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PROGRAM 
 
DAY ONE – Monday, March 30, 2009 
         
 

 
8:00 – 8:30 Registration 
 

8:30 – 8:45 Opening Remarks 
 

8:45 – 9:35 Linda Petzold, University of California – Santa Barbara; Sensitivity Analysis, 
Model Reduction, and Circadian Oscillators; page 89. 

 

9:35 – 9:45 Break 
 

9:45 – 10:10 Khachik Sargsyan, Bert Debusschere, and Habib Najm; Sandia National 
Laboratories, Spectral Representation and Reduced Order for Modeling of 
Stochastic Reaction Networks, page 105. 

 

10:10 – 10:35 Xiaolong Gou, Wenting Sun, Zheng Chen, and Yiguang Ju; Princeton 
University; An Efficient Multi-time Scale (MTS) Method for Combustion 
Modeling with Reduced and Detailed Kinetic Mechanisms, page 43. 

 

10:35 – 10:50 Break 
 

10:50 – 11:15 Michael Davis, Argonne National Laboratory; Phase Space Structure of 
Complex Chemical-kinetic Mechanisms: Low-dimensional Manifolds for 
Homogeneous Chemical Kinetics and 1-d Premixed Flames, page 21. 

 

11:15 – 11:40 Stephen Pope, Zhuyin Ren, and Varun Hiremath; Cornell University and 
ANSYS, Inc.; Dimension Reduction and Tabulation of Combustion 
Chemistry using ICE-PIC and ISAT, page 91. 

 

11:40 – 1:10 Lunch 
 

1:10 – 2:00 Benjamin Sonday, Amit Singer, and Ioannis Kevrekidis; Princeton 
University; Diffusion Maps for Model Reduction: Exploiting Data Mining 
to Accelerate Simulation, page 47. 

 

2:00 – 2:10 Break 
 

2:10 – 2:35 Samuel Paolucci and Mauro Valorani, University of Notre Dame and 
University di Roma “La Sapienza”; Adaptive Model Reduction and the G-
Scheme, page 71. 

 

2:35 – 3:00 Mauro Valorani and Samuel Paolucci, University di Roma “La Sapienza” and 
University of Notre Dame; Application of the G-Scheme to Reactive 
Systems, page 77. 

 

3:00 – 3:25 Tibor Nagy and Tamas Turanyi, Eötvös University; Mechanism Reduction 
Based on Simulation Error Minimization, page 115. 

 

3:25 – 3:40 Break 
 

3:40 – 4:05 Dirk Lebiedz, Volkmar Reinhardt, and Jochen Siehr; University of Freiburg 
and University of Heidelburg; Geometric Criteria for Model Reduction in 
Chemical Kinetics via Optimization of Trajectories, page 111. 

 

4:05 – 4:30 Ashraf Al-Khateeb, Joseph Powers, Samuel Paolucci, Andrew Sommese, 
Jeffrey Diller. and Jonathan Hauenstein; University of Notre Dame; 
Projective Space Method for Slow Invariant Manifolds of Reactive Systems, 
page 7. 
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DAY TWO – Tuesday, March 31, 2009 
         
 

 
8:00 – 8:30 Registration 
 

8:30 – 9:20 James Rawlings, University of Wisconsin; Extending the Tools of Chemical 
Reaction Engineering to the Molecular Scale, page 103. 

 

9:20 – 9:30 Break 
 

9:30 – 9:55 Jesus Izaguirre and Christopher Sweet, University of Notre Dame; Adaptive 
Dimensionality Reduction of Stochastic Differential Equations for Protein 
Dynamics, page 37. 

 

9:55 – 10:20 Ovidiu Radulescu and Alexander Gorban, University of Rennes and 
University of Leicester; Limitation and Averaging for Deterministic and 
Stochastic Biochemical Reaction Networks, page 95. 

 

10:20 – 10:35 Break 
 

10:35 – 11:00 Panayotis Kourdis, Ralf Steur, and Dimitris Goussis; National Technical 
University – Athens and University of Manchester; Analysis of a Stiff Limit 
Cycle: Glycolysis in Saccharomyces Cerevisiae, page 33. 

 

11:00 – 11:25 Dimitris Diamantis, Dimitris Kyritsis, and Dimitris Goussis; University of 
Illinois and University of Athens; Two Stage Ignition of n-heptane: 
Identifying the Chemistry Setting the Explosive Time Scales, page 49. 

 

11:25 – 12:55 Lunch 
 

12:55 – 1:45 Henry Curran, National University of Ireland; Validation of Detailed 
Chemical Kinetic Models, page 19. 

 

1:45 – 1:55 Break 
 

1:55 – 2:20 Ashraf Al-Khateeb, Joseph Powers, Samuel Paolucci, Andrew Sommese, 
Jeffrey Diller, and Joshua Mengers; University of Notre Dame; On the 
Relation between Reaction Dynamics and Thermodynamics in Closed 
Systems, page 11. 

 

2:20 – 2:45 Geoffrey Oxberry, Alexander Mitsos, Paul Barton, and William Green; MIT; 
Range-Constrained Simultaneous Reaction and Species Elimination in 
Kinetic Mechanisms, page 63. 

 

2:45 – 3:10 Mauro Valorani, Samuel Paolucci, and Habib Najm; University di Roma “La 
Sapienza”, University of Notre Dame, and Sandia National Laboratories; 
Sensitivity Indices Based on the G-Scheme, page 83. 

 

3:10 – 3:25 Break 
 

3:25 – 3:50 David Sheen, Terese Lovas, and Hai Wang, University of Southern 
California and University of Tromsø; Reduction of Detailed Chemical 
Models with Controlled Uncertainty, page 109. 

 

3:50 – 4:15 Erkut Aykutluğ and Kenneth Mease, University of California – Irvine; 
Finite-Time Lyapunov Analysis and Optimal Control, page 53. 

 

4:45 Bus Pick Up at McKenna Hall 
 

5:15  Tour of Studebaker National Museum 
 

6:30  Dinner at Tippecanoe Place 
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DAY THREE – Wednesday, April 1, 2009 
          
 

 
9:00 – 9:25 Charles Westbrook, William Pitz, and Marco Mehl; Lawrence Livermore 

National Laboratory; Recent Developments in Detailed Chemical Kinetic 
Mechanisms, page 119. 

 

9:25 – 9:50 Youssef Marzouk, Bert Debusschere, Habib Najm, Dimitris Goussis, Mauro 
Valorani, and Michael Frenklach; MIT, Sandia National Laboratories, 
National Technical University of Athens, University di Roma “La Sapienza”, 
University of California – Berkeley; Time Integration of Reacting Flows 
with CSP Tabulation, page 25. 

 

9:50 – 10:15 Eliodoro Chiavazzo, Ilya Karlin, Alexander Gorban, and Konstantinos 
Boulouchos; Swiss Federal Institute of Technology, University of 
Southampton, and University of Leicester; Invariant Grids and Lattice 
Boltzmann Method for Combustion, page 15. 

 

10:15 – 10:30 Break 
 

10:30 – 10:55 Geoffrey Oxberry, William Green, and Paul Barton; MIT; Affine Lumping 
Formalism for Comparison of Model Reduction Techniques, page 67. 

 

10:55 – 11:20 Bill Goodwine and Baoyang Deng, University of Notre Dame; Reduction 
and Equivalence of Nonlinear Distributed Symmetric Control Systems, 
page 29. 

 

11:20 – 12:50 Lunch 
 

12:50 – 1:15 Hans Kaper, Tasso Kaper, and Antonios Zagaris; Boston University, 
Argonne National Laboratory, and University of Amsterdam; Analysis of 
Reduction Methods for ODEs, page 45. 

 

1:15 – 1:40 W.J.S. Ramaekeers, J.A. van Oijen, and L.P.H. de Goey; Eindhoven 
University of Technology; Flamelet Generated Manifolds for Chemistry 
Representation in Partially-Premixed Flames, page 99. 

 

1:40 – 2:05 H.N. Najm, M. Valorani, D. Goussis; Sandia National Laboratories, 
University di Roma “La Sapienza", National Technical University of Athens; 
Analysis of Methane-Air Edge Flame Structure using CSP, page 57. 

 

2:05 – 2:20 Break 
 

3:30 CAM Nieuwland Lecturer, Charles Westbrook, Lawrence Livermore 
National Laboratory; The Role of Combustion in Future Energy Scenarios, 
page 123. 

 

5



 
 
 
 
 
 
 
 
 
 
 
 
 

 

6



Projective Space Method for Slow Invariant
Manifolds of Reactive Systems

A. N. Al-Khateeb∗, J. M. Powers∗, S. Paolucci∗, A. J. Sommese†, J. A. Diller†, J. D. Hauenstein†
∗University of Notre Dame, Department of Aerospace and Mechanical Engineering, Notre Dame, Indiana, USA

†University of Notre Dame, Department of Mathematics, Notre Dame, Indiana, USA

Abstract— One dimensional slow invariant manifolds for
dynamical systems arising from modeling isothermal, spa-
tially homogeneous, closed reactive systems are calculated.
The technique is based on global analysis of the composition
space of the reactive system. The identification of all the
system’s finite and infinite critical points plays a major role
in calculating the system’s slow invariant manifold. The slow
invariant manifolds are constructed by calculating hetero-
clinic orbits which connect appropriate critical points to the
unique stable physical equilibrium point. The technique is
applied to small and large detailed kinetics mechanisms.

I. INTRODUCTION

In detailed kinetics models, the presence of a wide
range of scales induces a large computational cost when
calculations are fully resolved. Because direct numeri-
cal simulation (DNS) is not feasible for many practical
flows, the main challenge in modeling is to simplify the
problem without significant loss of accuracy. One of the
major approaches employs lower dimensional manifolds,
which are based on a reduction in the composition space
dimension.

For spatially homogeneous systems, reaction dynamics
are described by a set of ordinary differential equations
(ODEs). The solutions of this set of ODEs are represented
by trajectories in the species composition space. Each
trajectory represents the reactive system’s evolution with
time for a specific initial condition. The evolved trajecto-
ries seem to quickly be attracted to a special trajectory and
stay exponentially close to it until they reach equilibrium
in infinite time [1]. The reactive system’s slow modes are
the only active ones on this special trajectory. Thus, iden-
tifying this slow invariant manifold (SIM) for a reactive
system will make it possible to reduce the computational
cost by filtering the system’s fast modes. For each reactive
system there are SIMs of different dimensions; this work
focuses on the construction of only one-dimensional (1-
D) SIMs.

Here, 1-D SIMs for unsteady spatially homogeneous
mixtures of calorically imperfect ideal gases described by
detailed kinetics are calculated. While such construction
has been done for small two-dimensional systems [2],
the present work offers the first construction of SIMs for
realistic detailed kinetics systems of dimension greater
than 2-D. The SIM is constructed by a global analysis
over the entire composition space. By finding all equi-
libria and connecting them via heteroclinic orbits, it is
easy to identify the system’s actual SIM. Zel’dovich nitric
oxide system and a detailed hydrogen-air kinetic system

will be the mechanisms we focus in this paper. The
second system is of interest since it is intrinsic to common
combustion applications, included in the combustion of all
hydrocarbons, and is well-known and widely accepted.

In comparison to other dimension reduction techniques
that obtain approximate SIMs, such as the intrinsic low-
dimensional manifold (ILDM) [3], the computational sin-
gular perturbation (CSP) [4], the invariant constrained
equilibrium edge preimage curve method (ICE-PIC) [5],
minimal entropy production trajectories (MEPT) [6], and
iterative methods [7], the technique presented here iden-
tifies the actual SIMs. In the first section, the governing
ODEs for closed, isothermal, reactive system are pre-
sented. This is followed by a reduction of the ODEs
into a system of differential algebraic equations (DAEs)
which describes the system’s evolution within the reduced
composition space. Following a brief description of how
we identify and examine all the system’s finite and infinite
equilibria, the numerical method to construct the SIMs
is presented. Once the difficult task of identifying all of
the equilibria is complete, it is seen that constructing the
actual SIMs is easy and computationally efficient. The
main results of this study are the construction of the 1-
D SIMs for realistic detailed kinetics isothermal reactive
systems.

II. MATHEMATICAL MODEL

A. Governing Equations

We consider a mixture of total mass M confined in a
volume V containing N gas phase species composed of
L atomic elements that undergo J reversible reactions.
The evolution of the species with time t is obtained from
the following set of ODEs:

dni

dt
= V

J∑
j=1

νijrj , i = 1, . . . , N. (1)

Here, the dependent variables are the species’ number
of moles ni. Also, for the jth reaction rj and νij are,
respectively, the reaction rate given by the law of mass
action and the net stoichiometric matrix. In general, νij

is a non-square matrix of dimensions N × J , and it is of
rank R ≤ (N − L); commonly R = (N − L).

B. Reduced System

Equation (1), defines an N -dimensional composition
space. The dimensionality of this space is reduced to R
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as a consequence of the conservation of elements, and
any additional constraints that can possibly arise. The
elements constraints are enforced by

N∑
i=1

φlini =
N∑

i=1

φlin
∗
i , l = 1, . . . , L, (2)

where φli is the element index matrix and quantities with
superscript (∗) are at the initial state. Here, the ni’s are
linearly dependent composition variables, which implies
that (2) is underconstrained and solutions of the following
form

ni = n∗i +M
R∑

k=1

Dikzk, i = 1, . . . , N, (3)

can be found. Here, zk is a reduced composition vari-
able, which physically represents the number of moles
of species k in M . Dik is a dimensionless constant
matrix of size N ×R and has full rank R. Each column
vector of Dik is linearly independent of the remaining
column vectors. However, Dik is not unique, and it can
be constructed in several ways.

As a result, the reactive system described by (1) is
recast as an autonomous standard dynamical system of
the form

dz
dt

= f(z), z ∈ RR, (4)

where f is a set of R non-linear coupled polynomials
of degree d connected with a given reaction mecha-
nism. From a geometric point of view, z is a vector
in the Euclidian composition space RR. Thus, reactive
system solutions are trajectories that move on the reduced
composition space RR, which is a subspace of the full
composition space RN . Full details are given by [8].

III. METHODOLOGY

A. Equilibria

The proposed construction method of a reactive sys-
tem’s SIM is based on identifying all the equilibria of
(4). In general, the set of equilibria of such a function is
complex, and contains finite and infinite equilibria [9].
Moreover, the equilibria can be positive dimensional
continua [10]. In this work, only the system’s real isolated
finite and infinite equilibria are considered.

To obtain the dynamical system’s finite equilibria, we
find all the ze that satisfy f (ze) = 0. One of the finite
equilibria is of special interest; it is the unique critical
point located inside the physically accessible domain [11].

