.

In particular, we get regI ≥ rega, which is also expressed by saying that I has been obtained
from a by an ascending elementary biliaison. The last equation also leads to an explicit
example of a Gorenstein ideal that cannot be obtained using the construction of Theorem 10.1
with a strictly ascending biliaison.

Example 10.8 ([38, Example 5.5]). Let I be a generic Artinian Gorenstein ideal in R =
k[x1, . . . , x5] with h-vector (1, 5, 5, 1), where k is an infinite field. It has the least possible
Betti numbers. Its graded minimal free resolution has the form

(10.2) 0→ R(−8)→ R10(−6)→ R16(−5)→ R16(−3)→ R10(−2)→ I → 0.
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This is the key to showing that there are no Gorenstein ideals a and b to produce I using
a biliaison as in Theorem 10.1 that is strictly ascending, i.e., d > 0 or, equivalently, a has
smaller regularity than I.

11. Open questions

We end with a short list of open questions from liaison theory. Besides being important
in and of themselves from a theoretical perspective, it is to be hoped that their resolution
will lead to further examples of beautiful and unexpected applications.

1. It is well-known that if a homogeneous ideal I is glicci then it is Cohen-Macaulay.
What about the converse: is every Cohen-Macaulay ideal glicci? The first result
in this direction is still arguably the cleanest in that it is a direct generalization
of Gaeta’s theorem ([54] Theorem 3.6): if I is the ideal of maximal minors of a
homogeneous t × (t + c) matrix, and if I has the expected height c + 1, then I is
glicci. As mentioned on page 28, this converse is one of the main open questions in
liaison theory and was first proposed in [54], page 18. See Problem 9.4 above for
a particular example. One can also ask, more generally, whether for curves in Pn,
n ≥ 4, the Hartshorne-Rao module determines the even Gorenstein liaison class.

2. We have seen several applications of the LR property (see Definition 2.11 and The-
orem 2.13), and as noted above, this property is only known to hold in codimension
two. It was studied in the context of Gorenstein liaison in higher codimension in
[47], and the general conclusion was that there is no hope of getting an analogous
result in that setting. However, it seems to us to be quite reasonable to hope that
for CI-liaison in higher codimension, the analogous property does hold. And since
it had so many applications in codimension two, one can furthermore expect many
consequences in higher codimension.

3. We have seen above that questions about the genus of curves in Pn, and about possible
Hilbert functions of sets of points in uniform position, have used liaison theory to
make advances. One kind of measure of uniformity is given by the Cayley-Bacharach
property, and we saw above that Chong used liaison to say something also here. It
seems almost certain that Gorenstein liaison will open still further doors for us in
this direction. Is there in fact an approach via Gorenstein liaison?

4. We saw above in sections 3 and 7 that liaison theory has been used to produce a broad
family of arithmetically Gorenstein unions of linear varieties in any codimension,
with important properties. Predominant among these are the fact that the general
Artinian reduction has the WLP, and the fact that the graded Betti numbers are
maximal in a precise sense. In the paper [69] is a discussion of how this relates to
the so-called g-conjecture and, perhaps, an even stronger result as a consequence of a
positive answer to the following open question: Does the general Artinian reduction
of an arithmetically Gorenstein set of points have the WLP? SLP?

5. In several papers (see, e.g., [45, 46]) Hartshorne has studied aspects of the following
open question: Can every Gorenstein ideal be produced by an ascending elementary
biliaison from another Gorenstein ideal? This is interesting in its own right, but it
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would also give further applications along the lines of unprojection, as described in
section 10.
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