Compound Interest and derivatives of exponential functions
Compound Interest (interest compounded periodically)

Start with \(P \) and an annual rate \(r \) as before.

Divide the year into \(m \) periods of equal duration and assume that the interest is compounded \(m \) times a year.

Apply the Simple Interest model to each conversion period using the rate \(\frac{r}{m} \).

Accumulated Amount after \(k \)-periods = Principal at the beginning of the \((k+1)\)-st period.

After 1-period:
\[
P(1 + \frac{r}{m})
\]

After 1-year
\[
P(1 + \frac{r}{m})^m
\]

After \(t \)-years
\[
P(1 + \frac{r}{m})^{mt}
\]
Start with P and an annual rate r as before.
Start with \(P \) and an annual rate \(r \) as before.

Divide the year into \(m \) periods of equal duration and assume that the interest is compounded \(m \) times a year.
Start with P and an annual rate r as before.

Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.

Apply the Simple Interest model to each conversion period using the rate r/m.

Accumulated Amount after k-periods = Principal at the beginning of the $(k+1)$-st period.
Compound Interest (interest compounded periodically)

- Start with P and an annual rate r as before.
- Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.
- Apply the Simple Interest model to each conversion period using the rate r/m.
- Accumulated Amount after k-periods = Principal at the beginning of the $(k + 1)$-st period.

After 1-period: $P \left(1 + \frac{r}{m}\right)$

After 1-year: $P \left(1 + \frac{r}{m}\right)^m$

After t-years: $P \left(1 + \frac{r}{m}\right)^{mt}$
Start with P and an annual rate r as before.
Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.
Apply the Simple Interest model to each conversion period using the rate r/m.
Accumulated Amount after k-periods $= \text{Principal at the beginning of the } (k + 1)\text{-st period}$.
After 1-period:
Compound Interest (interest compounded periodically)

- Start with \(P \) and an annual rate \(r \) as before.
- Divide the year into \(m \) periods of equal duration and assume that the interest is compounded \(m \) times a year.
- Apply the Simple Interest model to each conversion period using the rate \(r/m \).
- Accumulated Amount after \(k \)-periods = Principal at the beginning of the \((k + 1)\)-st period.
- After 1-period: \[P \left(1 + \frac{r}{m}\right) \]
Start with P and an annual rate r as before.

Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.

Apply the Simple Interest model to each conversion period using the rate r/m.

Accumulated Amount after k-periods = Principal at the beginning of the $(k + 1)$-st period.

After 1-period: $P \left(1 + \frac{r}{m}\right)$

After 1-year
Start with P and an annual rate r as before.

Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.

Apply the Simple Interest model to each conversion period using the rate r/m.

Accumulated Amount after k-periods = Principal at the beginning of the $(k + 1)$-st period.

After 1-period: $P \left(1 + \frac{r}{m} \right)$

After 1-year: $P \left(1 + \frac{r}{m} \right)^m$
Compound Interest (interest compounded periodically)

- Start with P and an annual rate r as before.
- Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.
- Apply the Simple Interest model to each conversion period using the rate r/m.
- Accumulated Amount after k-periods $= \text{Principal at the beginning of the } (k+1)-\text{st period}.$
- After 1-period: $P \left(1 + \frac{r}{m}\right)$
- After 1-year $P \left(1 + \frac{r}{m}\right)^m$
- After t-years
Start with P and an annual rate r as before.

Divide the year into m periods of equal duration and assume that the interest is compounded m times a year.

Apply the Simple Interest model to each conversion period using the rate r/m.

Accumulated Amount after k-periods = Principal at the beginning of the $(k + 1)$-st period.

After 1-period: $P \left(1 + \frac{r}{m} \right)$

After 1-year: $P \left(1 + \frac{r}{m} \right)^m$

After t-years: $P \left(1 + \frac{r}{m} \right)^{mt}$
Example

If \(r = 0.02 \), what results in a higher Accumulated Amount, compounding bi-annually or quarterly?

\[
P \rightarrow P \left(1 + 0.02 \right)^{mt}
\]

Graph of \(f(m) = \left(1 + 0.02 \right)^{m} \)

Compound Interest and derivatives of exponential functions
If $r = 0.02$, what results in a higher Accumulated Amount, compounding bi-annually or quarterly?
Example

If \(r = 0.02 \), what results in a higher Accumulated Amount, compounding bi-annually or quarterly?

\[
P \rightarrow P \left(1 + \frac{0.02}{m}\right)^{mt}
\]
If \(r = 0.02 \), what results in a higher Accumulated Amount, compounding bi-annually or quarterly?