The next step is to identify the system’s infinite equi-
libria. To do so, the projective space method is em-
ployed [10]. This technique maps the infinite critical
points onto the finite domain, and is realized by the
following relations

Zk =
1
zk
, k ∈ {1, . . . , R}, (5)

Zi =
zi

zk
, i 6= k, i = 1, . . . , R, (6)

where zk is any arbitrarily selected dependent variable,
and Z are the state variables in the projective space.

By employing the projective space mapping, the original
dynamical system is recast in the following form

dZ
dτ

= F (Z) , Z ∈ RR, (7)

where F is a set of R non-linear functions that correspond
to the non-linear functions f in the projective space, and
τ is the transformed time in the projective space which is
related to t by the following relation, dt/dτ = (Zk)d−1.
The finite equilibria of the resulting dynamical system, Ze

that satisfy F (Ze) = 0, represent the infinite equilibria
of the original system (4).

Next, the dynamic behavior of the system in the neigh-
borhood of each finite and infinite equilibrium is investi-
gated by employing standard linearization techniques. The
stability of each critical point is determined by examining
the eigenvalue spectrum of its local Jacobian and the
corresponding eigenvectors. At the physical equilibrium
point, the eigenvector associated with the smallest eigen-
value represents the systems slowest mode.

B. Construction Method
We start the process of SIM construction by generating

a heteroclinic orbit from the finite equilibrium which has
the least positive eigenvalue. Then, we check whether the
generated orbit approaches the the physical equilibrium
point in the direction of its slowest mode. After that,
another orbit is generated starting from the finite equi-
librium which has the second lowest positive eigenvalue.
If the two generated orbits approach the the physical
equilibrium point in the direction of its slowest mode, then
these are the SIM’s two branches. Otherwise, we generate
a new heteroclinic orbit from the finite equilibrium which
has the third lowest eigenvalue, and so on. After checking
all finite equilibria, we follow the same procedure with
the infinite equilibria. During this procedure, any time we
obtain two heteroclinic orbits that approach the physical
equilibrium point in the direction of its slowest mode,
there is no need to consider the remaining equilibria.

C. Computational Method
The kinetic rates and the thermodynamic properties

are calculated using the public domain edition of the
Chemkin package [12]. The typical computational time
to construct a 1-D SIM is less than one minute on a
2.16 GHz MacPro machine. All the calculations have
been performed to high precision. However, all the
listed results are rounded to three significant digits. In-
tegers indicate that the reported numbers are exact. Also,
Bertini [13], a C-code based on homotopy continu-
ation, is used to obtain the system’s equilibria to any
desired accuracy. Lastly, all trajectories are obtained by
numerical integration of the species evolution equations
using a computationally inexpensive explicit fourth-order
Runge-Kutta scheme.

IV. RESULTS

A. Zel’dovich mechanism
In this section, the strategy to construct a 1-D SIM

is illustrated using a simple but realistic reactive system;
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Fig. 1. The time evolution of species for the Zel’dovich model problem.

the Zel’dovich mechanism of nitric oxide formation. This
mechanism contains N = 5 species, L = 2 elements,
and J = 2 reversible reactions, and the kinetic data have
been adopted from Baulch et al. [14] A special case in
which the system is isochoric will be considered, and
the assigned mixture temperature and volume are T =
4000 K and V = 103 cm3, respectively. For convenience,
the assigned initial number of moles of all species are
n∗i = 10−3 mol, where i = {1, 2, 3, 4, 5} corresponds to
the species {NO,N,O,O2, N2}, respectively. The multi-
scale nature of this system is clearly shown in Fig. 1,
where the full dynamics of the evolution of the species
are presented.

In this system, the total number of moles remain
constant, as a consequence of the fact that the kinetics
mechanism includes only bimolecular reactions. Conse-
quently, one algebraic constraint, in addition to element
conservation, exists in the system. Thus, this model
problem is described in the R = 2 dimensional reactive
composition space [8],

dz
dt

= ẇ ≡ f(z), {z, ẇ} ∈ RR, (8)

where

ẇk =
1
ρ

R∑
j=1

( N∑
i=1

DikDij

)−1( N∑
i=1

Dij ω̇i

) , (9)

and d = 2.
By equilibrating the right hand side of (8) and using

Bertini to obtain all ze that satisfy f(ze) = 0, we find
the following finite isolated equilibria,

R1 ≡ (ze) =
(
−1.78× 10−5,−1.67× 10−2

)
mol/g,

R2 ≡ (ze) =
(
−4.20× 10−3,−2.66× 10−5

)
mol/g,

R3 ≡ (ze) =
(
3.05× 10−3, 2.94× 10−5

)
mol/g,

where the rest of the species are recast using (3). It is
clear that R1 and R2 are non-physical equilibria, while
R3 is the reactive systems unique physical equilibrium
point.

The dynamical behavior analysis within the neighbor-
hood of each critical point reveals that R1 is a source, R2

is saddle with one unstable mode, and R3 is a sink.

In addition to the systems finite equilibria, (8) has three
infinite equilibria. They are obtained using the projective
space method, in which we select k = 1 arbitrarily. These
equilibria are:

I1 ≡ (Ze) = (0, 0) ,
I2 ≡ (Ze) = (0, 1.01) ,
I3 ≡ (Ze) = (0, 2.60) ,

The dynamical behavior analysis within the neighbor-
hood of each critical point reveals that I2 is a source,
I3 is a saddle with one positive eigenvalue, and I1 is
a non-hyperbolic critical point. Using the normal form
theory [9], it is found that I1 is a saddle-node, which
consists of two hyperbolic sectors, one parabolic sector,
and three separatrices. Only one of these separatrices is
unstable.

Now, following our 1-D SIM construction procedure,
these three points are ordered as follows: R2, I1, I3.
So, starting from the unstable direction of R2, (8) are
numerically integrated to generate a heteroclinic orbit.
This orbit approaches R3 along its slowest mode. So, the
generated orbit represents the first branch of the 1-D SIM.
Then, starting from the unstable direction of I1, another
heteroclinic orbit is numerically generated. Also, this orbit
approaches R3 along its slowest mode. So, it represents
the second and last branch of the reactive systems 1-D
SIM. Subsequently, there is no need to check the third
critical point, I3. In Fig. 2, part of the systems finite phase
space and the SIM are presented. The attractiveness of the
SIM is revealed by visually examining the relaxation of
several trajectories onto it.

B. Detailed Hydrogen-Air Mechanism

In this section, the 1-D SIM for a detailed kinetics
hydrogen-air reactive system is constructed using the
previously discussed technique. The reaction mechanism
used is extracted from Miller et al. [15], and consists
of J = 19 reversible reactions that describe how N =
9 species composed of L = 3 elements react. The
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Fig. 2. A region of the finite phase space for the Zel’dovich mechanism.
The solid dots represent finite critical points, the open circle represents
an infinite critical point, the arrows indicate the flow direction, and
the dashed simplex represents the physically accessible domain of the
system. The SIM is illustrated as a thick line, the thin lines represent
trajectories, and R3 represents the system’s physical equilibrium state.
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stoichiometric hydrogen-air mixture is initially at p =
107 dyne/cm2 and the chosen mixture temperature is
T = 1500 K. The full dynamics of the species evolution
is presented in Fig. 3. Here, the dependent variables are
{zH2 , zO2 , zH , zO, zOH , zH2O}, which correspond to {z1,
z2, z3, z4, z5, z6}, respectively.

Using the procedure discussed earlier, 326 finite and
infinite equilibria are found. One of these critical points
represents the physical equilibrium state. This point is

R19 ≡ (ze) =
(
1.98× 10−6, 9.00× 10−7, 1.72× 10−9,

2.67× 10−10, 3.66× 10−7, 1.44× 10−2
)
mol/g.

Then, the dynamical character of each of the real
finite and infinite critical points is determined. It is found
that among them there are only 14 critical points which
have eigenvalue spectra that contain only one unstable
direction. All of these 14 equilibria are finite. Finally
by examining all trajectories that emanate from these
14 equilibria, only two of them are connected with R19

along its slowest mode via heteroclinic orbits. These two
critical points are R74 and R79. Fig. 4 shows a 3-D
projection of the 1-D SIM embedded inside the 6-D
reduced composition space. Since only the slow modes
are present on the SIM, this 1-D manifold is the best
description of the system’s slowest dynamics.

V. CONCLUSION

Actual 1-D SIMs for closed, spatially homogenous,
isothermal, reactive systems described by detailed kinetics
are obtained. The construction method is based on a
geometrical approach that relies upon finding and exam-
ining the dynamical behavior of all the system’s critical
points. It has been shown that the construction of the
1-D SIMs are algorithmically easy and computationally
efficient. The resulting procedure provides a useful tool
to significantly reduce the computational cost associated
with modeling reactive systems.
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Abstract— A reactive system’s slow dynamic behavior
is approximated well by its evolution on manifolds of
dimension lower than the dimensionality of the full com-
position space. This work addresses the relation between
the isothermal reactive systems’ slow dynamics, described
by the actual slow invariant manifolds, and notions from
thermodynamics. In addition to mathematical proof, a
realistic reactive system is utilized to show that other than
identifying the actual equilibrium point, traditional ther-
modynamic potentials provide no guidance in determining
a system’s actual slow invariant manifold. A comparison
between several published thermodynamics-based manifolds
and the actual slow invariant manifolds is presented.

I. INTRODUCTION

Dimension reduction can significantly reduce the com-
putational cost of modeling detailed kinetics reactive
systems. The technique is based on representing the
chemistry of a reactive system’s variables in terms of the
chemistry of a reduced number of variables. Thus, several
methods to describe the multi-scale kinetics that employ a
geometrical approach have been developed to reduce the
dimensionality of reactive systems.

A number of these methods employ classical thermo-
dynamics to construct the attractive manifolds. Examples
include the method of rate-controlled constrained equi-
librium (RCCE) [1], the method of invariant manifold
(MIM) [2], the minimal entropy production trajectory
(MEPT) method [3], the invariant constrained equilibrium
edge preimage curve method (ICE-PIC) [4], and other
methods which are based on them [5]-[7]. The MEPT ap-
proach relies on the principle of entropy production. Uti-
lizing such a principle allows classical thermodynamics
quantities to be used away from equilibrium, although the
validity of doing this is debatable [8]. The RCCE, MIM
and ICE-PIC approaches rely on employing equilibrium
thermodynamics potentials away from the equilibrium
state. By minimizing the appropriate classical thermody-
namics quantities, at some point in the procedure, their
low-dimensional manifolds are constructed.

Ref. [9] provides a procedure to construct reactive
systems’ actual slow invariant manifolds (SIMs). Such
manifolds describe the asymptotic structures of the invari-
ant attracting reactive systems’ trajectories during their
relaxation toward equilibrium. Utilizing this procedure to
construct reactive systems’ actual one-dimensional (1-D)
SIMs makes it possible to examine the relation between
thermodynamics and reactive systems’ slow dynamics.

II. ANALYSIS

We consider a closed, spatially homogenous, premixed
reactive mixture of calorically imperfect ideal gases de-
scribed by detailed mass-action kinetics. The mixture is
confined to a volume V at temperature T and pressure p.
This mixture consists of N species composed of L atomic
elements which undergo J reversible reactions.

Here, we confine our attention to isothermal reactive
systems. For such a reactive system, the evolution of the
species specific moles z with time t is described by [9]

dz
dt

= ẇ(z), {z, ẇ} ∈ RR, (1)

where RR ⊂ RN is the reduced composition space,
and ẇ is the molar production rate of species in the
reduced composition space. The dimensionality of the
composition space is reduced to R as a consequence of the
conservation of elements, and any additional constraints
that can possibly arise. The system’s actual 1-D SIM can
be constructed by using the procedure described in [9].

A. Thermodynamic conditions

For a mixture of ideal gases, the Gibbs free energy G
is given by the following relation [10],

G =
N∑
i=1

niµ̄i, (2)

where ni is the number of moles of species i, and µ̄i is
the chemical potential of species i. This thermodynamic
property is of special interest; the global minimum of G
corresponds to the reactive system’s equilibrium state ze

which satisfies ẇ(ze) = 0 [10]. This state is unique [11]
within the physical region of composition space and is
identified by the following relation,

N∑
i=1

νijµ̄i = 0, j = 1, . . . , J, (3)

where νij is net stoichiometric matrix.
Similarly, the entropy S of such mixture is given

by [10],

S =
N∑
i=1

ni

(
s̄oi − <̄ ln

(
p ni
po n

))
, (4)

where <̄ is the universal gas constant, po is the reference
pressure, s̄oi is the partial molar entropy evaluated at po,
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and n =
∑N
i=1 ni is the total number of moles. The

differential change of this scalar quantity is postulated
by the second law of thermodynamics [10], though it
is stated differently in non-equilibrium thermodynamics
and classical thermodynamics [12]. In non-equilibrium
thermodynamics, the differential change of S for such
system is given by

dS = deS + diS, (5)

where deS is the change in S due to the system’s
exchange of matter and energy with its surroundings, and

diS = − 1
T

N∑
i=1

µ̄idni, (6)

is the change in entropy due to irreversible processes
within the system boundary [13]. Thus, an expression
for the irreversibility production rate σ, (i.e. entropy
production rate), can be introduced as [14]

σ ≡ diS

dt
= − 1

T

N∑
i=1

µ̄i
dni
dt
. (7)

Similar to G, σ is a convex function in the composition
space with a global minimum at ze.

B. Thermodynamics and SIM

In a 2-D composition space, the scalar fields G and
σ can be represented by iso-contours. Near equilibrium
these contours approach ellipses. For each of these func-
tions, the major axes of these ellipses are aligned with the
eigenvector associated with the largest eigenvalue of that
function’s local Hessian matrix He. Similarly, the minor
axes are aligned with the eigenvector associated with the
smallest eigenvalue of He. The deviations from these two
functions’ equilibrium values are described by,

G− G|z=ze =
1
2
zT ·He

G · z + . . . , (8)

σ − σ|z=ze =
1
2
zT ·He

σ · z + . . . . (9)

In general, all the system’s trajectories within the
physically accessible domain S approach ze in infinite
time. Near equilibrium, the system’s dynamics relax onto
the eigenvector associated with the slowest time scale.
At ze, the eigenvector associated with the least negative
eigenvalue of the local Jacobian Je defines the direction
of the system’s slowest mode. At ze there is a relation
between He

G and He
σ; one can show that

He
σ = − 1

T

(
He
G · Je + (He

G · Je)
T
)
, (10)

where the two terms on the right hand side of (10)
are transposes of one another, and their summation is a
symmetric matrix.

