Exponential and Logarithmic Functions
Exponential Functions

Given $b > 0$, investigate the behavior of the function $f(x) = b^x$ in two cases:

1. $0 < b < 1$
2. $b > 1$
Given $b > 0$, investigate the behavior of the function $f(x) = b^x$ in two cases:

1. $0 < b < 1$
2. $b > 1$
Given $b > 0$, investigate the behavior of the function $f(x) = b^x$ in two cases.
Exponential Functions

Given $b > 0$, investigate the behavior of the function $f(x) = b^x$ in two cases

1. $0 < b < 1$
Given $b > 0$, investigate the behavior of the function $f(x) = b^x$ in two cases

1. $0 < b < 1$
2. $b > 1$
Plot of $f(x) = (1/3)^x$
Plot of $f(x) = (1/3)^x$
Plot of $f(x) = (1/3)^x$
Plot of $f(x) = 3^x$
Exponential functions

We have

$$\lim_{x \to \infty} b^x = \begin{cases} \infty & \text{if } b > 1 \\ 1 & \text{if } b = 1 \\ 0 & \text{if } 0 < b < 1 \end{cases}$$

Equivalently

$$\lim_{x \to -\infty} b^x = \begin{cases} 0 & \text{if } b > 1 \\ 1 & \text{if } b = 1 \\ \infty & \text{if } 0 < b < 1 \end{cases}$$
We have

\[
\lim_{x \to \infty} b^x =
\begin{cases}
 \infty & \text{if } b > 1 \\
 1 & \text{if } b = 1 \\
 0 & \text{if } 0 < b < 1
\end{cases}
\]

\[
\lim_{x \to -\infty} b^x =
\begin{cases}
 0 & \text{if } b > 1 \\
 1 & \text{if } b = 1 \\
 \infty & \text{if } 0 < b < 1
\end{cases}
\]
Exponential functions

We have

\[
\lim_{x \to \infty} b^x = \begin{cases}
\infty & \text{if } b > 1 \\
1 & \text{if } b = 1 \\
0 & \text{if } 0 < b < 1
\end{cases}
\]
Exponential functions

We have

\[\lim_{x \to \infty} b^x = \begin{cases}
\infty & \text{if } b > 1 \\
1 & \text{if } b = 1 \\
0 & \text{if } 0 < b < 1
\end{cases} \]

Equivalently

\[\lim_{x \to -\infty} b^x = \begin{cases}
0 & \text{if } b > 1 \\
1 & \text{if } b = 1 \\
\infty & \text{if } 0 < b < 1
\end{cases} \]
Exponential Functions

Some properties

\[b^x + y = b^x b^y = b^{xy} = (b^x)^y = (b^y)^x \]

\[b^0 = 1 \]

\[b^{-x} = \frac{1}{b^x} \]
Exponential Functions

Some properties

\[
b^x + y = b^x b^y = (b^x)^y = (b^y)^x
\]

\[
b^0 = 1
\]

\[
b^{-x} = \frac{1}{b^x}
\]
Exponential Functions

Some properties

$\quad b^{x+y} = b^x b^y$
Some properties

- $b^{x+y} = b^x b^y$
- $b^{xy} = (b^x)^y = (b^y)^x$
Some properties

- $b^{x+y} = b^x b^y$
- $b^{xy} = (b^x)^y = (b^y)^x$
- $b^0 = 1$
Some properties

- \(b^{x+y} = b^x b^y \)
- \(b^{xy} = (b^x)^y = (b^y)^x \)
- \(b^0 = 1 \)
- \(b^{-x} = \frac{1}{b^x} \)
Exponential Functions

Some properties

- $b^{x+y} = b^x b^y$
- $b^{xy} = (b^x)^y = (b^y)^x$
- $b^0 = 1$
- $b^{-x} = \frac{1}{b^x}$
The number e

$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

$2 < e < 3$.

Graph the function $(1 + \frac{1}{x})^x$ for x large.
The number e

$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

$2 < e < 3$.

Graph the function $(1 + \frac{1}{x})^x$ for x large.
The number e

$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n.$

$2.5 < e < 3.$
The number e

$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

$2.5 < e < 3$.

Graph the function $(1 + \frac{1}{x})^x$ for x large.
Graph of \(\left(1 + \frac{1}{x}\right)^x \)
Graph of \(\left(1 + \frac{1}{x} \right)^x \)
Given two positive numbers b and z, we define the logarithm of z to the base b to be the only number s that solves the equation $z = b^s$.

Write $s = \log_b(z)$, or $z = b^{\log_b(z)}$.

Horizontal line test.
Given two positive numbers b and z, we define the **logarithm of z to the base b** to be the only number s that solves the equation

$$z = b^s$$

Write $s = \log_b(z)$, or $z = b^{\log_b(z)}$.

Horizontal line test.
Logarithmic Functions

Given two positive numbers b and z, we define the logarithm of z to the base b to be the only number s that solves the equation

$$z = b^s,$$

Write $s = \log_b(z)$, or $z = b^{\log_b(z)}$.

Horizontal line test.
Given two positive numbers b and z, we define the logarithm of z to the base b to be the only number s that solves the equation

$$z = b^s,$$

Write
Logarithmic Functions

Given two positive numbers b and z, we define the logarithm of z to the base b to be the only number s that solves the equation

$$z = b^s,$$

Write

$$s = \log_b(z),$$
Logarithmic Functions

Given two positive numbers b and z, we define the **logarithm of z to the base b** to be the only number s that solves the equation

$$z = b^s,$$

Write

$$s = \log_b(z),$$

or

Horizontal line test.
Logarithmic Functions

Given two positive numbers b and z, we define the logarithm of z to the base b to be the only number s that solves the equation

$$z = b^s,$$

Write

$$s = \log_b(z),$$

or

$$z = b^{\log_b(z)},$$
Given two positive numbers b and z, we define the logarithm of z to the base b to be the only number s that solves the equation $z = b^s$.