\[
P \rightarrow P \left(1 + \frac{0.02}{m} \right)^{mt}
\]

Graph of \(f(m) = \left(1 + \frac{0.02}{m} \right)^m \)
Graph of \(f(m) = \left(1 + \frac{0.02}{m}\right)^m \)
Graph of $f(m) = \left(1 + \frac{0.02}{m}\right)^m$
Example

$f(m)$ is increasing $f(4) > f(2)$

Quarterly is better than bi-annually

In general one obtains a marginally better return if one compounds interest more frequently.
Example

- $f(m)$ is increasing

Quarterly is better than bi-annually

In general one obtains a marginally better return if one compounds interest more frequently.

Compound Interest and derivatives of exponential functions
Example

- \(f(m) \) is increasing
- \(f(4) > f(2) \)
Example

- $f(m)$ is increasing
- $f(4) > f(2)$
- Quarterly is better than bi-annually
Example

- \(f(m) \) is increasing
- \(f(4) > f(2) \)
- Quarterly is better than bi-annually
- In general one obtains a marginally better return if one compounds interest more frequently.
Present Value and Effective Interest

Present Value of an investment

\[P = A \left(1 + \frac{r}{m}\right)^{-mt} \]

Effective Interest

\[r_{\text{eff}} = \left(1 + \frac{r}{m}\right)^m - 1 \]

\[A = P \left(1 + r_{\text{eff}}\right)^t \]

Compound Interest and derivatives of exponential functions
Present Value and Effective Interest

- Present Value of an investment

\[P = A \left(1 + \frac{r}{m}\right)^{-mt} \]

- Effective Interest

\[r_{\text{eff}} = \left(1 + \frac{r}{m}\right)^m - 1 \]

- \(A = P \left(1 + r_{\text{eff}}\right)^t \)

Compound Interest and derivatives of exponential functions
Present Value and Effective Interest

- Present Value of an investment

\[P = A \left(1 + \frac{r}{m} \right)^{-mt} \]
Present Value and Effective Interest

- Present Value of an investment
 \[P = A \left(1 + \frac{r}{m}\right)^{-mt} \]

- Effective Interest
Present Value and Effective Interest

- Present Value of an investment
 \[P = A \left(1 + \frac{r}{m}\right)^{-mt} \]

- Effective Interest
 \[r_{\text{eff}} = \left(1 + \frac{r}{m}\right)^m - 1 \]
Present Value of an investment

\[P = A \left(1 + \frac{r}{m} \right)^{-mt} \]

Effective Interest

\[r_{\text{eff}} = \left(1 + \frac{r}{m} \right)^m - 1 \]

\[A = P(1 + r_{\text{eff}})^t \]
Example

If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years?

What about 10 years?

5 years: 2340.26

10 years: 1825.24.

Compound Interest and derivatives of exponential functions
Example

If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years?
If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?
If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

5 years:

1825
Example

If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2340.26
If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2340.26
- 10 years
If interest is compounded quarterly at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2340.26
- 10 years: 1825.24.
Interest compounded continuously

\[A = P \left(1 + \frac{r}{m}\right)^{mt} \]

Let \(m \to \infty \).

\[\lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^{mt} = e^{rt} \]

Model of interest compounded continuously

Compound Interest and derivatives of exponential functions
Interest compounded continuously

- Compound “more and more often”.

\[A = Pe^{rt} \]

Model of interest compounded continuously
Interest compounded continuously

- Compound “more and more often”.
- From $A = P \left(1 + \frac{r}{m}\right)^{mt}$, let $m \to \infty$.

$$\lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^{mt} = e^{rt}.$$
Interest compounded continuously

- Compound “more and more often”.
- From $A = P \left(1 + \frac{r}{m}\right)^{mt}$, let $m \to \infty$.
- $\lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^{mt} = e^{rt}$.
Interest compounded continuously

- Compound “more and more often”.
- From $A = P \left(1 + \frac{r}{m}\right)^{mt}$, let $m \to \infty$.
- $\lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^{mt} = e^{rt}$.
- Model of interest compounded continuously
Interest compounded continuously

- Compound “more and more often”.
- From \(A = P \left(1 + \frac{r}{m}\right)^{mt}\), let \(m \to \infty \).
- \(\lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^{mt} = e^{rt} \).
- Model of interest compounded continuously

\[A = Pe^{rt} \]
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

▶ 5 years: 2336.402
▶ 10 years: 1819.592.

Compare to the quarterly case

▶ 5 years: 2340.26
▶ 10 years: 1825.24.