In the highly unusual case in which He
G is diagonal

with identical eigenvalues, the SIM can be identified by
consideration of the eigenvectors of He

σ . In general, this
is not the case for reactive systems. Thus, He

G operates
on Je in a non-uniform way, such that the eigenvalues

and the eigenvectors of He
σ are not the same as those

of Je. Thus, the system’s dynamics cannot be deduced
by σ or G. We can state that employing equilibrium
thermodynamic potentials to obtain a reactive system’s
dynamic behavior is incorrect. Full details are given by
Al-Khateeb, et al. [9].

III. MODEL PROBLEM

Here, the Zeldovich mechanism will be employed as
a model problem to examine the relation between slow
dynamics and thermodynamics. The system’s actual 1-D
SIM constructed using the procedure described in [9] is
shown in Fig. 1.

After calculating G and σ for this system, their iso-
contours, along with the system’s actual 1-D SIM, are
shown in Fig. 2. The top panel of Fig. 2 shows the
contours of G and σ far away from the system’s physical
equilibrium point, R3. The bottom panel of Fig. 2 is
an expansion in its vicinity, where stretching has been
employed to expose the difference between the contours’
major/minor axes and the 1-D SIM. Even within the close
neighborhood of R3, the contours’ axes are not aligned
with the 1-D SIM! Here equilibrium thermodynamics
quantities cannot elucidate the 1-D SIM, which describes
the system’s preferred path towards equilibrium. Sub-
sequently, the gradients of these thermodynamic scalar
functions do not drive the system’s dynamics.

Explicitly, the eigenvalues and the associated eigenvec-
tors of He

σ and He
G for the Zel’dovich model are

He
σ : (λ,υ) = (8.17× 1023, 1.01× 1020),

([1.78× 10−3,−1.00]T , [−1.00,−1.78× 10−3]T ),
He
G : (λ,υ) = (9.44× 1019, 1.06× 1018),

([5.97× 10−4,−1.00]T , [−1.00,−5.97× 10−4]T ).

However, the direction of the slow mode is assigned
by the eigenvector associated with the least negative
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Fig. 1. A region of the finite phase space for the Zel’dovich mechanism.
The solid dots represent finite critical points, the open circle represents
an infinite critical point, the arrows indicate the flow direction, and the
dashed simplex represents S. The SIM is illustrated as a thick line, the
thin lines represent trajectories, and R3 represents the system’s physical
equilibrium state.
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critical point.

eigenvalue of Je, where

Je : (λ,υ) = (−1.73× 107,−1.91× 105),
([−1.07× 10−1, 9.94× 10−1]T , [1.00, 1.79× 10−3]T ).

Here, the eigenvalues’ and eigenvectors’ units are 1/s and
g/mol, respectively. It is clear that the second eigenvector
of Je is not aligned with any eigenvector of He

G or He
σ .

Indeed, at R3 the difference with σ is small. But, as shown
in the first panel of Fig. 2, this error grows as we move
away from R3.

IV. THERMODYNAMICS-BASED MANIFOLDS

Here, a comparison between previously published re-
active systems’ low dimensional manifolds and the actual
SIMs for these reactive systems is performed.

A. SIM and MEPT

A simple closed reactive system containing three
species given by the following kinetics model, A+A 

B 
 C, is considered. This system is identical to the
example employed in [3] to present the MEPT method. To
construct the system’s actual 1-D SIM, the methodology
presented in [9] is employed. In Fig. 3, the system’s actual
1-D SIM is shown. We note that the system’s 1-D SIM
contains only one branch.

The MEPT method is based on minimizing a classical
thermodynamic potential, S. Given by the dashed line
in the first panel of Fig. 4, the MEPT path shown is
identical to the one presented in Fig. 4 of [3]. A closer
look at the system’s dynamical behavior near the physical

-2 -1 0 1 2 3
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z 2
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×10-4

×10
-4

12

11

10

9

8

R2 R1

Fig. 3. A small region of the actual finite phase space. The thick line is
the SIM, the thin lines represent trajectories, the dashed lines represent
the fast invariant manifolds, R2 is a non-physical finite critical point,
and R1 represents the system’s physical equilibrium state.
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Fig. 4. The dashed line represents the calculated MEPT and the thin
lines represent trajectories. The top panel is identical to Fig. (4) in [3],
while the bottom panel is a closer look with a different set of trajectories
is illustrated. R1 represent the physical equilibrium state of the system.

equilibrium shows that the MEPT is not an attractive
manifold; see the second panel of Fig. 4. Consequently,
it does not correspond to the actual SIM of the system.

From Figs. 3-4, we note that none of the trajectories
other than the SIM are attractive. Furthermore, due to the
fact that all trajectories will approach R1, this possibly
led to the incorrect conclusion in [3] that the MEPT
corresponds to the SIM.

B. SIM and ICE-PIC

Here, the simple hydrogen-oxygen reactive system em-
ployed in [4] to illustrate the idea of constructing the
ICE-PIC manifold is adopted. To construct the system’s
actual 1-D SIM, the methodology presented in [9] is used,
and the system’s 1-D SIM is shown in Fig. 5. The right
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branch of the SIM is not presented completely due to
scaling effects. Some of the trajectories in Fig. 5 have
been generated from inside the physical domain, while
others have been initiated from the boundaries of the
physical domain. The attractiveness of the SIM is revealed
by visually examining the relaxation of several trajectories
rapidly onto it.

Generating the ICE manifold is based on minimizing a
classical thermodynamics potential. First, the constrained
equilibrium manifold (CEM) is developed by minimizing
G. The intersection between the CEM and S defines a
closed curve. Then, starting from several points located
on this closed curve, trajectories are generated. The col-
lection of all these trajectories defines the ICE manifold.
Fig. 6 shows the constructed 1-D SIM and the 2-D ICE
manifold. The ICE manifold shown is identical to the
manifold illustrated in Fig. 4 of [4].

From Fig. 6, it is clear that there are trajectories within
S which are not attracted to the 2-D ICE manifold.
However, all of the system’s trajectories are attracted to
the actual 1-D SIM. Moreover, the 1-D SIM is not a
subset of the 2-D ICE manifold. Consequently, the 2-
D ICE manifold cannot fully identify the system’s SIM.
Although it is difficult to visualize in Fig. 6, the 2-D ICE
manifold is not aligned with the system’s 1-D SIM. The
error in the ICE manifold grows as we move away from
R7.

V. CONCLUSION

The relationship between thermodynamics and a reac-
tive system’s SIM is investigated. It has been illustrated
that the 1-D SIM for a realistic reactive system does not
coincide with the path identified by minimizing a classical
thermodynamic function, such as σ, S, or G, even at the
equilibrium state! This point has been confirmed by math-
ematical proof which shows that classical equilibrium
thermodynamic potentials do not provide information
about reactive systems’ dynamics during their approach
towards the physical equilibrium.
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Abstract— The lattice Boltzmann (LB) method is a rel-
atively novel approach to numerical flow simulations, and
recent studies have proved that it is highly competitive to
traditional methods when simulating compressible and tur-
bulent flows (in terms of accuracy and efficiency). Although
this makes LB a good candidate for computing reactive
flows, applications in this field are still limited by the stiffness
of the governing equations and the large amount of fields
to solve. In this sense, the present study intends to provide
an effective tool for reactive flow simulations via the LB
method.

I. INTRODUCTION

Accurate modeling of reactive flows requires the so-
lution of a large number of conservation equations as
dictated by detailed reaction mechanism. In addition to
the sometimes prohibitively large number of variables
introduced, the numerical solution of the governing equa-
tions has to face the stiffness due to the fast time scales
of the kinetic terms. These issues make computations of
even simple flames time consuming, and have particularly
negative impact on the lattice Boltzmann method, whose
number of fields (distribution functions or populations) is
significantly larger than the number of conventional fields
(density, momenta, temperature, species mass fractions)
by a factor ranging from tens to hundreds for 2D and 3D
simulations. However, the dynamics of complex reactive
systems is often characterized by short initial transients
when the solution trajectories approach low-dimensional
manifolds in the concentration space, known as the slow
invariant manifolds (SIM). Thus, the construction of
SIM enables to establish a simplified description of a
complex system by extracting only the slow dynamics
and neglecting the fast.

The Method of Invariant Grids (MIG), based on the
concept of SIM, has been elaborated for combustion
applications with the aim of automating the model reduc-
tion procedure, and its realization follows two key steps.
First, an initial rough reduced description of the complex
chemical mechanism is constructed making use of the
notion of quasi equilibrium manifold (QEM). Second, the
latter initial approximation is iteratively refined until the
invariant grid is constructed. In fact, according to MIG,
the accurate reduced model (invariant grid) is the stable
fixed point of one of the following processes: Newton-like
iterations for solving the invariance condition regarded as
an equations, or relaxation due to a film equation of dy-
namics [1], [2]. Lately, the reduced model of the hydrogen

mechanism can be employed in a lattice Boltzmann code
for simulating laminar flames throughout a homogeneous
mixture.

II. REDUCED DESCRIPTION

In our study, the detailed mechanism of Li et al
[3] (9 species, 21 elementary reactions) for hydrogen
combustion is considered, and we search for a reduced
description with two degrees of freedom. To this end,
let us construct the 2D quasi equilibrium manifold for a
stoichiometric H2-air mixture under fixed pressure p =
1bar and enthalpy h̄ = 2.8kJ/kg, corresponding to the
temperature T0 = 300K for the stoichiometric unburned
mixture H2+0.5O2+1.88N2. A QEM is obtained solving
the following minimization problem:

min G
s.t.

∑
i

mi
jYi = ξj , j = 1, 2. (1)

Here, G represents the mixture-averaged entropy, and
the vector set {mj = (m1

j , ...,m
9
j )} is used to re-

parameterize the mass fractions Yi in terms of new vari-
ables ξj , which are expected to follow a slow dynamics.
Many suggestions for defining slow lumped variables in
chemical kinetics are known in the literature, and for
our purposes here we use the total number of moles
ξ1 and free oxygen ξ2, respectively (see, e.g., [4]). An
approximated solution to (1), computed making use of the
algorithm introduced in [5], is shown in Fig. 1, and it is
called quasi equilibrium grid (QEG). The corresponding
invariant grid is found by relaxation of the QEG Ω under
the following film equation of dynamics [1]

dΩ
dt

= ~f − P ~f, (2)

where ~f and P denote the vector of motion in the phase
space and a projector operator onto the manifold tangent
space, respectively. Following [1], here we adopt the
thermodynamic projector which enables to define the fast
motions toward the slow manifolds. Finally, the refined
grid, approximating the slow invariant manifold, is shown
in Fig. 2. More details can be found in the literature [6],
[7], [8].

III. LATTICE BOLTZMANN FOR REACTIVE FLOWS

We consider here the simplest lattice Boltzmann for-
mulation suitable for simulations of combustion. To this
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Fig. 2. Invariant grid approximating the slow invariant manifold.

end, following the suggestion of Yamamoto et al [9],
reactive flows can be simulated with the lattice Boltzmann
method as reported below. Note, however, that more
elaborate and complete LB models for mixtures [10],
[11] and compressible flows [12] shall be taken into
account in the near future, too. According to the standard
terminology, LB schemes are denoted as DMQN, meaning
that N particles move on a M-dimensional lattice. In Fig.
3, the most popular one-dimensional lattice is shown,
where each distribution function is represented by its own
peculiar velocity eα. In the following, we briefly review
the LB algorithm with the BGK [13] collision model.
A single-component medium is described by a small set
of populations, which can be regarded as microscopic
properties of the fluid. On the contrary, macroscopic
quantities such as density and momentum (energy for
thermal cases) are given by different moments of those
populations. In terms of pressure distribution functions

D1Q3

e
mx

e
0

e
x

Fig. 3. 1-dimensional 3-velocities lattice: D1Q3.

pα, the LB equation takes the following discrete form at
the lattice node x:

pα (x + eα, t+ δt) = pα (x, t)−
1
τF

[pα (x, t)− peqα (p,u)] ,
(3)

where the equilibrium populations peqα read:

peqα = wαp

[
1 + 3

(
eαuT

)
+

9
2
(
eαuT

)2 − 3
2
u2

]
. (4)

The pressure p and the fluid velocity u are given by:

p =
∑
α

pα, u =
1
p0

∑
α

eαpα, (5)

where the reference pressure p0 = ρ0/3, with ρ0 denoting
the reference density of the LB model. Let δt be the
time step, the relaxation parameter τF is related to the
kinematic viscosity ν by (see, e.g., [14])

ν =
2τF − 1

6
δt. (6)

In general, the discrete velocities can be regarded as
the nodes of a Gauss-Hermite quadrature applied to the
Maxwell- Boltzmann distribution function, and each of
them is characterized by a proper weight wα.

According to [9], the flow field is not affected by
the chemical reaction, transport coefficients are constant
and Fick’s law applies to the diffusion. In this case, the
background flow is treated as an one-component medium
whose pressure populations evolution obeys (3). Let h̄0 be
a reference enthalpy, the evolution equations for enthalpy
and concentration of species i are written as

h̃α (x + eα, t+ δt)− h̃α (x, t) =

− 1
τh

[
h̃α (x, t)− h̃eqα

(
h̃,u

)]
+ wαQh,

(7)

Yiα (x + eα, t+ δt)− Yiα (x, t) =

− 1
τYi

[Yiα (x, t)− Y eqiα (Yi,u)] + wαQYi
,

(8)

where

h̃ = h̄
/
h̄0 =

∑
α

h̃α, Yi =
∑
α

Yiα, (9)

and the equilibrium populations h̃eqα , Y eqiα are expressed
as in (4) after replacing p with h̃ and Yi, respectively.
Assume t0 is a factor for converting physical time into
LB time units: (t)LB = (t)phys

/
t0, the source terms take

the explicit form

Qh =
1
h0

(
9∑
i=1

ω̇iWi

ρ̄
hi

)
t0δt, QYi

=
ω̇iWi

ρ̄
t0δt, (10)
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Fig. 4. Schematic representation of the 1D setup.

where ρ̄ is the mixture-averaged density, while ω̇i, Wi, hi
denote the rate of change, molecular weight and enthalpy
of species i, respectively. The thermal diffusivity κ and
diffusion coefficient Di of species i are related to the
relaxation parameters as follows [14]

κ =
2τh − 1

6
δt, Di =

2τYi − 1
6

δt. (11)

IV. EXAMPLE: FREELY PROPAGATING FLAME

In the following, we consider a stoichiometric
hydrogen-air mixture entering an adiabatic channel (con-
stant cross section) under room conditions (T = 300K,
p = 1bar) at fixed velocity vin = 1.2m/s. A heat source
is placed at the outlet in order to ignite the mixture (see
Fig. 4). A flame front is formed and propagates upstream
since the laminar flame speed is larger than the flow
velocity.

