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Abstract. This surveys the co-area formula from its most elementary incarnation to the
most sophisticated version. The main goal is to isolate the main ideas and describe how
they fit in the general architecture of this result.
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Introduction

At its core, the co-area formula is a sophisticated version of Fubini’s Theorem relating a
double integral to an iterated integral. From a more modern point of view, the coarea formula
describes the integration along the fibers of a Lipschitz map between rectifiable sets.

From Fubini to integration along fibers is a long road and the goal of these notes is to
describe the main characters we meet along this road.

In Section 1 we consider the simplest case and we answer the simplest question: how do we
integrate along the fibers of a surjective linear map between Euclidean spaces. We show that,
up to orthogonal changes of coordinates this reduces to Fubini’s Theorem but the changes in
coordinates introduce an important character in the story namely, the Jacobian of a linear
map. We spend most of this section analyzing this concept.

Submersions between differentiable manifolds are locally equivalent to surjective linear
maps. In Section 2 we explain how to integrate along the fibers of a C1-submersion between
Riemann manifolds. This reduces easily to the linear case via partitions of unity.

If F : X → Y is an arbitrary C1-map between differentiable manifolds then some of the
fibers need not be smooth manifolds and we have to be careful in describing what measures
we use to integrate along such fibers. It turns out that the correct choice is that of Hausdorff
measures and in Section 3 we survey a few facts about these measures.

Date: Started February 8, 2011. Completed on February 22, 2011. Last revision January 22, 2021.
Notes for the “Blue collar seminar on geometric integration theory” Many thanks to Mattia Luchese for

fixing the many typos and radically rewriting Section 6.
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In Section 4 we describe the co-area formula for arbitrary C1-maps between Riemann
manifolds. Our presentation is greatly inspired from [1, Sec. 13.4]. However, the story does
not end here.

The Lipschitz maps between Riemann manifolds are differentiable almost everywhere and
in Section 5 we explain how to integrate along the fibers of a Lipschitz map Φ : X → Y
between Riemann manifolds X,Y . Finally we relax our assumptions even more. Is there a
co-area formula whenX and Y are not differentiable everywhere, but only almost everywhere?

It turns out that such an extension is possible and the correct framework is that of recti-
fiable sets. This is discussed in the last section.

These started as notes for a talk at a working seminar. There are many presentations of
the co-area formula and I am partial to the approach in [1]. The main goal of the notes is
educational, to understand why and how the co-area formula works. In particular I took
great pains to describe the metamorphosis of this result, from its simplest incarnation to the
most sophisticated one, in the process trying to highlight the new concepts and ideas that
allow the jumps to higher and higher levels of generality.

Acknowledgments. The initial version had many typos and the presentation of the co-area
formula for rectifiable sets was rather negligent, to put it charitably. I am grateful to Mattia
Luchese for volunteering to fix these problems. I especially want to mention Theorem 6.8,
the most general version of the co-area formula. This is due to him and, in this form, it seems
to be new.

1. Fubini theorem and the Jacobian of a linear map

Recall Fubini’s theorem. Suppose ϕ is a integrable function on Rn+k. Then∫
Rn+k

ϕ(x1, . . . , xn+k)dx1 · · · dxn+k

=

∫
Rn

(∫
Rk

ϕ(x1, . . . , xn, xn+1, . . . , xn+k)dxn+1 · · · dxn+k

)
dx1 · · · dxn.

We can reformulate this as follows. Set

y = (x1, . . . , xn), x = (xn+1, . . . , xn+k)

and define A : Rn+k → Rn, (x,y) 7→ y. Then∫
Rn+k

ϕ(x,y)|dVn+k(x,y)| =
∫
Rn

(∫
A−1(y)

ϕ(x,y)|dVk(x)|

)
|dVn(y)|. (1.1)

where |dVi| denotes the i-dimensional Lebesgue measure.
Consider now a slightly more general case of a linear map

A : Rn+k → Rn, (x1, . . . , xn, xn+1, . . . , xn+k) 7→ (y1, . . . , yn) = (µ1x
1, . . . , µnx

n), (1.2)

where µ1, . . . , µn are positive numbers. Applying the Fubini theorem we deduce∫
Rn+k

µ1 · · ·µnϕ(x1, . . . , xn+k)|dVn+k(x
1, . . . , xn+k)|

=

∫
Rn+k

ϕ
( y1

µ1
, . . .

yn

µn
, xn+1, . . . , xn+k

)
dy1 · · · dyndxn+1 · · · dxn+k

=

∫
Rn

(∫
A−1(y)

ϕ(x,y)|dVk(x)|

)
|dVn(y)|.

(1.3)
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But for the factor µ1 · · ·µn, the formulæ (1.1) and (1.3) look similar. To give an invariant
meaning to this quantity we need to use the following elementary fact of linear algebra.

Lemma 1.1. Suppose that U and V are Euclidean spaces, respectively of dimensions n+ k
and n (n, k ≥ 0), and A : U → V is a linear map. Then there exist Euclidean coordi-
nates x1, . . . , xn+k on U , Euclidean coordinates y1, . . . , yn on V and nonnegative numbers
µ1, . . . , µn such that, in these coordinates the operator A is described by

yj = µjx
j , 1 ≤ j ≤ n.

The numbers µ2
1, . . . , µ

2
n are the eigenvalues of the positive symmetric operator AA∗ : V → V

so that
µ1 · · ·µn = JA :=

√
detAA∗.

In particular
A surjective⇐⇒ JA 6= 0.

The quantity JA is called the Jacobian of the linear map A.

Proof. Let W denote the orthogonal complement of kerA in U . Denote by A0 the restriction
of A to W so that A0 : W → V is a linear isomorphism. Note that W coincides with the
range of the adjoint operator A∗ : V → U so that

A0A
∗
0 = AA∗.