Write $s = \log_b(z)$, or $z = b^{\log_b(z)}$.

Horizontal line test.
Logarithmic Functions: Graph of e^x
Logarithmic Functions

Logarithmic Functions
Logarithmic Functions

- \(\log(x) = \log_{10}(x) \)
Logarithmic Functions

- $\log(x) = \log_{10}(x)$ Common logarithm
Logarithmic Functions

- \(\log(x) = \log_{10}(x) \) Common logarithm
- \(\ln(x) = \log_e(x) \)
Logarithmic Functions

- $\log(x) = \log_{10}(x)$ Common logarithm
- $\ln(x) = \log_{e}(x)$ Natural logarithm
Logarithmic Functions: Properties

\[\log_b(xy) = \log_b(x) + \log_b(y) \]

\[\log_b(x^y) = y \log_b(x) \]

\[\log_b(1) = 0 \]

\[\log_b(b) = 1 \]
Logarithmic Functions: Properties

\[\log_b(xy) = \log_b(x) + \log_b(y) \]
Logarithmic Functions: Properties

- \(\log_b(xy) = \log_b(x) + \log_b(y) \)
- \(\log_b \left(\frac{x}{y} \right) = \log_b(x) - \log_b(y) \)
Logarithmic Functions: Properties

- $\log_b(xy) = \log_b(x) + \log_b(y)$
- $\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$
- $\log_b(x^\alpha) = \alpha \log_b(x)$

$\log_b(1) = 0$

$\log_b(b) = 1$
Logarithmic Functions: Properties

- \(\log_b(xy) = \log_b(x) + \log_b(y) \)
- \(\log_b \left(\frac{x}{y}\right) = \log_b(x) - \log_b(y) \)
- \(\log_b(x^\alpha) = \alpha \log_b(x) \)
- \(\log_b(1) = 0 \)
Logarithmic Functions: Properties

- \(\log_b(xy) = \log_b(x) + \log_b(y) \)
- \(\log_b \left(\frac{x}{y} \right) = \log_b(x) - \log_b(y) \)
- \(\log_b(x^\alpha) = \alpha \log_b(x) \)
- \(\log_b(1) = 0 \)
- \(\log_b(b) = 1 \)
Logarithmic Functions: Graph of $\ln(x)$
Example

The concentration of a drug in an organ seconds after it has been administered is given by

$$x(t) = 0.08 + 0.12 e^{-0.02 t},$$

where $x(t)$ is measured in grams per cubic centimeter.

(a) How long would it take for the concentration of the drug in the organ to reach 0.18 g/cm3.

(b) How long would it take for the concentration of the drug in the organ to reach 0.16 g/cm3.

Exponential and Logarithmic Functions
The concentration of a drug in an organ t seconds after it has been administered is given by

$$x(t) = 0.08 + 0.12 e^{-0.02 t},$$

where $x(t)$ is measured in grams per cubic centimeter.

(a) How long would it take for the concentration of the drug in the organ to reach 0.18 g/cm3.

(b) How long would it take for the concentration of the drug in the organ to reach 0.16 g/cm3.

Exponential and Logarithmic Functions
The concentration of a drug in an organ t seconds after it has been administered is given by

$$x(t) = 0.08 + 0.12e^{-0.02t},$$

(a) How long would it take for the concentration of the drug in the organ to reach 0.18 g/cm3.

(b) How long would it take for the concentration of the drug in the organ to reach 0.16 g/cm3.

Exponential and Logarithmic Functions
The concentration of a drug in an organ t seconds after it has been administered is given by

$$x(t) = 0.08 + 0.12e^{-0.02t},$$

where $x(t)$ is measured in grams per cubic centimeter.
Example

The concentration of a drug in an organ t seconds after it has been administered is given by

$$x(t) = 0.08 + 0.12e^{-0.02t},$$

where $x(t)$ is measured in grams per cubic centimeter.

(a) How long would it take for the concentration of the drug in the organ to reach 0.18 g/cm^3.
The concentration of a drug in an organ t seconds after it has been administered is given by

$$x(t) = 0.08 + 0.12e^{-0.02t},$$

where $x(t)$ is measured in grams per cubic centimeter.

(a) How long would it take for the concentration of the drug in the organ to reach 0.18 g/cm^3.

(b) How long would it take for the concentration of the drug in the organ to reach 0.16c/cm^3.

Exponential and Logarithmic Functions
Example

The height of a tree (in feet) of a certain kind of tree is approximated by

\[h(t) = 160 + 240 e^{-0.2t}, \]

Estimate the age of an 80-ft tree.
Example

The height of a tree (in feet) of a certain kind of tree is approximated by

\[h(t) = 160 + 240e^{-0.2t}. \]
Example

The height of a tree (in feet) of a certain kind of tree is approximated by

\[h(t) = \frac{160}{1 + 240e^{-0.2t}}, \]

Estimate the age of an 80-ft tree.
Example

The height of a tree (in feet) of a certain kind of tree is approximated by

\[h(t) = \frac{160}{1 + 240e^{-0.2t}}, \]

Estimate the age of an 80-ft tree.