For simplicity, we use the assumption of equal diffusiv-
ity D for all species and Lewis number Le = κ/D = 1. In
this case, the mixture enthalpy h̄ and the element fractions
remain constant throughout the domain, and the reduced
dynamics takes place along the invariant grid constructed
as discussed in the section II. Notice however that, the
latter assumption is not restricting and a generalization
is obtained by extending the invariant grid with enthalpy
and element fractions as additional degrees of freedom.
On the other hand, in premixed systems, those quantities
are conserved up to small fluctuations and, for such
applications, the invariant grid is often sufficient. Finally,
in low-Mach combustion, the pressure p can be considered
constant for most cases.

Under the latter assumptions, the equations (8) can be
written in terms of the slow manifold parameters ξ1, ξ2

as follows:

ξjα (x + eα, t+ δt)− ξjα (x, t) =

− 1
τξ

[
ξjα(x, t)− ξjeqα

(
ξj ,u

)]
+ wαQξj ,

(12)

where, the equilibrium populations for the reduced vari-
ables ξj read

ξjeqα = wαξ
j

[
1 + 3

(
eαuT

)
+

9
2
(
eαuT

)2 − 3
2
u2

]
,

(13)
and the source terms take the form:

Qξj =
9∑
i=1

mi
jQYi

, ξj =
9∑
i=1

mi
jYi. (14)

The setup of Fig. 4 was simulated by solving both the
detailed model (7), (8) and the reduced one (12). In the
latter case, the source terms Qξj are tabulated at each
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Fig. 5. Fields along the channel at a given time: detailed model
(continuous line) and reduced model (circles).
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Fig. 6. Flame front position vs time with the inlet velocity vin =
1.2m/s.

node of the invariant grid, and accessed through multi-
variate linear interpolation. When simulating the reduced
model, a remarkable saving, in terms of both memory
(one-quarter of the density functions are stored at any
lattice node) and number of time steps (δtreduced ∼=
35δtdetailed), can be achieved. Moreover, based on the
comparison in Fig. 5, we can argue that the suggested
methodology enables to perform detailed simulations with
high accuracy. Finally, in Fig. 6 the flame position is
shown as function of time. The flame is defined as the
point with the highest heat release Qh at a given time.
The linear dependence indicates that the flame moves at
constant speed given by: SL = slope + vin ∼= 2.26m/s.
The value of the burning velocity SL is in perfect ac-
cordance with the detailed model prediction (up to 2%)
and in a good agreement with experimental data (see, e.g.
[15]).

V. EXAMPLE: PREMIX COUNTERFLOW FLAMES

Here, we consider the so-called counterflow laminar
flame as a two dimensional benchmark of the suggested
methodology. A well premixed stoichiometric H2-air mix-
ture is uniformly ejected from two parallel stationary flat
nozzles, located at y = ±Ly . When properly ignited, the
fuel reacts generating two twin flames in this counterflow,
while the burned gas exits the domain along the x-
direction. As illustrated in the sketch of Fig. 7, under
the assumption of symmetrical flow with respect to the
stagnation lines x = 0 and y = 0, the computational
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Fig. 7. Schematic representation of the 2D setup.
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Fig. 8. Detailed model using the D2Q9 lattice: O mass fraction
evolution

domain can be restricted to the region where x ≥ 0
and y ≥ 0, and simulations can be carried out using
the standard 2-dimensional lattice D2Q9. In both models
(detailed and reduced), the mixture, initially under room
temperature T0 = 300K, is ignited by placing a hot spot
at the origin of the reference system. Very good agreement
is demonstrated as reported in Figures 8 and 9, where the
time evolution of O radical concentration is shown.

VI. CONCLUSIONS

Here, we suggest a methodology for using accurate
reduced chemical kinetics in combination with a lattice
Boltzmann solver for simulating reactive flows. It has
been shown that the Method of Invariant Grids (MIG) is
suitable for providing the reduced description of chem-
istry, and this approach enables to cope with stiffness
when solving the LB species equations. This is particu-
larly desirable in the case of explicit solvers, and it results
in a remarkable speedup.
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Validation of Detailed Chemical Kinetic Models  

H. J. Curran 

National University of Ireland, Galway, Ireland 
Abstract  
Stricter emissions legislation combined with the need to reduce greenhouse gas emissions in order to militate 
against climate change drives fundamental research to produce cleaner more efficient systems. Chemical kinetic 
mechanisms are used by relevant industries to predict and optimize the operating behaviour of experimental 
facilities such as internal combustion engines, gas turbines and other combustion devices. More practically, 
detailed chemical mechanisms are reduced so that they reproduce the relevant target be it ignition delay time, 
flame speed, etc., and then combined with computational fluid dynamics simulations in order to accurately 
represent the whole combustion environment. 
 
However, in order to validate and produce accurate detailed chemical kinetic mechanisms in the first instance, a 
wide range of data is needed, and which is normally generated under well-controlled physical conditions of 
temperature, pressure, fuel/air ratio and dilution. These data include (i) ignition delay times recorded in shock 
tubes and in rapid compression machines, (ii) speciation data from flow reactors, jet-stirred reactors and flame 
experiments and (iii) flame measurements of laminar burning velocity. Typically, these mechanisms for 
hydrocarbon and oxygenated hydrocarbon systems are generated in a hierarchical way, starting first with the 
hydrogen/oxygen system, thereafter adding a carbon monoxide/carbon dioxide subset, followed by 
formaldehyde, methane and other larger C1-Cn species.  
 
This work will discuss the development of detailed chemical kinetic mechanisms in the context of hierarchy and 
range of validation. Some typical problems associated with these mechanisms will be discussed and some ideas 
on how they may be addressed will be explored. Moreover, the application of detailed kinetic mechanisms to 
fuel flexibility in gas turbines will be explored in some more detail. 
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Phase space structure of complex chemical-kinetic mechanisms: Low-dimensional 
manifolds for homogeneous chemical kinetics and 1-d premixed flames 

Michael J. Davis 
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Argonne, IL 60439 
Email: davis@tcg.anl.gov 

 Figure 1 shows a typical result for one-dimensional premixed flames.  The mass 
fractions for several species are plotted vs. the distance from the burner.   

Fig. 1 

These results were generated for the formaldehyde/methanol/CO mechanism of Dryer 
and co-workers.  The mixture mole fractions at the burner were: 3/7 CO, 2/7 O2, and 2/7 
H2, with T = 300 K.  This result is extended in Fig. 2 to two additional flames, which 
have different mixtures at the burner and different initial temperatures in Fig. 2.  The 
additional flames have the following mixtures and temperatures: 1) 1/6 CH2O, 1/3 CO,
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Fig.
2

1/6 H2, 1/3 O2, and T = 855 K, 2) 0.08 CH3OH, 0.42 CO, 0.17 H2, 0.33 O2, and T = 
809 K. 
 As Fig. 2 indicates, the behavior of flames can be very similar away from the 
burner (x > 0.2 cm in the figure), even when the mixtures and temperatures are different 
at the burner.  Figure 3 makes this point more strongly, by plotting projections of these 

flames in phase space.  This figure makes it clear that the steady flames are approaching a 
one-dimensional manifold in phase space, although they reach the manifold at different 
spatial locations (at the dot the spatial locations are 0.98, 1.05, and 1.25 cm). 

Fig. 3

The purpose of this talk will be to discuss the phenomena observed in the figures 
in terms of the phase space structure of the system.  The talk will also put the behavior in 
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the broader context of the composite phase space structure of a chemical-kinetic 
mechanism.  Additional topics of the talk will be: 1) how the phase space structure in the 
flame compares to the phase space structure of the homogeneous chemical kinetics, 2) 
how the phase space structure changes with stoichiometry, pressure, and enthalpy, and 3) 
how the phase space structure of this mechanism compares to other hydrocarbon 
mechanisms.  In particular, the latter topic will lead to a comparison of the Princeton 
methanol mechanism with the C3 mechanism developed at Galway for the lowest 
dimensional manifolds.   
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Abstract— This paper presents recent progress on the use
of Computational Singular Perturbation (CSP) techniques
for time integration of stiff chemical systems. The CSP
integration approach removes fast time scales from the reac-
tion system, thereby enabling integration with explicit time
stepping algorithms. For further efficiency improvements,
a tabulation strategy was developed to allow reuse of the
relevant CSP quantities. This paper outlines the method
and demonstrates its use on the simulation of hydrogen –
air ignition.

I. INTRODUCTION

The dynamics of chemical systems exhibit a wide
range of time scales, with associated stiffness of the
governing equations. This stiffness, and the significant
complexity of chemical kinetic models, both lead to
substantial challenges with the computation of chemical
systems. Chemical model simplification and reduction
strategies typically target these challenges by reducing the
number of reactions and/or species in the model, with
associated reduction in model complexity. When done
properly, this strategy also reduces the system stiffness.
Alternatively, the Computational Singular Perturbation
(CSP)-based time integration construction of [1] uses
CSP analysis to project out the fast time scales from
the detailed chemical source term, thereby rendering the
equations non-stiff. The promise of this approach is that
explicit time integrators can be used for large-time step
integration of the resulting non-stiff source terms, with
associated computational speedup as compared to implicit
time integration of the non-filtered detailed source term.
Further, this can very well eliminate the need for operator-
split time integration of reaction-diffusion source terms.
Moreover, by tailoring the projection operators to the
local chemical state, optimized adaptive strategies can be
implemented.

The key challenge with this time integration approach,
however, is the large computational cost of solving for
the requisite CSP information and the resulting projection
matrices. This is where tabulation comes in. By adaptively
storing and reusing the CSP information, the significant
CSP overhead can be drastically reduced, leading to an
efficient overall implementation. We have explored the

utility of tabulation of CSP quantities and their reuse for
time integration in earlier works on elementary model
problems [2], [3]. Our tabulation strategy is based on the
Piecewise Reusable Implementation of Solution Mapping
(PRISM) [4] technique, whereby the chemical configu-
ration space is suitably and adaptively subdivided into
hypercubes within which low order polynomial response
surfaces are used to represent the quantities of interest. In
the current work, we extend this approach by using kd-
trees [5] to efficiently store the CSP information along
manifolds in the chemical configuration space, without
requiring a priori partitioning of this space.

The paper first outlines the use of CSP analysis for
integrating chemically reacting systems, illustrated on the
simulation of H2 – air ignition. Next, the tabulation ap-
proach is introduced and employed on this same reacting
system. We illustrate the performance of the integrator,
and highlight the role of the CSP homogeneous projection
operation in the table construction and subsequent time
integration of the system.

II. BASICS

Consider the chemical system described by

dy

dt
= g(y) (1)

where y ∈ IRN , and g(y) is the chemical source term.
The CSP basis vectors {ak}N

k=1 and covectors {bk}N
k=1,

all in IRN , enable the decoupling of the fast and slow
processes, and the identification of low dimensional slow
invariant manifolds (SIMs) [6]. Thus, we have

dy

dt
= g = gfast + gslow (2)

= a1f
1 + a2f

2 + · · · + aNfN (3)

where f i = bi · g, for i = 1, 2, . . . , N . After relaxation
of fast transients, with M modes exhausted,

gfast =
M∑

r=1

arf
r ≈ 0 (4)

gslow =
N∑

s=M+1

asf
s = (I −

M∑
r=1

arb
r)g = Pg (5)
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Fig. 1. Evolution of temperature (normalized by T0 = 300 K) in an
igniting lean H2–air system, using an implicit solver (blue solid line), the
CSP solver (red solid line), and the CSP solver with tabulation (black
dashed line). All three approaches are in good agreement, except for
minor differences in the ignition time delay.

The CSP integrator [1] proceeds in each time step by first
integrating the slow dynamics of the system, followed by
a homogeneous correction (HC) to correct for the fast
time scales:

ỹ(t + ∆t) = y(t) +
∫ t+∆t

t

Pg dt′ (6)

y(t + ∆t) = ỹ(t + ∆t) −
M∑

m,n=1

amτm
n |tf̂n (7)

f̂n = bn · g[ỹ(t + ∆t)] (8)

where τm
n is the inverse of λm

n , given by

λm
n =

(
dbm

dt
+ bmJ

)
an (9)

and J is the Jacobian of g. Note that the time integration
of the slow dynamics can be done using any suitable time
integration procedure. Also, the matrix τm

n is diagonal
with entries the time scales {τk}N

k=1 when the CSP basis
vectors are chosen to be the eigenvectors of J and the
curvature of the SIM is neglected, i.e. dbm/dt = 0.

III. APPLICATION TO H2–AIR IGNITION SYSTEM

The CSP integration method outlined in the previous
section was applied to the simulation of ignition of a lean
homogeneous H2–air mixture at a temperature of T =
1000 K. The system is modeled using a 9 species reaction
mechanism, resulting in a total state space dimension of
N = 10 (9 species + temperature) [7]. Fig. 1 compares
the predicted temperature evolution obtained with a full,
implicit integration (using CVODE), and with the CSP
integrator (using the explicit RKC integration scheme).

The CSP integrated solution is in good agreement
with the full solution, except for a small difference in
the ignition time delay. The CSP approximation can be
improved by selecting a smaller time step factor α, where
α is the integration time step as a fraction of the first non-
exhausted time scale τM+1: ∆t = α · τM+1. As shown in

Fig. 2. Close-up of the ignition zone of Fig. 1. The CSP approximation
converges to the implicit solution with decreasing time step factor α :
∆t = α · τM+1.

Fig. 2, cutting the time step factor to 0.5 greatly improves
the accuracy of the predicted ignition time.

As the reaction progresses, the number of exhausted
modes M , and the associated CSP radicals change ac-
cording to the reaction dynamics. Fig. 3 indicates that the
system initially has two exhausted modes, followed by a
time window during ignition where all modes are active,
after which M gradually increases up to three at late time,
as more and more modes become inactive.

IV. TABULATION

While the CSP integrator provides an effective way to
remove stiffness from the reaction system, the approach
is still computationally expensive given the high cost of
determining the CSP vectors and covectors a and b,
as well as the associated time scales. To improve the
efficiency of the CSP integrator, a tabulation approach
has been developed to enable reuse of the essential CSP
quantities: the M fast CSP vectors and covectors, as well
as the M + 1 fastest time scales, which are sufficient to
assemble the slow-manifold projector P needed for the
HC and CSP integration, and to select the time step along
the slow manifold.

While other methods have relied on tabulation of in-
tegrated source term data over the chemical state space
before [4], [8], the combination of CSP with tabulation
is particularly powerful as CSP effectively reduces the
needed dimension of the tabulation. As the CSP vectors,
covectors and time scales can be modeled as functions
of the active modes only, it is sufficient to tabulate these
quantities in an N − M dimensional table, rather than
having to cover the full N -dimensional state space. For
example, for the H2–air system studied here, tabulation in
a 7-dimensional table is sufficient for the section(s) of the
10-dimensional state space where 3 modes are exhausted
(see Fig. 3).