We want to find a linear isometry R : V →W such that the operator

B = A0R : V → V

is symmetric. Note that since R is an isometry we have R−1 = R∗. Moreover we have a
commutative diagram

W V

V V

w

A0

u

R

w

B

u

1V

Note that A0A
∗ : V → V is nonnegative and symmetric. We define

R := A∗0(A0A
∗
0)−1/2 : V →W .

Let us show that R is indeed an isometry. Indeed, for any v ∈ V we have

(Rv, Rv) =
(
A∗0(A0A

∗
0)−1/2v, A∗0(A0A

∗
0)−1/2v

)
=
(

(A0A
∗
0)−1/2v, A0A

∗
0(A0A

∗
0)−1/2v

)
=
(

(A0A
∗
0)−1/2v, (A0A

∗
0)1/2v

)
= (v,v).

Clearly A0R = A0A
∗
0(A0A

∗
0)−1/2 = (A0A

∗
0)1/2 is symmetric. Now choose an orthonormal

basis that diagonalizes B. Transport it via R to an orthonormal basis of W . With respect
to these bases of W and V the operator A is described by a diagonal matrix with entries
consisting of the eigenvalues of A0R = (A0A

∗
0)1/2.

ut

Thus, we can rewrite (1.3) as∫
Rn+k

JA(x,y)ϕ(x,y)|dVn+k(x,y)| =
∫
Rn

(∫
A−1(y)

ϕ(x,y)|dVk(x)|

)
|dVn(y)|. (1.4)

Lemma 1.1 shows that (1.4) holds for any surjective linear map Rn+k → Rn.



4 LIVIU I. NICOLAESCU

Proposition 1.2. Suppose that U and V are Euclidean spaces, respectively of dimensions
n+ k and n (n, k ≥ 0), and A : U → V is a linear map. Then

JA =
Voln

(
A(BU

1 )
)

Voln
(
BV

1 )
, (1.5)

where Voln denotes the n-dimensional Euclidean volume on V , BU
1 denotes the unit ball in

U and BV
1 the unit ball in V

Proof. Choose coordinates (xi) on U and (yj) on V as in Lemma 1.1. If A is not onto the
result is obvious since, then dimA(U) < n. If A is onto, then A(BU

1 ) is isometric to the
ellipsoid

E =

x ∈ Rn;

n∑
j=1

(xj)2

µ2
j

≤ 1


where the numbers µj are as in Lemma 1.1. Observe that Voln(E) = µ1 · · ·µn. ut

It is convenient to give a more explicit algebraic description of JA. This relies on the
concept of Gram determinant. More precisely, given a collection of vectors u1, . . . ,un in an
Euclidean space U we define their Gram determinant (or Gramian) to be the quantity

G(u1, . . . ,un) := det
(

(ui,uj)U

)
1≤i,j≤n

,

where (−,−)U denotes the inner product in U . Geometrically,
√
G(u1, . . . ,un) is the n-

dimensional volume of the parallelepiped spanned by the vectors u1, . . . ,un,

P (w1, . . . ,wn) =
{ n∑
j=1

tjwj ; tj ∈ [0, 1]
}
.

Note that G(u1, . . . ,un) = 0 iff the vectors u1, . . . ,un are linearly dependent and G(u1, . . . ,un) =
1 if the vectors u1, . . . ,un form an orthonormal system.

Equivalently
G(u1, . . . ,un) =

(
u1 ∧ · · · ∧ un,u1 ∧ · · · ∧ un

)
ΛnU

where (−,−)ΛnU denotes the inner product on ΛnU induced by the inner product in U .

Lemma 1.3. Let A : U → V be as in Lemma 1.1. Fix a basis fn+1, . . . ,fn+k of U0 := kerA
and vectors u1, . . . ,un such that Au1, . . . , Aun span V . Then

J2
A =

G(Au1, . . . Aun)G(fn+1, . . . ,fn+k)

G(u1, . . . ,un,fn+1, . . . ,fn+k)
. (1.6)

Proof. We first prove the result when dimU = dimV . In this case the collection u1, . . . ,un
is a basis of U . Fix an orthonormal basis e1, . . . , en of U denote by T : U → U the linear
operator

ej 7→ uj .

Then
G(u1, . . . ,un) = detT ∗T,

G(Au1, . . . Aun) = det((AT )∗(AT )) = | detT ∗|detAA∗|detT | = J2
A detTT ∗.

To deal with the general case, we denote by P0 the orthogonal projection onto U0. Now
define

Â : U → V̂ := V ⊕U0, u 7→ Au⊕ P0u.
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we equip V̂ with the product Euclidean structure.
Let us observe that

JA = J
Â
.

Indeed, with respect to the (orthogonal) direct sum decomposition V̂ = V ⊕U0 the operator

ÂÂ∗ has the block decomposition

ÂÂ∗ =

[
AA∗ 0
∗ 1U0

]
so that

det ÂÂ∗ = detAA∗.

Observe that in Λn+k(V ⊕U0) we have the equality

Âu1 ∧ · · · Âun ∧ fn+1 ∧ · · · ∧ fn+k = Au1 ∧ · · ·Aun ∧ fn+1 ∧ · · · ∧ fn+k

so that

G(Âu1, . . . , Âun, Âfn+1, . . . , Âfn+k) = G(Au1, . . . , Aun,fn+1, . . . ,fn+k)

= G(Au1, . . . Aun)G(fn+1, . . . ,fn+k).

Now apply the first part of the proof to deduce that

J2
A = J2

Â
=

G(Âu1, . . . , Âun, Âfn+1, . . . , Âfn+k)

G(u1, . . . ,un,fn+1, . . . ,fn+k)
=

G(Au1, . . . Aun)G(fn+1, . . . ,fn+k)

G(u1, . . . ,un,fn+1, . . . ,fn+k)
.

ut

Suppose now that M and N are C1 manifolds of dimensions respectively n+ k and n (k,
n ≥ 0), equipped with Riemann metrics gM and gN . We denote by |dVM | and |dVN | the
volume densities induced by gM and respectively gN .