Compound Interest and derivatives of exponential functions
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years?

What about 10 years?

\[
\begin{array}{l}
\text{5 years:} \\
2336.402 \\
\hline
\text{10 years:} \\
1819.592
\end{array}
\]

Compare to the quarterly case

\[
\begin{array}{l}
\text{5 years:} \\
2340.26 \\
\hline
\text{10 years:} \\
1825.24
\end{array}
\]
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years:
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years: 1819.592

Compare to the quarterly case

- 5 years: 2340.26
- 10 years: 1825.24
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years

Compound Interest and derivatives of exponential functions
If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years: 1819.592.
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years: 1819.592.

Compare to the quarterly case
If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years 1819.592.

Compare to the quarterly case

- 5 years:
If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years: 1819.592.

Compare to the quarterly case
- 5 years: 2340.26
If interest is compounded continuously at at rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years: 1819.592.

Compare to the quarterly case

- 5 years: 2340.26
- 10 years
Example

If interest is compounded continuously at a rate of 5%, what is the principal needed in order for the Accumulated Amount to be $3000 over a period of 5 years? What about 10 years?

- 5 years: 2336.402
- 10 years 1819.592.

Compare to the quarterly case

- 5 years: 2340.26
- 10 years 1825.24.
Derivative of Exponential Functions

\[\frac{d}{dx} e^x = \lim_{h \to 0} \left(e^x + h - e^x \right) h \]

\[\frac{d}{dx} e^x = e^x \lim_{h \to 0} \left(e^h - 1 \right) h \]

▶ What is \(\lim_{h \to 0} \left(e^h - 1 \right) h \)?

Compound Interest and derivatives of exponential functions
Derivative of Exponential Functions

\[\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right) \]
Derivative of Exponential Functions

\[
\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right)
\]

\[
\frac{d}{dx} e^x = e^x \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right)
\]

What is \(\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) \)?
Derivative of Exponential Functions

$$\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right)$$

$$\frac{d}{dx} e^x = e^x \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right)$$

▶ What is \(\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) \)?

Compound Interest and derivatives of exponential functions
Using R

Compound Interest and derivatives of exponential functions
Using R

```r
> for (i in 1:100){
+ z=i*(exp(1/i)-1);
+ print(paste("Iteration",i,"","","",z))}
> |
```
Using \(R \)

Compound Interest and derivatives of exponential functions
Compound Interest and derivatives of exponential functions
Graph of \(x(e^{1/x} - 1) \)
Graph of \(x(e^{1/x} - 1) \)

Compound Interest and derivatives of exponential functions
Derivative of Exponential Functions

\[\frac{d}{dx} e^x = \lim_{h \to 0} \left(e^x + h - e^x \right) \]

\[\frac{d}{dx} e^x = e^x \lim_{h \to 0} \frac{e^h - 1}{h} \]

What is \(\lim_{h \to 0} \left(e^h - 1 \right) \)?

Ans: The limit equals 1.

\[\Rightarrow \frac{d}{dx} e^x = e^x. \]
Derivative of Exponential Functions

\[
\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right)
\]

▶ What is \(\lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right) \)?

▶ Ans: The limit equals 1

\[\Rightarrow \frac{d}{dx} e^x = e^x.\]
Derivative of Exponential Functions

\[
\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right)
\]

\[
\frac{d}{dx} e^x = e^x \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right)
\]

What is \(\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) \)?

Ans: The limit equals 1
Derivative of Exponential Functions

\[
\frac{d}{dx} e^x = \lim_{h \rightarrow 0} \left(\frac{e^{x+h} - e^x}{h} \right)
\]

\[
\frac{d}{dx} e^x = e^x \lim_{h \rightarrow 0} \left(\frac{e^h - 1}{h} \right)
\]

▶ What is \(\lim_{h \rightarrow 0} \left(\frac{e^h - 1}{h} \right) \)?

Ans: The limit equals 1

\[
\Rightarrow \frac{d}{dx} e^x = e^x.
\]
Derivative of Exponential Functions

\[
\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right)
\]

\[
\frac{d}{dx} e^x = e^x \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right)
\]

- What is \(\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) \)?

- **Ans:** The limit equals 1
Derivative of Exponential Functions

\[
\frac{d}{dx} e^x = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right)
\]

\[
\frac{d}{dx} e^x = e^x \lim_{h \to 0} \left(\frac{e^h - 1}{h} \right)
\]

➢ What is \(\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) \)?

➢ **Ans:** The limit equals 1 \(\Rightarrow \frac{d}{dx} e^x = e^x \).