Starting from a number of design points in state space,
successive HCs are applied to identify SIMs in the system.
Each SIM is characterized by a unique value of M and the
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Fig. 3. Evolution of the temperature and the number of exhausted
modes, M , as obtained by the CSP integrator (green) and the CSP
integrator with tabulation (red). The species labels indicate the CSP
radicals corresponding with the exhausted modes.

associated CSP radicals. The extent in IRN within which
each manifold is valid is assumed to be the smallest box,
aligned with the Cartesian coordinates (T, Y1, . . . , Yk),
that encompasses all design points that are attracted by
the manifold.

For each identified SIM, the tabulation of the associated
CSP information relies on a nonparametric regression ap-
proach, which offers a high degree of flexibility as it does
not depend on any pre-determined spatial partitioning.
Information is retrieved using efficient nearest-neighbor
searches through kd-tree data structures that cover the
N −M dimensional slow species space [5], and new data
can readily be added to the table as it becomes available.
In the current implementation, the CSP information is
approximated with the corresponding values at the nearest
neighbor point in the table, which amounts to a 0th-
order interpolation. Higher order interpolations, relying on
interpolation between nearest neighbors or on polynomial
response surfaces [2], [4], are the subject of ongoing
work.

As indicated in Figs. 1 and 2, the temperature profile in
the ignition simulation with the tabulation approximation
matches the predictions with the regular CSP integrator
very well. While showing overall good agreement, Fig. 3
does reveal small differences in the number of exhausted
modes with and without tabulation in a small time span
right before ignition, at t ≈ 0.1 s. However, those differ-
ences seem to have no significant effect, as illustrated by
the overall good agreement between the CSP predictions
with and without tabulation of the temperature profile, as
well as the O2 and H2O2 species mass fractions shown
in Fig. 4.

In [2], the CSP integrator combined with a tabula-
tion approach was shown to be competitive with direct
CVODE integration in terms of CPU cost. The perfor-
mance of the present tabulation scheme, as a function of
the table size, system and manifold dimensionality, degree
of stiffness, and desired accuracy is currently under study.

Fig. 4. Mass fractions of O2 and H2O2 using the CSP integrator with
(black dashed line) and without tabulation (red solid line). The tabu-
lation approximation is in excellent agreement with the non-tabulated
integration.

V. CONCLUSIONS

This paper demonstrated the use of CSP to auto-
matically reduce the stiffness in reaction mechanisms,
enabling their integration with efficient explicit time step-
ping algorithms. To improve the computational efficiency
of this approach, a tabulation method has been developed
that enables efficient reuse of CSP information. The ap-
proach was shown to give good results for the simulation
of ignition in a H2–air mixture with a 9 species model.
Ongoing work focuses on further improvement of the
efficiency and accuracy of the tabulation approach.
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Reduction and Equivalence of Nonlinear
Distributed Symmetric Control Systems
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Abstract— This paper considers the ‘reduction’ problem
for large-scale distributed control systems. In particular,
we consider control-theoretic concepts for control systems
containing multiple instances of identical controllers or
components where the overall system is invariant with re-
spect to interchanging these identical components. The main
results are invariance of controllability, motion planning
and optimal control properties for an equivalence class of
symmetric systems of this type.

I. I NTRODUCTION

This paper considers nonlinear control-theoretic prop-
erties of large-scale distributed systems, which consist of,
perhaps many, interconnected subsystems. Since the size
of these systems can make analysis difficult or intractable,
the aim of this work is to exploit symmetry properties
of such systems to reduce their complexity. Unlike most
model reduction problems, the approach here isexact in
that some control-theoretic properties are equivalent in the
reduced order model and large model.

The type of symmetry we consider is when certain
subsystems of the overall system can be interchanged with
other subsystems without changing the dynamics of the
overall system. The general idea is that a distributed sys-
tem is comprised of sets of multiple, repeated instances of
identical hardware, which naturally can be interchanged.
We represent such symmetric distributed systems using a
graph-theoretic representation, as illustrated in Figure 1.
Each node of the graph represents a subsystem of the
overall system, and if each of the nodes 2-11 are identical,
the system is characterized by anS10 symmetry (the
symmetric group of order10), which is a consequence
of the fact that each of the subsystems 2-11 can be
interchanged without altering the system.

When a subsystem is interchanged, the input/output
connections of the subsystem must match the input/output
connection of the replaced subsystem. For example,
consider a team of mobile robots working together to
manipulate an object. Suppose that each robot transmits
its horizontal position to one neighboring robot and its
vertical position to another. Clearly, if this robot is to
be replaced by a similar robot, the system would only
work if the correct,i.e., horizontal or vertical, position
is transmitted to the correct neighbor since each of the
neighbors are expecting and acting on a particular type of
information. For the system in Figure 1, for example, node
2 must interact with node 3 in the same manner that node
6 interacts with node 7, otherwise the dynamics of the
overall system will be altered if they were interchanged.
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Fig. 1. An eleven node distributed system.

The method presented in this paper constructs a formal
means of determining whether subsystems can be inter-
changed without altering the global system characteristics.
Furthermore, this method can be used to then determine
if a symmetric subsystem can be added without altering
some of the control-theoretic properties of the system.
In such a case, computations involving the “small” sym-
metric systems will provide a means to determine these
properties for larger, symmetric systems.

There have been many efforts toward controllability
of distributed systems [3], [5], [14], [1] and distributed
systems with symmetry [6], [15]. These efforts are limited
to linear systems; however, this paper considers fully non-
linear systems. There have also been many efforts toward
reducing nonlinear mechanical and control systems [8],
[9], [7], [10], [11], [2], [20], [21]. A similar approach
was considered by Tanaka [19], [18], [17]; again, those
results are limited tolinear controllability, as opposed to
the full nonlinear controllability considered in this paper.

II. D RIFTLESS SYMMETRIC NONLINEAR DISTRIBUTED

SYSTEMS

A. Nonlinear Distributed Systems

This overview is based upon our previous results
in [12]. We will consider smooth analytic driftless systems
of the form

Σ : ẋ = g1,1(x)u1,1 + g1,2(x)u1,2 + · · · (1)

+ g2,1(x)u2,1 + g2,2(x)u2,2 + · · ·

...
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+ gn,1(x)un,1 + gn,2(x)un,2 + · · · x ∈M,

where M is a smooth manifold andgi,j are smooth
analytic vector fields onM . , andu = {u1, . . . , un} ∈ U ,
whereU is the set of admissible controls. We assume that
the set of admissible controls is a subset ofR

n such that,

Aff(U) = R
n,

where Aff(U) denotes the affine hull ofU . Since we are
considering distributed systems, the system is assumed to
be organized into subsystems, corresponding to which are
certain vector fields and control inputs. In Equation (1),
the first subscript on theg’s andu’s indexes the subsystem
to which the vector field and control input corresponds,
and the second subscript indexes different vector fields
and inputs within that subsystem. To avoid notational
clutter, if a vector field only has one subscript,i.e., gi(x),
then it represents theordered setof vector fields associ-
ated with nodei, i.e., gi(x) = {gi,1, gi,2, . . .}. Similarly,
ui would represent the ordered setui = {ui,1, ui,2, . . .}.
Any property defined for single-subscripted vector field
is understood to apply to each member in that set.

Elaborating further on the distributed nature of the
system, we assume thatM is partitioned into a set of
m regular submanifolds,Mi such thatM is the Cartesian
product of theMi, i.e.M =

∏m
i=1Mi. Each submanifold

Mi represents asubsystem, module, nodeor component
of the distributed system (all these terms will be used
interchangeably). For example, in a system of cooperating
robots, eachMi would represent the configuration space
for one robot in the system and{ui,1, ui,2, . . .} would be
the control inputs for that robot.

Since, it is often the case that the dynamics of any
one module or node is only affected by its own controller
and states as well as the control inputs and states of a
limited subset of the other nodes (usually its neighbors)
and to help aid in providing a clear presentation, we
will utilize a graph-theoretic representation of distributed
systems. Formally, we define the digraph of a nonlinear
control systemΣ, written asGΣ, to be the pair (V,E)
consisting of a set of verticesV = {V1, . . . , Vm} and
the set of edges, denoted byE, which are ordered pairs
of elements ofV. Each vertex represents one module
Mi, i.e., Vi = Mi. The edge directed fromVi to Vj ,
Ei,j = {Vi, Vj} ∈ E, represents a vector field which
maps elements of the verticesVi and Vj to the tangent
space of the end-point vertexVj i.e.,

Ei,j : Vi × Vj → TVj.

The edgeEi,j is the sum of thejth components of
the gi,k(x)’s from Equation 1 that multiply the control
inputs associated with nodei. If it is necessary to further
distinguish the edges by representing to which vector field
within the subsystem it is associated, a third subscript can
be added,i.e.,

Ei,j,k : Vi × Vj → TVj.

This edge,Ei,j,k, still maps between the same spaces, but
the third subscript indicates that it is thejth component of

gi,k. Again, to avoid unnecessary notational complexities,
we will often drop the third subscript (indexing to which
control input in nodei the vector fields is associated)
and useEi.j to represent theordered setof vector fields,
Ei,j = {Ei,j,1.Ei,j,2, . . .}.

Let Ṽi = {Vĩ1
, . . . , Vĩm

} be an ordered set of vertices
which are connected toVi by edges directed fromVi to
the elements of̃Vi and letẼi = {Ei,̃i1

, . . . , Ei,̃im
} be an

ordered set of edges directed fromVi to elements̃Vi. The
manner by which̃Vi andẼi are ordered is determined by
interactions and/or communications between nodes. Note
that orderingṼi imposes some topological structure on the
system; in particular, for nodes that can be interchanged,
theṼi sets must be ordered identically with respect to their
neighbors so that their interactions with adjacent nodes
are the same before and after they are interchanged to
maintain invariance of the overall system dynamics.

B. Symmetric nonlinear distributed systems

Now we will consider what it means for a nonlinear dis-
tributed system to be symmetric. This will be represented
by the fact that vector fields from various nodes will, in
some sense, be equivalent. Since the vector fields directed
from different nodes are defined on different spaces, we
need a definition of equivalence which is more than just
requiring that they be “identical.”

Definition 1: Two vector fields,g1 And g2 are equiv-
alent, denotedg1 ∼ g2, if there exists a diffeomorphism,
ψ : M 7→M , such that

ψ∗ ◦ g1 (W ) = g2 (ψ (W ))

whereW is an open set. Equivalently, we can define
Ei,j ∼ Ek,l by only considering thejth and lth com-
ponents ofgi andgk, respectively.

The definition of vector field equivalence applies to
general submanifolds without any assumptions regarding
the relationship between the coordinate systems defined
on different nodes; however, often each node will be
designed with a complimentary coordinate system so
that the diffeomorphism,ψ, in definition 1 is a simple
permutation of states and the open set,W , is the whole
domain of validity of the system equations. Equivalence
among vector fields can often be determined by inspec-
tion; however, this inspection is typically on an edge–
by–edge basis in contrast to the computational approach
involving the full control vector field.

Recall that the symmetric group of orderp!, denoted
Sp, is the group of permutations ofp objects and that
such a permutation of a setX = {1, . . . , p} is a one-to-
one mapping ofX onto itself. Such a permutationρ is
written

ρ =

(

1 2 · · · p

k1 k2 · · · kp

)

which represents that1 is mapped tok1, 2 is mapped
to k2, etc. Given an equivalence relation among vector
fields, we now define a symmetric nonlinear distributed
system.
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Definition 2: Let asymmetry orbit, O ⊂ V, be a subset
of V containingp vertices,i.e.,O = {Vk1

, Vk2
, . . . , Vkp

},
let F = V \ O be the subset ofV containingn − p

fixed vertices,i.e., F = {Vf1
, . . . , Vfn−p

}, let Ṽkl
be the

ordered set of vertices connected toVkl
, and letρ ∈ Sp.

The systemΣ is asymmetric nonlinear distributed system
if

gki
∼ gρ(ki) ∀i ∈ {1, . . . , p} and∀ρ ∈ Sp.

Equivalently, a system is a symmetric nonlinear dis-
tributed system if

Ek,k̃l
∼ Eρ(k)l,ρ(k̃)l

and Ek̃l,k
∼ Eρ(k̃),ρ(k)l

,

∀k ∈ {k1, . . . , kp}, ∀l ∈ {1, . . . , (k̃l)m}, and∀ρ ∈ Sp.
Before we define nonlinear symmetric system equiva-

lence, we need to develop a technique which allows us
to compare the relative size of two systems. LetΣ1 and
Σ2 be symmetric nonlinear distributed systems and let
GΣ1

= {V1,E1} and GΣ2
= {V2,E2} denote their

corresponding digraphs. We say thatGΣ1
≥ GΣ2

if the
number of vertices inGΣ2

is greater than the number
of vertices in GΣ2

. Now nonlinear distributed system
equivalence is defined as follows.

Definition 3: Let Σ1 and Σ2 be symmetric nonlinear
distributed systems andGΣ1

≥ GΣ2
. Since each system

is a symmetric nonlinear distributed system there exist
symmetry orbitsO1 ⊂ V1 and O2 ⊂ V2 containingp
andq (p ≥ q) vertices, respectively,i.e.,

O1 = {V(k1)1 , V(k1)2 , . . . , V(k1)p
}

and
O2 = {V(k2)1 , V(k2)2 , . . . , V(k2)q

}.

The systemsΣ1 andΣ2 areequivalent symmetric nonlin-
ear distributed systemsif

1) Ek,(k̃l)1
∼ Ek,(k̃l)2

∀k ∈ {k1, . . . , kq}, ∀l ∈

{1, . . . , (k̃l)m}
2) F1 = V1\O1 andF2 = V2\O2 contain the same

number of vertices,i.e.,F1 = F2 = {V1, . . . , Vm},
and

3) Ek,(k̃l)1
∼ Ek,(k̃l)2

∀k ∈ {1, . . . ,m}, ∀l ∈

{1, . . . , (k̃l)m}.

Denote the equivalence class of systems defined by this
equivalence relation bȳΣ.

Equivalence between symmetric nonlinear distributed
systems requires that every member have an equivalent
input/output structure and the same number of fixed
nodes. Furthermore, corresponding elements ofẼi in each
system must be vector field equivalent. Note, not all
digraphs have the same number of vertices and edges, so
the comparison is only between elements that exist in each
digraph. To illustrate the notation used in the definition
of system equivalence, consider the following example.