2. The co-area formula for submersions

A submersion between differentiable manifolds is locally equivalent with a surjective linear
map. The considerations in the previous sections extend without much effort to this case.
Suppose now that X and Y are C1 manifolds of dimensions n+ k and respectively k, n ≥ 0
equipped with Riemann metrics gX and gY . We denote by |dVX | and |dVY | the volume
densities induced by gX and respectively gY .

Theorem 2.1 (The co-area formula: version 1). Suppose that F : X → Y is a C1-map such
that for any p ∈M the differential DpF : TpX → TF (p)Y is surjective. We denote by JF (p)
the Jacobian of this map. For any nonnegative function ϕ : X → R which is measurable with
respect to the measure defined by |dVX | we have∫

X
JF (p)ϕ(p)|dVX(p)| =

∫
Y

(∫
F−1(q)

ϕ(p)|dVF−1(q)(p)|

)
|dVY (q), (2.1)

where |dVF−1(q)| denotes the volume density on the fiber F−1(q) induced by the restriction of

gX to F−1(q).

Proof. We consider first the case when X is an open subset of Rn+k with coordinates
(x1, . . . , xn+k) equipped with a C1-metric gX , Y is an open subset of Rk with coordinates
(y1, . . . , yk) equipped with a metric gY and the map F is given by

yj = xj , j = 1, . . . , k.
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We have

|dVX | =
√

G(∂x1 , . . . , ∂xn+k)|dx1 · · · dxn+k|

=
√

G(∂x1 , . . . , ∂xn+k)︸ ︷︷ ︸
=:ρX

|dy1 · · · dykdxk+1 · · · dxn+k|,

|dVF−1(q)| =
√
G(∂xk+1 , . . . , ∂xn+k)︸ ︷︷ ︸

=:ρF

|dxk+1 · · · dxn+k|,

where the subscript X indicates that the inner product in the definition of the above Gramm
determinants is the one determined by the Riemann metric on X. Similarly

|dVY | =
√
GY (∂y1 , . . . , ∂yk))︸ ︷︷ ︸

=:ρY

|dy1 · · · dyk| =
√
GY (DF∂x1 , . . . , DF∂xk))|dy1 · · · dyk|.

Using the Fubini theorem we deduce that for any nonnegative, measurable function φ : X → R
we have∫

X
ρY φρX |dy1 · · · dykdxk+1 · · · dxn+k| =

∫
Y

(∫
F−1(y)

ρXφ|dxk+1 · · · dxn+k|

)
ρY |dy1 · · · dyk|

=

∫
Y

(∫
F−1(y)

ρX
ρF

φρF |dxk+1 · · · dxn+k|

)
|dVY (y)| =

∫
Y

(∫
F−1(y)

ρX
ρF

φ|dVF−1(y)|

)
|dVY (y)|.

Suppose that above ρY φ = JFϕ, i.e., φ = JF
ρY
ϕ. Then the above equality can be rewritten∫

X
JF (x)ϕ(x) |dVX(x)| =

∫
Y

(∫
F−1(y)

ρXJF
ρFρY

ϕ|dVF−1(y)|

)
|dVY (y)|.

The co-area formula is proved once we show that

ρXJF
ρFρY

= 1, i.e., JF =
ρY ρF
ρX

.

The last equality follows from (1.6).
The general case of the co-area formula can be reduced to the special case via partition of

unity and the implicit function theorem. ut

Corollary 2.2. Let X, Y and F : X → Y be as in Theorem 2.1. Then for any measurable
function φ : X → R we have∫

X
φ(p)|dVX(p)| =

∫
Y

(∫
F−1(q)

φ(p)

JF (p)
|dVF−1(q)(p)|

)
|dVY (q), (2.2)

as long as either side of the equality is finite.

Proof. Write φ = φ+ − φ− and then apply (2.1) to ϕ± = φ±

JF
. ut

Corollary 2.3. Suppose X is a C1 manifold equipped with a C1-metric gX , and f : X → R
is a C1 function with no critical points . Then for any measurable function φ : X → R we
have ∫

X
φ(p)|dVX(p)| =

∫
R

(∫
{f=t}

φ(p)

|∇f(p)|
|dVf−1(t)(p)|

)
dt. (2.3)
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In particular, by setting φ = 1 we deduce

vol (X) =

∫
R

(∫
{f=t}

1

|∇f(p)|
|dVf−1(t)(p)|

)
dt. (2.4)

ut

Example 2.4. We want to show how to use (2.4) to compute σn, the “area” of the unit
sphere

Sn =
{

(x0, x1, . . . , xn) ∈ Rn;
n∑
j=0

x2
j = 1

}
.

Let Sn∗ denote the unit sphere with the poles x0 = ±1 removed. Then σn = vol (Sn∗ ).
Consider f : Sn∗ → R, f(x0, . . . , xn) = x0. This function has no critical points on Sn∗ . Let

p ∈ Sn∗ such that f(p) = x0(p) = t. Denote by ϕ the angle between the radius Op and the
x0-axis. Note that

cosϕ = x0 = t.

The gradient of f is the projection of ∂x0 on the tangent plane TpS
n. We deduce that

|∇f(p)| = |∂x0 | sinϕ = (1− t2)1/2.

The level set {f = t} is an (n− 1)-dimensional sphere of radius (1− t2)1/2 and we deduce∫
{f=t}

1

|∇f(p)|
|dVf−1(t)(p)| = (1− t2)−1/2vol (f = t) = σn−1(1− t2)

n−2
2 .

Hence

σn = σn−1

∫ 1

−1
(1− t2)

n−2
2 dt = 2σn−1

∫ 1

0
(1− t2)

n−2
2 dt

(t =
√
s)

= σn−1

∫ 1

0
(1− s)

n
2
−1s

1
2
−1ds =: B

(n
2
,
1

2

)
.

The integral

B(p, q) =

∫ 1

0
(1− x)p−1xq−1dx, p, q > 0,

was computed by Euler who showed that

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

Hence
σn
σn−1

=
Γ(n2 )Γ(1

2)

Γ(n+1
2 )

.

Using the equalities σ0 = 2 and Γ(1
2) =

√
π we deduce

σn =
2π

n+1
2

Γ(n+1
2 )

.

We can obtain easily ωn, the volume of the unit n-dimensional ball,

ωn =
1

n
σn−1 =

π
n
2

n
2 Γ(n2 )

=
π

n
2

Γ(n2 + 1)
. (2.5)

ut
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3. The Hausdorff measures

Suppose (X, d) is a separable metric space. Fix a nonnegative real number r. For any
positive number δ and any set E ⊂ X we set

Hr
δ(E) :=

ωr
2r

inf

∑
j≥1

(diamBj)
r; E ⊂

⋃
j≥1

Bj , diamBj < δ


(the Bj are arbitrary subsets of X). Note that if

0 < δ0 < δ1 ⇒ Hr
δ0(E) ≥ Hr

δ1(E).

Thus the limit
lim
δ↘0

Hr
δ(E)

exists and we denote it by Hr. The correspondence E 7→ Hr(E) is an outer measure satisfying
the Caratheodory condition, [6, Chap.12]

dist (E1, E2) > 0⇒ Hr(E1 ∪ E2) = Hr(E1) + Hr(E2).

This implies, [6, Chap. 5], that any Borel set B is measurable with respect to Hr, i.e.,

Hr(E) = Hr(E ∩B) + Hr(E \B), ∀E ⊂ X.
We denote by σr(X) the set of Hr-measurable subsets of X and continue to use the symbol
Hr, or Hr

X , for the restriction of the outer measure Hr to σr(X). The measure Hr is called
the r-the Hausdorff measure.

Example 3.1. (a) If M is a C1-manifold of dimension m equipped with a C0- Riemann
metric g that induces a metric space structure on M , then for any Borel set B ⊂M we have

Hm
M (B) = volg(B).

In particular, Hm
M coincides with the measure induced by the volume density determined

by g. On Rn, this also implies LnRn = Hn
Rn , i.e. the Lebesgue measure and the Hausdorff

measure coincide.
(b) If X,Y are locally compact metric spaces, F : X → Y is a Lipschitz map with Lipschitz
constant ≤ L, and B ⊂ X is a Borel set with Hr(B) <∞, then F (B) is Hr

Y -measurable and

Hr
Y

(
F (B)

)
≤ LrHr

X(B) for all r > 0.

For proofs of the above statements (a) and (b) we refer to [6, Chap 12]. ut

We have the following density result concerning Hausdorff measurable functions. For a
proof we refer to [3, §4.3] or [5, §3.].

Theorem 3.2. Suppose that X is a separable metric space E ⊂ X is a Hm-measurable set
such that Hm(E) <∞. Then for for Hm-almost any x ∈ X \ E we have

lim sup
r↘0

Hm
(
Br(x) ∩ E

)
ωmrm︸ ︷︷ ︸

=:Θ∗m(E,x)

= 0.

Corollary 3.3. Suppose M is an m-dimensional Riemann manifold and S ⊂ M is a C1

submanifold of dimension k. There exists a subset S∗ ⊂ S such that the following hold.

• Hk(S \ S∗) = 0.
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• For any x ∈ S∗ we have

lim
r↘0

Hk(S ∩Br(x))

Hk(M ∩Br(x))
= 1.

Proof. We have

Hm(S ∩Br(x)) = Hm(X ∩Br(x))−Hm
(
Sc ∩Br(x)

)
.

From Theorem 3.2 we deduce that there exits a subset S∗ ⊂ S such that Hm(S \ S∗) = 0
and for any x ∈ S∗ we have

Θ∗m(Sc, x) = 0, i.e. lim sup
r↘0

Hm(Sc ∩Br(x))

ωmrm
= 0.

We deduce

lim inf
r↘0

Hm(S ∩Br(x))

ωmrm
= lim inf

r↘0

Hm(X ∩Br(x))

ωmrm
− lim sup

r↘0

Hm(Sc ∩Br(x))

ωmrm

= lim inf
r↘0

Hm(X ∩Br(x))

ωmrm
.

The desired conclusion follows by observing that

lim
r↘0

ωmr
m

Hm(X ∩Br(x))
= 1 ≥ lim inf

r↘0

Hm(S ∩Br(x))

Hm(X ∩Br(x))
.

The result is now obvious. ut

Theorem 3.4 (Eilenberg inequality). Suppose (X, dX) is a separable metric space and Y is a
C1 manifold of dimension k equipped with a C0-Riemann metric g. Denote by dY : Y ×Y → R
the metric on Y induced by g. Let F : X → Y be a map satisfying the Lipschitz condition

dY
(
F (x1), F (x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X.

Then for any m ≥ k there exists a constant1 C(m, k) > 0 such that for any Borel set A ⊂ X
we have ∫ ∗

Y
Hm−k
X

(
A ∩ F−1(y) )dHk(y) ≤ C(m, k)LkHm(A),

where
∫ ∗

denotes the upper Lebesgue integral. ut

For a proof of this inequality we refer to [1, §13.3] or [3, §5.2.1]. The strategy behind
the proof is identical to the strategy behind the proof of Lemma 4 described a bit later. As
explained in [3, §5.2.1], this inequality implies the following technical result.