III. R ESULTS

This section presents three main classes of results
for symmetric distributed systems. The first is related
to controllability, the second to a constructive motion

planning algorithm and the third to preliminary results
for optimal control of such systems.

A. Nonlinear Controllability

Given an open setW ⊆M , defineRW (x0, T ) to be the
set of statesx such that there existsu : [0, T ] → U that
steers the control system fromx(0) = x0 to x(T ) = xf

and satisfiesx(t) ∈ W for 0 ≤ t ≤ T , whereU is the set
of admissible controls. Define

RW (x0,≤ T ) =
⋃

0<τ≤T

RW (x0, τ). (2)

We will refer to RW (x0,≤ T ) as the set of states
reachable up to timeT .

Definition 4: A system issmall time locally control-
lable (‘STLC’, or simply ‘controllable’) if RW (x0,≤ T )
contains a neighborhood ofx0 for all neighborhoodsW
of x0 andT > 0.

Let C denote the smallest subalgebra ofV∞(M) (the
Lie algebra of smooth vector fields on a manifoldM
whose product is the Lie bracket,[·, ·]) that contains
g1, . . . , gm. If dim(C) = dimM at a pointx, then the
system described by Equation 1 satisfies theLie Algebra
Rank Condition(‘LARC’) at x. The following is well
known as ‘Chow’s Theorem.’

Theorem 5:If the system described by Equation (1)
satisfies the LARC at a pointx0 then it is STLC from
x0.

The following is the main controllability result.
Proposition 6: If any one member,Σn, of the equiva-

lence class of symmetric distributed control systems,Σ is
STLC, then all members of the equivalence class,Σi ∈ Σ
wherei > n of symmetric distributed control systems are
STLC.

The proof is a straight-forward construction that makes
use of the fact that diffeomorphisms are natural with
respect to Lie brackets. A similar theorem for nonlinear
systems with drift based on the usual good/bad bracket
test due to Sussmann [16] is similarly obtained.

B. Nonholonomic Motion Planning

Symmetries may be exploited in distributed systems for
motion planning purposes. Space limitations prevent their
inclusion here. An interested reader is referred to [13].

C. Optimal Control

The ultimate goal for considering the optimal control
problem are similar reduction results,i.e., solving the
optimization problem for a smaller system and using the
results for a larger system. Initial results related to the
bifurcations of optimal solutions appear in [4]. We adopt a
simplified version of the robotic unicycle as a prototypical
model. The simple kinematics of this kind of robot are
described by

ẋ = u1 (3)

ẏ = u2.

The problem is to find the controlsui1(t), ui2(t) for
each roboti which steer a formation of robots of this
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type from the start configuration to its goal configuration,
while maintaining a rigid body formation at the beginning
and end of the trajectory and minimizing the global
performance index

J =

∫ tf

0

n
∑

i=1

(

(ui1)
2

+ (ui2)
2
)

+

n−1
∑

i=1

k
(

di − d
)2
dt

subject to the robotic kinematic constraints in Equation 3,
where n > 2 is the number of robots,di = ((xi −
xi+1)

2 + (yi − yi+1)
2)1/2 is the Euclidean distance from

ith to (i+ 1)th robots,d is the desired distance between
two adjacent robots, andk is a non-negative weighting
constant. The cost function minimizes a combination of
the control effort (first summation) and the deviation from
a desired formation (second summation). Bifurcations in
the nature and the form of the solutions are illustrated in
Figure 2 for a system of seven robots.
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Abstract— A 22-D glycolysis model is analyzed with CSP,
when it exhibits an oscillatory (limit cycle) behavior. Due to
the action of a number of fast dissipative timescales and of
significant decouplings, it is shown that the limit cycle lies
in a 3-D subdomain.

I. INTRODUCTION

The construction of complex mathematical models
in biology and genetics demands the development of
particular algorithmic tools for the acquisition of the
desired physical understanding. As a result, a number of
methodologies have recently been developed in order to
construct simplified models that are of low dimension but
retain all the significant features of the full model. These
methodologies have been employed successfully for the
analysis of a large number of problems in the field of
biochemistry, e.g. [1]-[5].

Simplification of large and complex nonlinear math-
ematical models is mainly based on the presence of
very fast dissipative time scales, which quickly become
exhausted, allowing slower scales to characterize the
evolution of the physical process. These fast time scales
do not affect the progress of the system directly, but they
simply constrain its evolution in a low dimensional space.
This situation is usually defined as stiffness and the low
dimensional space, where the system evolves according
to the slow time scales, is defined as a slow manifold.

Here, the CSP algorithm [6], [7] will be employed for
the analysis of a model describing the glycolysis cycle
of intact yeast cells as a homogeneous two-phase (intra-
cellular/extracellular) system [8]; the kinetics of which
involves 24 reactions among 22 metabolites, as shown
in Table I. Being one of the most significant topics in
biochemistry, glycolysis has been the subject of extensive
study.

For the 22-dimensional glycolysis model and the os-
cillatory regime examined here, CSP analysis shows that
the long term evolution takes place along a 3-dimensional
limit cycle. This feature is the result of (i) the existence
of two conservation laws, (ii) the development of ten
dissipative fast time scales, which force the trajectory to
move on a 10-dimensional slow manifold and (iii) the
effective decoupling on this manifold of three dimensions
from the remaining seven; the latter being practically
decoupled from all other dimensions of the problem as
well.

TABLE I
REACTIONS IN THE DETAILED MODEL [8]

1 ↔ Glcx

2 Glcx ↔ Glc
3 Glc + ATP → G6P + ADP
4 G6P ↔ F6P
5 F6P + ATP → FBP + ADP
6 FBP ↔ GAP + DHAP
7 DHAP ↔ GAP
8 GAP + NAD+ ↔ BPG + NADH
9 BPG + ADP ↔ PEP + ATP
10 PEP + ADP → Pyr + ATP
11 Pyr → ACA
12 ACA + NADH → EtOH + NAD+

13 EtOH ↔ EtOHx

14 EtOHx →
15 DHAP + NADH → Glyc + NAD+

16 Glyc ↔ Glycx

17 Glycx →
18 ACA ↔ ACAx

19 ACAx →
20 ACAx + CN−x →
21 ↔ CN−x
22 G6P + ATP → ADP
23 ATP → ADP
24 ATP + AMP ↔ 2 ADP

II. THE LIMIT CYCLE

The governing equations are of the form of the N-dim.
system:

dy
dt

= Q−1
(
S1R

1 + ...+ SNR
N

)
= g(y) (1)

where the elements of the N-dim. column vector y are the
concentrations of the metabolites (mM), t is time (min),
the N-dim. column state vector Sk and the scalar Rk

denote the stoichiometric vector and rate, respectively, of
the k-th reaction (see [8] for the expressions for the reac-
tion rates). The N ×N matrix Q is diagonal, its entries
equaling either unity for the intracellular metabolites or
the ratio of the extracellular volume to the total volume
of intracellular cytosol, yvol, for the extracellular ones.

The oscillatory behavior of the glycolysis model is
displayed in Fig. 1, where the evolution of the concen-
tration of nicotinamide adenine dinucleotide (NADH) for
the period 0 < t < 100 min is displayed; the behavior
of the other metabolites being similar. This oscillatory
motion develops as various transient components die-out,
is characterized by a frequency ωch = 2π/T ≈ 10 min−1

and evolves around a limit cycle. As is depicted in Fig. 2,
for the interval 450 < t < 500 min in which all fast
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initial transients are exhausted, fully oscillatory motion is
established along a limit cycle at sufficiently long times;
the structure of the cycle suggesting that it occupies a
low-dimenisional subspace.
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Fig. 1. The evolution of the NADH concentration (mM) with time
(min) during the period 0 < t < 100 min. On the right, magnification
when fully oscillatory motion is established.
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Fig. 2. The trajectory on the [Glc] - [ATP ] and the [Glc] - [GAP ]
planes, during the period 450 < t < 500 min.

III. CSP RESULTS

Using CSP, various simplified models can be con-
structed when the solution evolves along the limit cycle,
providing different levels of accuracy. Shown in Fig. 3 is
the accuracy provided when six or ten fast modes are
considered exhausted (M=6 or 10). Since τ11 ≈ ωch,
M=10 provides the maximum simplification possible.
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Fig. 3. M=6, 10. The relative error of [ATP ] and [GAP ] when
comparing the solutions of the full and simplified models.

The better accuracy provided by the M=6 simplified
model, relative to the one provided by the M=10 one, is
due to the fact that a larger time scale gap exists in this
case; i.e., τ6/τ7 is smaller than τ10/τ11.

Considering the M=10 case, CSP data indicate that the
ten fast time scales affect the most the ten variables:

yr = ([BPG], [GAP ], [AMP ], [PEP ], [F6P ],
[NADH], [DHAP ], [ACA], [Glc], [EtOH])T

where [X] denotes the concentration of X in mM , the
rates of change of which relate to that of the remaining

twelve variables with the relation:

dyr

dt
= Gr

s

dys

dt
(2)

where Gr
s is a N ×M matrix [9] and

ys = ([ATP ], [G6P ], [ADP ], [FBP ], [NAD+],
[Glyc], [Pyr], [Glcx], [EtOHx], [Glycx],
[ACAx], [CN+

x ])T
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Fig. 4. M=10. The evolution in time (min) of the M components
in the LHS of Eq. (2) and the most important additive terms of the
corresponding components in the RHS; i.e. gi (i=1,M) and of the largest
Gi

kgk (k-1,N-M).

Shown in Fig. 4 are the ten components in the LHS of
Eq. (2) along with the most important additive terms of
the corresponding components in the RHS. Inspection of
the displayed data reveals that the rate of change of the
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variables in yr depends on the rate of change of only five
elements of ys, namely:

ys1 = ([ATP ], [G6P ], [ADP ], [FBP ], [NAD+])T

being independent on the rate of change of the rest:

ys2 = ([Glyc], [Pyr], [Glcx], [EtOHx], [Glycx],
[ACAx], [CN+

x ])T

Further analysis indicates that the rate of change of ys2

decouples not only from yr but from ys1 too. The validity
of this statement is demonstrated by the results displayed
in Fig. 5, where the solution of the original model is
compared with that of a perturbed model; the latter
consisting of the original model in which the magnitude
of the rate of change of the variables in ys2 is increased
by 20% for all times after t = 25 min. Both solutions
were computed on the basis of initial conditions lying on
the limit cycle.

24 26 28 30

time

16.7485

16.7495

[P
yr

] original

perturbed

24 26 28 30
time

1

16,7485

16,7495

[P
yr

]

original

perturbed

24 26 28 30
time

2,4×10
-4

2,8×10
-4

3,2×10
-4

[B
P

G
]

original

perturbed

24 26 28 30
time

0,115

0,120

0,125

[G
A

P
]

original

perturbed

24 26 28 30
time

2,0

2,2

[A
T

P
]

original

perturbed

24 26 28 30
time

0,64

0,66

[N
A

D
+
]

original

perturbed

Fig. 5. The effects on the concentration of the metabolites in ys2

([Glyc], [Pyr]), yr ([BPG], [GAP ]) and ys1 ([ATP ], [NAD+])
of a 20% perturbation in the magnitude of the rate of change of the
seven components in ys2 imposed from t = 25.

In other words, in the perturbed model the governing
equations for yr and ys1 are similar to the ones in the
original model, while the governing equation for ys2 is
initially, up to t = 25 min, similar to that of the original
model, say:

ys2

dt
= gs2(yr,ys1,ys2) = gs2(y) (3)

being replaced for all subsequent times, t ≥ 25 min, by
the equation:

ys2

dt
= 1.20 gs2(yr,ys1,ys2) = 1.20 gs2(y) (4)

The results displayed in Fig. 5 show that the per-
turbation imposed from t = 25 is immediately felt
by the components in ys2, such as [Glyc] and [Pyr].
Regarding the components in yr, such as [BPG] and
[GAP], Fig. 5 verifies that the imposed perturbation has
no effect on them. Moreover, Fig. 5 indicates that the
imposed perturbation has no effect in the components of
ys1, such as [ATP ] and [NAD+].

These results indicate that a 5-dimensional simplified
model can be constructed for the accurate simulation of
the glycolysis process along the limit cycle.. This size
can be further reduced by taking into account the two
conservation laws:

[NAD+] + [NADH] = const.
[ATP ] + [ADP ] + [AMP ] = const.

that involve variables in yr and ys1, so that a 3-
dimensional simplified model can be constructed, involv-
ing the rate of change of [ATP], [G6P] and [ADP] only.

IV. CONCLUSIONS

A demonstration on the usefulness of the N × M
matrix Gr

s was presented, in identifying the couplings
operating along the limit cycle. This matrix, measuring
the sensitivity of the variables in yr with respect to those
in ys [9], identifies the couplings enforced by the fast
time scales as the solution relaxes and then moves on the
slow manifold.
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Abstract— The dynamics of proteins can be described
as the superposition of motions at a continuum of time
scales. In the special case of a protein immersed in an
implicit solvent, a stochastic differential equation (SDE) can
model the dynamics of the solute protein. Traditional model
reduction techniques fail because a priori characterization
of the slow variables in these SDEs is nearly impossible. We
present an approach that instead, does a local dimensionality
reduction of the SDE in a neighborhood of phase space,
which is adaptively performed when the reduced model is
no longer valid. The local slow variables, which we call
approximate normal modes (ANM), are found using the
diagonalization of a coarse-grained Hessian (CGH) from the
potential energy function. We call this procedure coarse-
grained normal mode analysis, or CNMA. Diagonalization
of the CGH can be achieved in O(N log N) time and O(N)
memory rather than O(N3) time and O(N2) memory of
ordinary diagonalization. CNMA is able to capture the low
frequency motions of the protein. An SDE on the ANM is
found by using a saddle-point approximation of the mean
fast-frequency force experienced by the slow variables, and
an implicit solvent model that considers the protein as
a Brownian particle. This mean force can be computed
at a cost no greater than a fine-grained force evaluation.
Discretization of the resulting SDE achieves very long time
steps compared to the discretization of the fine-grained SDE.
A metric is used to monitor the validity of the ANM as
slow variables and prompt re-diagonalization of the CGH
or adaptation of the time step used. I will present numerical
results on small peptide and protein system that show that
this coarse-graining scheme allows up to three orders of
magnitude speedup due to increase in the SDE discretization
time step, and that the scheme is able to preserve kinetics
when compared to the fine-grained SDE.