Corollary 3.5. Let F : X → Y be as in Theorem 3.4. Then for any m ≥ k and any Borel
subset A ⊂ X the map

Y 3 y 7→ Hm−k
X

(
A ∩ F−1(y) )

)
∈ [0,∞]

is Hk
Y -measurable. ut

1We can choose C(m, k) =
ωm−kωk

ωm
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4. The co-area formula for arbitrary differential maps

We have now all the technical background needed to state and prove a more general co-area
formula

Theorem 4.1 (The co-area formula: version 2). Suppose X and Y are connected, Riemann
C1-manifolds of dimensions n + k and respectively k, n ≥ 0. If F : X → Y is a C1-map
satisfying the Lipschitz condition

dY
(
F (x1), F (x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X,

then, for any Hn+k
X -measurable subset A ⊂ X we have∫

A
JF (x)dHn+k

X (x)︸ ︷︷ ︸
=:I(A)

=

∫
Y
Hn
M

(
A ∩ F−1(y)

)
dHk

Y (y)︸ ︷︷ ︸
=:J(A)

. (4.1)

Proof. When A contains no critical points of F , the result follows directly from Theorem 2.1
applied to X \ {JF = 0} instead of X and ϕ = 1A, the indicator function of A. For a general
A, we write A = (A ∩ {JF = 0}) ∪ (A \ {JF = 0}). The conclusion then follows from the
following Sard-like result (which also guarantees measurability since Hn is complete). ut

Lemma 4.2. The following equality holds true:∫
Y
Hk
X

(
{JF = 0} ∩ F−1(y)

)
dHn

Y (y) = 0.

In other words, Hk
X

(
{JF = 0} ∩ F−1(y)

)
= 0 for Hn

Y -a.e. y ∈ Y .

Proof. Since X is σ-compact it suffices to prove that if C is a compact subset of X such that
JF (x) = 0, for any x ∈ C, then∫

Y
Hn
X(C ∩ F−1(y) ) dHk

Y (y) = 0.

We follow closely the proof of [1, Lemma 13.4.4].
Let us first observe that for any p ∈ C and any ε > 0 there exists rε = rε(p) such that for

any 0 < r < rε(x) we have

Hk
(
F (B(p, r) )

)
≤ εLk−1rk. (4.2)

Indeed, we have rankDpF ≤ k − 1. The definition of the differential of F at x implies that,
given a choice of coordinates x near p such that x(p) = 0 we have

F (x) = F (0) +Apx+ o(|x|), Ap := DpF.

Hence, for any ε > 0, the set F (B(p, r) ) is contained in a k-dimensional polydisk of the form
Dk−1(F (p), Lr)× [−εr, εr] if r is sufficiently small, r < rε(p). Above, Dk−1(y,R) indicates a
(k − 1)-disk of center y and radius R. Since C is compact we can assume that

rε := inf
p∈C

rε(p) > 0.

We deduce that

Hk
(
F (S ∩ C)

)
≤ εLk−1 diam(S)k, ∀S ⊂ X, diamS <

1

2
rε. (4.3)
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For any s > 0 we can find a countable cover of C in X by measurable sets (Xs
i )i≥1 such that

diam(Xs
i ) <

1

s
and Hn+k(C) ≥ ωn+k

2n+k

∑
i≥1

(diamXs
i )n+k − 1

s
. (4.4)

By definition

Hn
(
C ∩ f−1(y)

)
≤ ωn+k

2n+k
lim inf
s→∞

∑
i≥1

(
diamXs

i ∩ f−1(y)
)n
.

For any set E ⊂ X we denote by ϕE the characteristic function of the closure of F (E). We
can then rewrite the above equality as

Hn
(
C ∩ f−1(y)

)
≤ ωn+k

2n+k
lim inf
s→∞

∑
i≥1

(
diamXs

i

)n
ϕXs

i
(y).

The Fatou lemma then implies∫ ∗
Y

Hn
(
C ∩ f−1(y)

)
dHk

Y ≤
ωn+k

2n+k
lim inf
s→∞

∑
i≥1

(
diamXs

i

)n ∫
Y
ϕXs

i
(y)dHk

Y .

Fix ε > 0. We deduce from (4.3) that for s sufficiently large, s > sε we have∫
Y
ϕXs

i
(y)dHk

Y ≤ εLk−1(diamXs
i )k.

Hence ∫ ∗
Y

Hn
(
C ∩ f−1(y)

)
dHk

Y ≤ εLk−1ωn+k

2n+k
lim inf
s→∞

∑
i≥1

(
diamXs

i

)n+k

(4.4)

≤ εLk−1

(
Hnk(C) +

1

sε

)
.

Now let ε→ 0. ut

Remark 4.3. The proof of the Eilenberg inequality follows an identical strategy with the
inequality (4.2) replaced by the inequality

Hk
(
F (S)

)
≤ C(m, k)(dimS)k

for any Borel set S ⊂ X with sufficiently small diameter. ut

Corollary 4.4. Let F : X → Y be as in Theorem 4.1. Then for any measurable function
ϕ : X → R we have∫

X
ϕ(x)JF (x)dHn+k

X (x) =

∫
Y

(∫
F−1(y)

ϕ(x)dHn
X(x)

)
dHk

Y (y), (4.5)

as soon as either side of the above equality is finite.

Proof. By Theorem 4.1 the equality (4.5) is true when ϕ is the characteristic function of a
measurable subset of X. By linearity, (4.5) is true for linear combinations of such functions.
We now observe that for any measurable nonnegative function ϕ we can find a sequence of
simple functions (ϕν)ν≥1 that converges increasingly and almost everywhere to ϕ. Finally, the
general case follows by decomposing a measurable function as a difference of two nonnegative
ones ϕ = ϕ+ − ϕ−. ut
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Corollary 4.5. Suppose that F : X → Y is as in Theorem 4.1. We assume additionally that
X and Y are smooth, oriented and F is also smooth. Denote by Y ∗ the set of regular values2

of Y . When y ∈ Y ∗ we orient the fiber F−1(y) using the fiber first convention

orientation (X) = orientationF−1(y) ∧ orientation (Y ).

Then for any compactly supported C1-form η ∈ Ωn(X) the map

Y ∗ 3 y 7→
∫
F−1(y)

η ∈ R

is measurable and ∫
Y ∗

(∫
F−1(y)

η

)
dVY (y) =

∫
X

(η ∧ F ∗dVY )(x), (4.6)

where dVX and dVY are the Riemannian volume forms on X and respectively Y . More
generally, if α ∈ Ωk+n(X) is a compactly supported C1-form then∫

X
α =

∫
Y ∗

(∫
F−1(y)

α

F ∗dVY

)
dVY (y), (4.7)

where, along a regular fiber F−1(y), the Gelfand-Leray residue α
F ∗dVY

is defined by the equality

α

F ∗dVY
= η|F−1(y), ∀η such that η ∧ F ∗dVY = α.

Proof. We prove (4.6) first. Observe that there exists a unique, compactly supported contin-
uous function ϕ : X → R such that

η ∧ F ∗dVY = ϕdVX . (4.8)

Corollary 4.4 implies that∫
X
η ∧ F ∗dVY =

∫
X
ϕdVX =

∫
Y

(∫
F−1(y)

ϕ

JF
dHk(x)

)
dHn(y)

=

∫
Y ∗

(∫
F−1(y)

ϕ

JF
dHk(x)

)
dHn(y) =

∫
Y ∗

(∫
F−1(y)

ϕ

JF
dVF−1(y)

)
dVY .

To complete the proof we need to show that if y0 is a regular value of F , then
ϕ

JF
|F−1(y0)dVF−1(y0) = η|F−1(y0).

We rely on the same arguments used in the proof of Theorem 2.1. Fix x0 ∈ F−1(y0). We
can find local coordinates y1, . . . , yk near y0 in Y and coordinates (x1, . . . , xk, xk+1, . . . , xk+n)
near x0 in X such that in these coordinates F is the linear projection

yj = xj , j = 1, . . . , k.

We write

dx′ = dxk+1 ∧ · · · ∧ dxk+n, dx′′ = dx1 ∧ · · · ∧ dxk, dy = dy1 ∧ · · · ∧ dyk.
We assume that the coordinates are ordered so that

dVX = ρXdx
′ ∧ dx′′, dVY = ρY dy, dVF−1(y0) = ρFdx

′.

2Since F is smooth Y \ Y ∗ is negligible by Sard’s theorem.
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As in the proof of Theorem 2.1 we have

JF =
ρY
ρF
ρX .

In the coordinates (x′, x′′) we can write

η = η′dx′ + other terms

where η′ = η′(x′, x′′) is a locally defined C1-function. Note that

η|F−1(y0) = η′dx′.

We deduce that

η ∧ F ∗dVY = η ∧ (ρY dx
′′) = η′ρY dx

′ ∧ dx′′ = η′ρY
ρX

dVX .

Hence, in the coordinates (x′, x′′) we have

ϕ =
η′ρY
ρX

.

We conclude that

ϕ

JF
dVF−1(y0) =

ϕ

JF
ρFdx

′ =
η′ρY ρF
ρXJF

dx′ = η′dx′ = η|F−1(y0).

Observe that (4.7) follows from (4.6). With y0 a regular value of F as before and x0 ∈ F−1(y0),
we write α locally near x0 as a product

α = η ∧ F ∗dVY .

The form η is not unique, but its restriction to F−1(y0) is. Then, by definition,

η|F−1(y0) =
α

F ∗dVY
.

ut

5. The co-area formula for Lipschitz maps between differentiable manifolds

To formulate the most general version of the co-area formula for Riemannian manifolds we
need to recall a few facts about Lipschitz maps between locally Euclidean sets.

Theorem 5.1 (Rademacher). Suppose Uk ⊂ Rnk , k = 0, 1 are open sets and F : U0 → U1

is a Lipschitz map. Then the map F is almost everywhere differentiable and the differential
is a measurable map U0 → Hom(Rn0 ,Rn1). Moreover, for any ε > 0 there exists a C1 map
Fε : U0 → Rn1 such that

vol
({
x ∈ U0; F (x) 6= Fε(x)

})
+ vol

({
x ∈ U0; DF (x) 6= DFε(x)

})
< ε ut

For a proof we refer to [3, §5.1].

Theorem 5.2 (Extension theorem). Suppose that S ⊂ Rn is a closed subset and F : S → R
is a Lipschitz function. Then f admits an extension to a Lipschitz function f̃ : Rn → R that
has the same Lipschitz constant as f . ut

For a proof we refer to [3, Thm. 5.1.12].
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Theorem 5.3 (The co-area formula: version 3). Suppose X and Y are C1 Riemann manifolds
of dimensions n+k and respectively k, n ≥ 0. If F : M → N is a map satisfying the Lipschitz
condition

dY
(
F (x1), F (x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X,

then, for any Hn+k
X -measurable subset A ⊂ X we have∫

A
JF (x)dHn+k

X (x)︸ ︷︷ ︸
=:I(A)

=

∫
Y
Hn
M

(
A ∩ F−1(y)

)
dHk

Y (y)︸ ︷︷ ︸
=:J(A)

. (5.1)

Proof. Clearly, it suffices to prove the theorem for sets A with the following property: A
is contained in a coordinate neighborhood U0 ⊂ X and F (U0) is contained in a coordinate
neighborhood U1 ⊂ Y such that U0 is bi-Lipschitz homeomorphic to a bounded open subset
in Rn+k and U1 is bi-Lipschitz homeomorphic to a bounded open set in Rk. For any ε > 0
we can find a compact subset Cε ⊂ U0 and a C1-map Fε : U0 → Rk such that

Hn+k
X (U0 \ Cε) < ε, F |Cε = Fε|Cε , JF |Cε = JFε |Cε .

Then

I(A)− J(A) = I(A ∩ Cε)− J(A ∩ Cε) + I(A \ Cε)− J(A \ Cε).
The monotone convergence theorem implies that

lim
ε↘0

I(A \ Cε) = 0

while the Eilenberg inequality implies that

lim
ε↘0

J(A \ Cε) = 0.