I. INTRODUCTION

Proteins are polymers of mostly naturally occurring
aminoacids. Proteins are molecular machines, and as
any machine, they must move in order to function.
Understanding protein motion or dynamics is critical to
solving problems as diverse as protein folding, functional
conformational changes, and to computationally predict
the effectiveness of drugs that target proteins. Simu-
lating protein dynamics remains very challenging. The
most straightforward approach, molecular simulation of
Newton’s equations of motion using standard atomistic
models, quickly runs into a significant sampling problem
for all but the most elementary of systems. While small
proteins fold or have biologically relevant conformational
changes on the microseconds to second timescale, detailed
atomistic simulations are currently limited to the nanosec-
ond regime, with a few “heroic” simulations breaking the
microsecond timescale.

The fundamental challenge to overcome is the presence
of multiple time scales: typical bond vibrations are on the
order of femtoseconds (10−15 sec) while proteins fold
on a time-scale of microsecond to millisecond. This is a
1012 difference in time scales! We tackle the problem of
developing timescale-coarse-grained models of proteins
to understand their thermodynamics (e.g. statistical prop-
erties) and kinetics (e.g. rates). Among other multiscale
problems, coarse graining dynamical protein models in a
rigorous and computationally tractable way is particularly
challenging. Two specific difficulties can be identified.

The identification of the slowest variables in the system
(e.g. associated with the slowest time scales and transi-
tion rates) is to a large extent an unresolved problem.
Even when people agree on a specific definition, the
actual computation can be intractable. This is the case
for example if one attempts to calculate the committor
function, the probability at a given point that the protein
folds rather than unfolds, by brute force. This is typ-
ically done by starting many trajectories from a given
point and directly computing how many fold the protein.
Additionally, computing dynamics of the slow variables
is non-trivial because they are intricately coupled to the
fast variables. In other words, there is in general no
timescale separation. In protein modeling, there is a dense
spectrum of frequencies due to the highly coupled nature
of the force field. Unfortunately, most multiscale methods
start by assuming that it is in fact possible to extract
variables whose time scale is significantly slower than
the rest. Some of the unresolved variables will have time
scale (faster but) comparable to time scales of some of
the resolved variables. No sharp cutoff can be found.
Therefore special techniques need to be developed to go
beyond the time scale separation approximation.

II. COARSE-GRAINED NORMAL MODE LANGEVIN
DYNAMICS (CNML)

Rather than attempting to identify slow variables that
are valid globally, our approach is based on adaptively
identifying slow variables valid locally. Once these slow
variables have been identified, we derive a SDE where the
effect of fast variables is described through average and
fluctuating forces. We discretize this SDE, which allows
much longer time steps than the original fine-grained
equations of motion. Whenever these slow variables are
no longer valid, defined by a metric explained below,
we identify a new set of slow variables, or alternatively
adapt the time step for the solution of the SDE. Earlier,
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we presented an approach using similar slow variables
and SDE, but that attempted no adaptive dimensionality
reduction in [7]. Our current approach is more robust and
scalable.

Choice of slow variables. Our slow variables are ap-
proximate low-frequency normal modes (ANM) derived
from a coarse-grained Hessian (CGH). Normal modes
are the eigenvectors of the Hessian matrix of the poten-
tial energy U at an equilibrium or minimum point x0

with proper mass normalization. More formally assume
a system of N atoms with 3N Cartesian positions and
diagonal mass matrix M. To perform the normal mode
analysis (NMA) for these systems we can formally expand
the potential energy about an equilibrium point, which
we assume to be a local minimum. The Hessian H is
a factor in the first non-constant, non-zero term of this
expansion and a harmonic approximation to the original
system can be found by truncating the expansion at this
point. To rewrite the harmonic approximation as a set
of decoupled oscillators it is insufficient to diagonalize
the Hessian as the resulting oscillators would be coupled
through the projected mass matrix. Instead we mass re-
weight the system using and then diagonalize the resulting
mass re-weighted Hessian, M− 1

2 HM− 1
2Q = QΛ, where

Λ is the diagonal matrix of ordered eigenvalues and
Q the matrix of column eigenvectors e1, · · · , e3N . The
frequency of a mode is equal to

√
|λ| where λ is the

eigenvalue. If we choose a cut-off frequency
√
λi to

partition the normal modes such that Q = [Q, Q̄],Q =
[e1, · · · , ei] and Q̄ = [ei+1, · · · , e3N ] are rectangular
matrices whose columns span a slow subspace C and fast
subspace C⊥ respectively. In the following discussion we
will assume the dimensions of Q to be 3N ×m. In the
linear case the time-step is bounded by the asymptotic
stability of the method [2] at a frequency equal to the√
|λi|, rather than the highest frequency in the system.

Our results show this is a good heuristic to choose the
time-step.

Dynamics of the slow variables. Once the slow vari-
ables have been identified, equations for the rate of change
of these variables need to be formulated. Let us denote by
q a set of resolved variables with momenta p. We assume
that the number of coordinates q is very small compared
to 3N where N is the number of atoms in the system.
Typically N can be as large as hundreds of thousands
while the number of resolved variables is 10 to 100. We
wish to find a way to calculate dp/dt in terms of q and
p only. The following exact equation for dp/dt can be
derived:

dq(t)
dt

= p,

p(t)
t

= −
drift︷︸︸︷
∇qA−

friction︷ ︸︸ ︷∫ t

0

Cr(s) · p(t− s) ds+

noise︷︸︸︷
r(t), (1)

Cr(s) =
〈
r(τ + s) r(τ)T

〉
, ∀τ (2)

(fluctuation dissipation theorem)

These equations are in reduced units and we neglected
the dependence of the memory kernel Cr on q and p.
The brackets 〈〉 define the thermodynamic average in the
canonical ensemble. Equation (1) can be derived using
the Mori-Zwanzig projection [8]. The potential A(q) is
the Potential of Mean Force (PMF, or Helmholtz free
energy) for variable q. The integral in (1) represents a
friction. In this model the friction includes memory so
this equation is often called the Generalized Langevin
Equation (GLE). The last term r(t) is a fluctuating force
with zero mean:

〈
r(t)|q0, p0

〉
= 0. This is a conditional

average over Cartesian coordinates x and momenta px

keeping q = q0 and p = p0 fixed.
This equation can be rigorously derived from statistical

mechanics and is therefore an attractive starting point
to build coarse grained models. However, it is also, in
principle, very expensive to calculate. The most common
approximation is to assume a separation of time scales;
then Cr(s) is simply equal to the auto-correlation of
dp(t)/dt which can be readily computed. As was pointed
out earlier this assumption does not hold in general.
We next discuss how our choice of slow variables and
saddle point approximation of the drift term make this
approximation feasible and results in a computationally
tractable coarse-grained dynamical model.

Choosing low frequency modes as resolved variables
was motivated by the physical insight that low frequency
modes contain the physically relevant motions close to
the minimum [3], [4]. For small numers of modes we
observe that the coupling between C and C⊥ is small,
though not zero. The drift term of (1) can be simplified
using a saddle-point approximation. The mean force is
approximated by the instantaneous projection of the force
onto the slow subspace, subject to the constraint that the
conformation is a minimum in the fast subspace. This
is the most probable value of the mean force when the
spaces are decoupled. At that point the friction term can
be approximated as the autocorrelation of the slow force,
and the noise can be evaluated as white noise. Thus, we
numerically enforce a quasi-adiabatic decoupling between
C and C⊥.

The simplification of the drift term proceeds as follows.
The choice of frequency partition separates the positions
around the equilibrium point x0 into x̂ in C and x̄ in C⊥

such that x = x̂+ x̄+ x0. These are defined as

x̂ = Px(x− x0), x̄ = P⊥x (x− x0),

where the projection matrices take the positions from
Cartesian to mode coordinates and back to Cartesian
space, and are given by

Px = M−1/2QQTM1/2,

P⊥x = M−1/2
(
I−QQT

)
M1/2.

The mean force for the drift term for a particular value
of can be written as

Average f(x̂) = − 1
Z

∫
exp(−βU(x))δ

(P x(x− x0)− x̂)P f∇U(x)dx. (3)
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We have introduced the usual canonical ensemble par-
tition function and the force projection matrix:

P f = M1/2QQTM−1/2.

The average f(x̂) is dominated by the slow force
term, −P f∇U(x), corresponding to the smallest U(x)
due to the Boltzmann weight. This U(xmin) is the
minimum potential energy that satisfies the constraint
P x(xmin − x0) = x̂. We can rewrite it as U(xmin) =
U(x0 + x̂ + x̄min). Since x0 + x̂ is fixed, this is equiv-
alent to minimizing the projection of the positions onto
the fast subspace. Hence x̄min = argmin U(x0 + x̂ +
x̄min) with x0, x̂ fixed. This implies that the mean force
can be approximated by the instantaneous slow force:

Average f(x̂) ≈ −P f∇U(xmin). (4)

A second important approximation is that the protein
is modeled using implicit solvent (ISM). ISMs have
been shown to be sufficiently accurate for a number of
applications, including protein folding studies, and they
are attractive because they greatly reduce the cost of
simulating a protein. Thus, to model the coarse-grained
dynamics of an implicitly solvated protein, (1) is simpli-
fied into a Langevin equation:

dx = vdt, Mdv = fdt− ΓMvdt

+ (2kBTΓ)1/2 M1/2dW(t), (5)

where f = −P f∇U(xmin) is derived in (4), t is time,
W(t) is a collection of Wiener processes, kB is the
Boltzmann constant, T is the system temperature, v
are the velocities and Γ is the diagonalizable damping
matrix. The system diffusion tensor D gives rise to Γ =
kBTD−1M−1. D is chosen to model the dynamics of an
implicit solvent and the coarse-graining of the dynamics.

Discretization of the dynamics. We discretize (5) using
the Langevin Impulse (LI) integrator [6]. We call this
discretization the Normal Mode Langevin (NML) prop-
agator. Schematically, half a step of NML performs the
following steps:
Half slow kick: advance velocities using half a long
timestep ∆t/2 using the projection of internal and random
force unto slow subspace C.
Slow Fluctuation: advance positions using the projection
of internal and random force unto slow subspace C.
Fast Fluctuation: minimize positions on fast subspace
C⊥ using steepest descent.

Coarse grained diagonalization. To adaptively find the
slow variables we need a cheap procedure to extract them.
We introduce a coarse-grained normal mode analysis
that is scalable (CNMA). CNMA uses a dimensional-
ity reduction strategy that allows computation of low
frequency modes in O(N logN) time, and with O(N)
memory, rather than O(N3) time and O(N2) memory of
brute-force diagonalization. The coarse-graining strategy
to computing the frequency partitioning is based on three
ideas. The first is to find a reduced set of normalized
vectors E that spans the low frequency space of interest,
C. The second is to recursively extract a minimal set of

Fig. 1. Illustration of the dimensionality reduction strategy for the
diagonalization. If the vectors in E span the low frequency space of
interest in H, then the diagonalization of S can produce a low frequency
basis set.

vectors Q from E and the coarse grained Hessian H. The
third is form H in linear cost, O(N).

Assume that we have found E. Figure 1 illustrates the
dimensionality reduction strategy. H is the Hessian at a
given simulation step. The dimensions of E are 3N × n,
where n� N. The quadratic product ETHE produces a
matrix S of reduced dimensions n × n. Below we show
that from the diagonalization of S we can obtain E. In
particular, we (cheaply) diagonalize the symmetric matrix
S to find orthonormal matrix Q̃ s.t.

SQ̃ = Q̃Ω,

for diagonal matrix Ω. We can then write

QTHQ = Ω,

for Q = EQ̃. Our subspace of dynamical interest, C,
is then defined as the span of the first m columns of Q.
Recall that m is the number of reduced collective motions,
typically in the range of 1 - 100.

We can evaluate how well the span of E represents
C using the following result (we skip the proof for
space limitation): Let the ith ordered diagonal of Ω be
σi = Ωii. Then the highest frequency mode in C, fmax,
satisfies

fmax ≤
√
|σm|.

Then the Rayleigh quotient σm can be used to establish
the maximum time step that can be taken in subspace
C for stability. It follows that if λm is close to the mth

ordered eigenvalue of H, then the first m vectors of Q
are a good representation of the low frequency space of
interest.

We form E, by starting from a ‘local’ block Hessian in
which each block H̃ij (composed of 1 or more residues)
is zero if i 6= j. The remaining blocks on the diagonal
are assumed to be independent of all other blocks. This
block Hessian is then diagonalized, which is equivalent to
performing independent diagonalization for each block.
Let us determine each block Hessian eigenvectors and
eigenvalues, Qi and Di, as follows:

H̃iiQi = QiDi.

Our hypothesis is that interactions among residues
responsible for the low frequency space of interest will
be included, either by projection or directly, in the first
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Fig. 2. Segment of a BPTI molecule and its associated block Hessian
entries. Here, for illustration, a block is defined by one residue. Each
residue corresponds to a Hessian block containing all of the forces within
the residue, denoted ‘Full’. Adjacent residues have a corresponding
electrostatic block denoted ‘Elec.’, e.g. Elec. 13-14. Physically local
residues within the cutoff distance have a corresponding electrostatic
block, e.g. Elec. 13-38. Bonds connecting non-adjacent residues, such
as the disulfide bond shown, correspond to small 3x3 blocks in the
Hessian.

few eigenvectors of Qi, and need to be included in E.
The source of these vectors is as follows:

1) External low frequency motions due to nonbonded
interactions can be projected onto the first 6 eigen-
vectors of Qi, corresponding to conserved d.o.f.
per block. In other words, external forces mani-
fest themselves in rotations or translations of each
residue-block.

2) External low frequency motions due to bonded in-
teractions can be projected onto the dihedral space,
and will consist of up to 4 vectors of Qi, due to
the peptide bond dihedrals of up to 2 connecting
blocks.

3) Internal low frequency motions, for instance due
to side-chain dihedral motions, will also be in the
dihedral space and thus will be in Qi.

We expect that the eigenvectors identified above will
correspond to the first k ordered eigenvalues. The number
k will vary between blocks and will be determined by
selecting a cutoff frequency from the block eigenvalues.
Figure 2 illustrates the block structure of H for protein
BPTI with cutoff for the electrostatics. This is very similar
to a protein contact map. Contiguous residues give a tri-
diagonal block structure. Non-contiguous residues that are
nearby form off-diagonal blocks due to nonbonded forces.
Special structural features like disulfide bonds create 3×3
small blocks. The block structure of E follows from its
composition from eigenvectors of the block Hessians H̃ii.
Thus, the cost of the matrix-matrix multiplication will be
O(N).

The multilevel application of this dimensionality reduc-
tion leads to a scheme with O(N logN) cost. We first
diagonalize each residue. The cost for this stage is O(N)
as the average number of residue atoms is fixed and the
number of residues is proportional to N . We then need to
consider the diagonalization cost of the ‘block projected’
matrices. If we took a large system and recursively
assigned block size ‘factor’ b, each linear block dimension

is b times the previous, then we get a diagonalizations
with ba+1 = N , so total cost is O(N logN). This leaves
the projection of the actual Hessian, but we can assign
b ∝ 3
√
N logN to yield the correct scaling.