On the other hand, there exists an open neighborhood V0 of Cε in U0 such that Fε(V0) ⊂ U1.
Applying Theorem 4.1 to the C1-map Fε : V0 → U1 we deduce that

I(Cε) =

∫
Cε

JF (x)dHn+k
X (x) =

∫
Cε

JFε(x)dHn+k
X (x)

(4.1)
=

∫
Y
Hn
M

(
Cε ∩ F−1

ε (y)
)
dHk

Y (y) =

∫
Y
Hn
M

(
Cε ∩ F−1(y)

)
dHk

Y (y) = J(Cε).

ut

Corollary 5.4. Suppose X and Y are C1 Riemann manifolds of dimensions n + k and
respectively k, n ≥ 0. If F : M → N is a map satisfying the Lipschitz condition

dY
(
F (x1), F (x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X,

then, for any Hn+k
X -measurable function ϕ : X → R we have∫

X
ϕ(x)JF (x)dHn+k

X (x) =

∫
Y
Hn
M

(∫
F−1(y)

ϕ(x)dHn(x)

)
dHk

Y (y), (5.2)

as soon as either side of the equality is finite.
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Proof. Note that (5.2) is linear in ϕ and, by Theorem 5.3, it is true for ϕ = 1A. Thus it is
true for linear combinations

ϕ =
∑
i

ci1Ai

The Monotone Convergence Theorem implies that it is true if ϕ is nonnegative. For a general
ϕ we observe that ϕ = ϕ+ − ϕ− and the formula is true for ϕ±. ut

Corollary 5.5 (Area formula). Let X,Y be two n-dimensional C1-manifolds equipped with
C0-Riemann metrics and F : X → Y a Lipschitz map. Then∫

Y
#F−1(y)dHn(y) =

∫
X
JF (x)dHn(x). (5.3)

ut

6. The co-area formula for Lipschitz maps between rectifiable sets

A set X ⊂ RL is said to be countably m-rectifiable if it is Hm-measurable and

X ⊂ X0 ∪

⋃
j≥1

Fj(Rm)

 ,

where

• Hm(X0) = 0;
• the functions Fj : Rm → RL are Lipschitz, ∀j ≥ 1.

We have the following result, [3, §5.4].

Proposition 6.1. Suppose that X ⊂ RL is Hm-measurable and countably m-rectifiable. Then

X =

∞⊔
j=0

Xj ,

where

• Hm(X0) = 0;
• Xi ∩Xj = ∅ if i 6= j;
• for j ≥ 1 there exists an m-dimensional C1-submanifold Mj ⊂ RL such that Xj ⊂
Mj.

Definition 6.2. If X is a Hm-measurable subset of RL, then we say that an m-dimensional
vector subspace W ⊂ RL is the approximate tangent space for X at x ∈ RL if

lim
r↘0

∫
r−1(X−y)

f(y)dHm(y) =

∫
W
f(y)dHm(y), ∀f ∈ C0

cpt(RL).

Proposition 6.3. Suppose that X ⊂ RL is a countably m-rectifiable set such that Hm(X ∩
K) <∞ for any compact subset K ⊂ RL. Then there exists a subset Xsing ⊂ X such that

• Hm(Xsing) = 0 and
• for any x ∈ X \Xsing there exist an approximate tangent space to X at x.

Proof. We write X as in Proposition 6.1

X =

∞⊔
j=0

Xj



16 LIVIU I. NICOLAESCU

where Xj is contained in a C1, m-dimensional submanifold Mj ⊂ RL, Xi ∩Xj = ∅, ∀i 6= j,
Hm(X0) = 0. For j > 0 we denote by X∗j the set of points x ∈ Xj such that

lim
r↘0

Hm((X \Xj) ∩Br(x))

rm
= lim

r↘0

Hm((Mj \Xj) ∩Br(x))

rm
= 0.

By Theorem 3.2 we have Hm(Xj \ X∗j ) = 0. We will show that X admits an approximate

tangent space at any point x ∈ X∗j . Indeed, suppose f ∈ C0
cpt(RL). For simplicity assume

that supp f ⊂ B1(0), and f ≥ 0. Then using the change in variables y = 1
r (z − x)∫

1
r

(X−x)
f(y)dHm(y) =

1

rm

∫
X
f

(
1

r
(z − x)

)
dHm(z)

=
1

rm

∫
Br(x)∩X

f

(
1

r
(z − x)

)
dHm(z)

Now observe that

1

rm

∣∣∣∣∣
∫
Br(x)∩X

f

(
1

r
(z − x)

)
dHm(z)−

∫
Br(x)∩Xj

f

(
1

r
(z − x)

)
dHm(z)

∣∣∣∣∣
≤ sup f

Hm(Br(x) ∩ (Xj \X)

rm
→ 0,

and
1

rm

∣∣∣∣∣
∫
Br(x)∩Xj

f

(
1

r
(z − x)

)
dHm(z)−

∫
Br(x)∩Mj

f

(
1

r
(z − x)

)
dHm(z)

∣∣∣∣∣
≤ sup f

Hm(Br(x) ∩ (Mj \Xj)

rm
→ 0

Hence

lim
r↘0

(∫
1
r

(X−x)
f(y)dHm(y)−

∫
1
r

(Mj−x)
f(y)dHm(y)

)
= 0.

ut

Theorem 6.4 (Extension theorem). Suppose that C ⊂ RL1 is a closed subset and F :
C → RL2 is a Lipschitz function. Then F admits an extension to a Lipschitz function

F̃ : RL1 → RL2 that has the same Lipschitz constant as F .

For a proof we refer to [3, Thm. 5.1.12].

Definition 6.5. Suppose that X ⊂ RL1 is (n + k)-rectifiable, Y ⊂ RL2 is n-rectifiable and
F : X → Y is a Lipschitz map. Write X =

⊔∞
j=0Xj as in Proposition 6.1, with Xj ⊂Mj for

j ≥ 1 (the Mj are C1 manifolds). The approximate differental apDF of F is defined as

apDF (p) = DF̃j(p) for p ∈ Xj ,

where F̃j : Mj → RL2 is any Lipschitz extension of F|Xj
: Xj ⊂ Mj → RL2 . It is possible to

show that apDF (p) is well-defined for Hn+k-a.e. p ∈ S and apDF (p) : apTpS → RL2 .
The approximate Jacobian of F is

apJF (p) = ||
n∧
apDF (p)||Hom(

∧n apTpX,
∧n RL2 )

(
=

Hn(apDF (B1(0)))

ωn

)
.

Remark 6.6. A few comments are in order.
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(i) The above definitions do not depend on the choices of the decomposition X =⊔∞
j=0Xj and of the extensions F̃j .

(ii) apJF = JF in case F : M → N and M,N are C1 manifolds of dimensions n+k and n.

(iii) If N is an n-dimensional manifold and F : X → N , then for Hn+k-a.e. point p ∈ X

apDpF : apTpX → TF (p)N.

(Notice that this is false if F : X → Y and Y is just assumed to be an n-rectifiable
set. In this case it could even happen that the approximate tangent space apTF (p)Y

does not exist for a subset of X with positive Hn+k measure.)

ut

We are almost ready to state the final version of the coarea formula, but first we need a
more sophisticated version of Theorem 3.4.

Theorem 6.7 (Eilenberg inequality - general case). Suppose (X, dX) and (Y, dY ) are two
metric spaces and F : X → Y is Lipschitz. Suppose also that all closed balls in N are
compact. Then, for all A ⊂ X, n, k ≥ 0,∫ ∗

Y
Hn+k
X

(
A ∩ F−1(y) )dHn

Y (y) ≤ ωnωk
ωn+k

LnHn+k
X (A).

For a proof of this general form of the Eilenberg inequality we refer to [2, Thm. 2.10.25].

Theorem 6.8 (The co-area formula: final version). Suppose that X ⊂ RL1 is (n + k)-
rectifiable, Y ⊂ RL2 is n-rectifiable and F : X → Y is a Lipschitz map. Then, for any
nonnegative Hn+k

X -measurable function ϕ : X → R we have3∫
X
ϕ(p)apJF (p)dHn+k

X (p) =

∫
Y

(∫
F−1(q)

ϕ(p)dHk
X(p)

)
dHn

Y (q). (6.1)

Proof. Let X =
⊔∞
j=0Xj and Y =

⊔∞
i=0 Yi as in Proposition 6.1, with Xj ⊂Mj and Yi ⊂ Ni

for i, j ≥ 1 (Mj and Ni manifolds of class C1). Set Xi
j = Xj∩F−1(Yi), so that X =

⊔∞
ij=0X

i
j .

(1) First of all, consider X0. In this case, an application of Theorem 6.7 gives∫
X

(ϕ1X0)(p)apJF (p)dHn+k
X (p) = 0 =

∫
Y

(∫
F−1(q)

(ϕ1X0)(p)dHk
X(p)

)
dHn

Y (q).

(2) Second, consider X0
j with j ≥ 1. Note that for all n-dimensional planes π ⊂ RL2 there

is a coordinate projection πi1,...,in : π → Rn, (x1, ..., xL2) 7→ (xi1 , ..., xin) with the property

that π−1
i1,...,in

exists and is Lipschitz with constant L ≤ C(L2, n), where C(L2, n) is a constant
depending only on L2 and n. Considering π = apTpS, this implies

apJF ≤ C(L2, n)
∑

i1<...<in

apJπi1,...,in◦F .

3Implicit in the statement of (6.1) is the fact that the various integrands are measurable with respect to
the appropriate measures.
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Therefore, from Theorem 5.3 applied to πi1,...,in ◦ F : Mj → Rn, we get∫
X

(ϕ1X0
j
)(p)apJF (p)dHn+k

X (p) ≤ C(L2, n)
∑

i1<...<in

∫
Mj

(ϕ1X0
j
)(p)apJπi1,...,in◦F (p)dHn+k

Mj
(p)

= C(L2, n)
∑

i1<...<in

∫
Rn

(∫
(πi1,...,in◦F )−1(q)

(ϕ1X0
j
)(p)dHk

Mj
(p)

)
dHn

Rn(q)

= 0 =

∫
Y

(∫
F−1(q)

(ϕ1X0
j
)(p)dHk

X(p)

)
dHn

Y (q),

where the last two equalities hold because Hn
Rn(πi1,...,in(F (X0))) = Hn

Y (F (X0)) = 0.
(3) Now we deal with Xi

j , i, j ≥ 1. We start by exending F|Xi
j

: Sij ⊂ Mj → Yi ⊂ Ni to a

Lipschitz map F̃ ij : Mj → Ni. We want to prove∫
X

(ϕ1Xi
j
)(p)apJF (p)dHn+k

X (p) =

∫
Y

(∫
F−1(q)

(ϕ1Xi
j
)(p)dHk

X(p)

)
dHn

Y (q).

But this is the same thing as∫
Mj

(ϕ1Xi
j
)(p)JF̃ i

j
(p)dHn+k

Mj
(p) =

∫
Ni

(∫
Mj∩F̃−1(q)

(ϕ1Xi
j
)(p)dHk

Mj
(p)

)
dHn

Ni
(q),

and this last equality is just Theorem 5.3.
Since the integrals are countable additive, we can combine (1), (2) and (3) together and
conclude the proof. ut

Corollary 6.9 (Area formula). Let X ⊂ RL1 be m-rectifiable and Y ⊂ RL2 be n-rectifiable,
with m ≤ n. Let F : X → Y be a Lipschitz map. Then∫

X
ϕ(p)apJF (p)dHm

X(p) =

∫
Y

(∫
F−1(q)

ϕ(p)dH0
Y (p)

)
dHm

Y (q) (6.2)

for any nonnegative Hm
X-measurable ϕ : X → R.

Proof. It suffices to apply 6.8 with F (X) in place of Y . Indeed, the integral at the right hand
side of 6.2 is in fact an integral over F (X) ⊂ Y (the integrand being null on Y \ F (X)), and
F (X) is an m-rectifiable set. ut
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