III. NUMERICAL RESULTS

Adaptive NML recovers long time dynamics. We ap-
plied NML to study the isomerization kinetics of blocked
alanine dipeptide (ACE ALA NME). With a small
molecule like alanine dipeptide it is possible to sample
for a sufficient length of time to measure the rates of
transition between two states: in this case we measure the
isomerization rate between the C7 equatorial and αR con-
formations. The rate from states A and B, denoted kAB ,
can be calculated using the approximation proposed by
Best and Hummer [1] from the probability of transition,
PTP , and the average transition time 〈tTP 〉:

2cAkAB = PTP /〈tTP 〉,

where cA is the equilibrium mole fraction of confor-
mation A. Figure 3(a) shows the free energy as a Ra-
machadran plot for Alanine Dipeptide using the sigmoidal
screened Coulomb potential of [5]. Conformation A is
C7 equatorial and C5 axial combined, and conformation
B is αR. Figure 3(b) shows that NML is capable of
correctly computing the rate with only 12 modes with
a rediagonalization frequency of 100 fs as the time step
increases up to 16 fs. As a reference, the rate computed
for the fine-grained SDE using molecular dynamics (MD)
with time steps up to 3 fs are shown. MD cannot go
beyond this time step due to the fast frequencies present
in the system. Let NML(m,freq) be NML where m is
the number of slow modes propagated, and freq refers
to the re-diagonalization frequency in femtoseconds. Fig-
ure 3(c) shows the isomerization rate for AD running
NML(m,0) (no re-diagonalization), NML(m,100) and
NML(m,1000). It can be observed that whereas the rate
quickly goes down for NML(m,0), the rate is correctly
computed for NML(m,100) for even 7 modes (only 1 real
mode excluding the 6 conserved modes). NML(m,1000)
is somewhere in between the two results.

Coarse-grained normal mode analysis is scalable. Five
models were used for the comparison of the ‘brute force’
diagonalization and the coarse grained CNMA method:
PIN1 WW domain (PDB 1I6C), BPTI (PDB 4PTI),
Calmodulin (PDB 1CLL), Tyrosine kinase (PDB 1QCF),
and F1-ATPase (PDB 2HLD). The results can be seen in
Figures 4(a) and 4(b), which match the scaling analysis
of O(N logN) time and O(N) memory.

NML with re-diagonalization using CNMA can
greatly accelerate dynamics calculations. We are
currently applying NML with re-diagonalization using
CNMA to study the folding of the WW domain and other
proteins. Figure 5 illustrates analytical predictions of the
accelerations in sampling the dynamics that we expect
when using our approach on progressively larger protein
systems. Thousand fold acceleration should be possible
for systems with a few thousand atoms.
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Fig. 3. (a) Ramachadran plot for the free energy (in kcal mol−1)
of alanine dipeptide using a sigmoidal screened Coulomb potential.
(b) Isomerization rate of alanine dipeptide as a function of the time
step using 12 modes and re-diagonalization every 100 fs. (c) Rate as a
function of varying re-diagonalization frequencies and number of modes.
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An efficient multi-time scale (MTS) method for combustion modeling with 
reduced and detailed kinetic mechanisms 

Xiaolong Gou, Wenting Sun, Zheng Chen, and Yiguang Ju 
             Department of Mechanical and Aerospace Engineering, Princeton University 

A dynamic multi time scale (MTS) method and a dynamic hybrid multi time scale 
(HMTS) model are developed to achieve efficient and time accurate reduced kinetic 
modeling of syngas combustion with detailed kinetic mechanisms. The methods are 
applied to ignition of hydrogen, methane, and n-decane/air mixtures and compared, 
respectively, with standard Euler and implicit ODE solvers by using detailed and reduced 
chemical kinetic mechanisms. The results showed that both methods can accurately 
reproduce the species time history and ignition delay times. In addition, compared to the 
explicit Euler method, MTS is not only computationally efficient but also robust at larger 
time steps. Compared to the implicit ODE solver, MTS is about one-order more 
computationally efficient. In addition, unlike the implicit ODE solver, whose 
computation time is proportional to the square of the species number, the computation 
time required for MTS is only proportional linearly to the species number. As such, MTS 
has advantages particularly for large equation systems such as large chemical kinetic 
mechanisms. To further accommodate the specification of a limiting time scale of the 
equation system and to improve the computation efficiency and robustness at large time 
scales, HMTS is developed by integrating MTS with a fully implicit algorithm. Therefore, 
the present HMTS is a generalized scheme which includes the Euler scheme, MTS, and 
implicit scheme, and compatible to both incompressible and compressible flow solvers. 
The results showed HMTS is rigorous and efficient. The computational efficiency of the 
MTS method can be further increased by integrating it with a dynamically reduced 
mechanism generated by using path a flux analysis (PFA) method. This scheme can be 
used for direct numerical simulations and large eddy simulation with detailed chemical 
mechanisms to improve the computation efficiency, accuracy, and robustness. 

Contact email: yju@princeton.edu 
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"Analysis of Reduction Methods for ODEs" 
Authors:  Hans Kaper, Tasso Kaper, Antonios Zagaris 
 
Abstract: 
 
We present an analysis of methods to reduce the dimension of systems of 
nonlinear ordinary differential equations involving two (or more) time 
scales: a fast time scale, where the dynamics take the orbits close to an 
invariant low-dimensional manifold, and a slow time scale, where the 
dynamics evolve in the neighborhood of the invariant (slow) manifold. 
Reduction methods offer a systematic way to identify the slow manifold 
and reduce the original equation to an autonomous equation on the slow 
manifold. 
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Diffusion maps for model reduction: exploiting
data mining to accelerate simulation

Benjamin Sonday∗, Amit Singer∗, Ioannis G. Kevrekidis∗†
∗Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA

†Department of Chemical Engineering, Princeton University, Princeton, NJ, USA

Abstract— In many complex/multiscale systems, the long-
term dynamics are reducible: they lie on a low-dimensional
manifold parameterized by appropriate coarse variables
(observables). Knowing these observables a priori, through
experience or intuition, can be crucial in accelerating the
computational extraction of information from detailed, “fine
scale” simulators. Indeed, when such variables parameter-
izing the slow dynamics are known, the so-called equation-
free approach [1] [2], provides a systematic way of designing
computational “wrappers” that enable fine scale simulators
to perform accelerated simulation as well as a wide range
of additional tasks (coarse-grained stability and bifurcation
computations, parametric continuation, coarse controller
design etc.).

When such coarse observables are not known, data-
mining tools can be used to extract them from simulation
databases. Linking data-mining tools (and, in particular,
the diffusion map approach of Coifman and coworkers [3])
and the design of equation-free computational experiments
provides an integrated framework for coarse-grained com-
putations of complex/multiscale systems. We will illustrate
these two components as well as their combination through
a number of computational examples. In particular, we will
focus on the exchange of information between fine-scale and
coarse-scale descriptions. We will explore coarse projective
integration alternating between diffusion map and physical
settings, and discuss the construction of physical initial
conditions consistent with new, “out of sample” diffusion
map coordinate values [4].
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Two Stage Ignition of n-heptane: Identifying the
Chemistry Setting the Explosive Time Scales
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Abstract— The explosive time scales developing during a
two stage ignition of n-heptane are examined. The elemen-
tary reactions contributing the most for their development
are identified.

I. INTRODUCTION

In reacting systems, a wide spectrum of time scales
arise, rendering the mathematical model stiff. Usually, the
fastest time scales are of dissipative character, forcing the
solution to evolve on a low dimensional manifold. How-
ever, some of the intermediate time scales are of explosive
character and relate directly to ignition. From the early
works on reacting systems based on time scale analysis,
it was well understood that interesting information, such
as ignition delays and chain-branching mechanisms, can
readily be derived by analyzing these explosive modes [1].

Recent work has revealed that these explosive time
scales need not be present in a flame configuration,
where diffusion is the main mechanism for initiating the
reaction process in the fresh mixture [2]. In contrast, in
homogeneous systems the absence of transport makes the
development of such kind of time scales a necessity for
ignition.

The algorithmic methodology of Computational Sin-
gular Perturbation (CSP) method [1], [3] was employed
for the identification of the chemical kinetics components
responsible for the amplitudes of the explosive modes
developing during a two-stage ignition of n-heptane and
dimethyl ether [4], [5].

Here, the chemical kinetics components responsible for
the developing explosive time scales during a two-stage
ignition of n-heptane will be examined. The concept of
Time Scale Importance Index will be employed, being
a component of the CSP methodology, which has been
successfully employed for the analysis of the time scales
relating to the NOx chemistry [6] and to the circadian
cycle in the cell [7].

II. GOVERNING EQUATIONS AND METHODOLOGY

We consider homogeneous adiabatic ignition at con-
stant volume of a stoichiometric n-heptane/air mixture
at initial pressure of 13.5 bar and temperature of 850K,
as in Ref. [4]. We employ a kinetic model consisting
of N = 561 species and K = 2539 reactions [8], the
forward and backward directions of which are considered

separately. The governing equations for the species mass
fraction and temperature are:

dy
dt

=
1
ρ
W
(
S1R

1 + . . . + S2KR
2K
)

(1)

dT

dt
=

1
ρcv

(
−Ḣc +RT

N∑
i=0

ω̇i

)
(2)

where y is the N-dim. vector of the species mass fraction,
ρ is the mixture density, W is a N ×N matrix with the
species molecular weights in the diagonal, Sk and Rk

are the N-dim. stoichiometric vector and rate of the k-th
reaction, T is temperature, cv is the heat capacity, Ḣc is
the heat release rate, R is the universal gas constant and
ω̇i is the molar production rate of the i-th species.

These equations can be cast in the form of an (N+1)
-dim. system:

dz
dt

= g(z) = Ŝ1R
1 + . . . + Ŝ2KR

2K (3)

where z is composed of y and T and each additive
term on the RHS corresponds to the forward or backward
direction of the K reactions.

To leading order, the CSP vectors ai and covectors bi

(i = 1, N ), which define the directions in the phase space
along which the i-th time scale act, can be approximated
by the right and left, respectively, eigenvectors of the
Jacobian J of g. In this case, the following expression for
the developing time scales in the problem can be obtained:

τi = |λi|−1 (4)

where λi (i = 1, N ) are the eigenvalues of J:

λi = biJai (5)

Given the decomposition of the RHS in Eq. (3), the
i− th eigenvalue can be expressed as:

λi = biQ1ai + · · ·+ biQ2Kai (6)

where
Qk = grad

(
ŜkR

k
)

(7)

so that the contribution to the value of λi of the two
directions of each of the K reactions can be computed.

In order to assess the contribution of each chemical
reaction to the value of the i-th time scale τi, through

49



the related term in Eq. (6), the following Time Scale
Importance Index is introduced:

J i
k =

biQkai

|biQ1ai|+ · · ·+ |biQ2Kai|
(8)

where
∑2K

k=1 |J i
k| = 1 [6]. J i

k measures the contribution
of the k − th reaction to the i− th time scale.

Explosive time scales relate to positive eigenvalues (or
positive real parts, in case of a complex conjugate pair).
Therefore, non-negligible positive values of J i

k identify
reactions having a significant influence in establishing the
explosive character of the i− th mode and in making the
corresponding time scale τi faster. However, the fact that
λi is positive, does not preclude the possibility that some
of the 2K additive terms in the RHS of Eq. (6) are non-
negligible and negative. In this case, the related reactions
exhibit a significant influence to counter the explosive
character of the i− th mode and make τi slower.

III. DYNAMICS OF TWO STAGE IGNITION

Shown in Figs. 1 and 2 are the evolution of temperature,
fuel and representative final products; the two stages
clearly depicted.
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Fig. 1. The evolution of Temperature and mass fraction of n-heptane
with time.
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Fig. 2. The evolution of the mass fraction of co and oh with time.

The developing real positive eigenvalues (or real pos-
itive parts of complex eigenvalues), which according to
Eq. (4) produce the explosive time scales, are displayed
in Fig. 3.

It is shown that before the two temperature jumps there
exist two explosive time scales, one fast and one slow;
converging to each other at the start of each jump. As
Fig. 4 clearly shows, in both cases the convergence of the
two time scales follows their merging, as they become
quickly slower on their way to loose their explosive
character.

Next, Importance Indices for the explosive time scales
before the two jumps will be presented, in order to clarify
the operating explosive mechanisms in each temperature
jump.
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Fig. 3. The evolution of real positive eigenvalues (solid line) and real
positive parts of complex eigenvalue pairs (broken line).
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Fig. 4. Top: Magnification of the two temperature jumps. Bottom: the
corresponding evolution of the real positive eigenvalues (solid line) and
real positive parts of complex eigenvalue pairs (broken line).

IV. CHEMISTRY RELATED TO THE EXPLOSIVE
TIMESCALES

Figure 5 shows the Importance Indices for the fast
and the slow timescales at two instances, right before
the first stage of ignition. In this period, the top row of
Fig. 5 shows that the fast time scale is mainly set by
isomerization reactions of RO2 to QOOH (R denotes
CnH2n+1 and Q denotes CnH2n groups) as well as of
peroxyalkylhydroperoxides (QOOH −O2) to ketohyper-
oxides and OH , in agreement with Ref. [4]. This latter
step is particularly significant both because it initiates
the preparation of the OH pool, which will be very
significant for the dynamics at later times, see Fig. 2,
but also because the decomposition of ketohyperoxides
can lead to low-temperature chain-branching [8]. As
shown in the bottom row of Fig. 5, the time scale of
the slow chemistry in this period is mainly carried first
(t = 0.3704 × 10−3s) by termination reactions, such as
ho2 + ho2→ h2o2 + o2 or by reactions generating OH
such as c714ooh2− 4o2→ c714ooh2− 4 + o2 followed
by the decomposition c714ooh2−4→ c7h14o2−4+oh.
Later on (t = 0.4664 × 10−3s) the contribution of
c714ooh2−4o2→ c714ooh2−4+o2 and of c714ooh3−
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c7h15o2-2 => c7h14ooh2-4
c7h15o2-3 => c7h14ooh3-5
c7h15o2-4 => c7h14ooh4-2

c7h14ooh2-4o2 => nc7ket24+oh
c7h15o2-1 => c7h14ooh1-3

c7h14ooh1-3o2 => nc7ket13+oh
c7h14ooh3-5o2 => nc7ket35+oh

c7h14ooh2-4o2 <= c7h14ooh2-4+o2
c7h14ooh2-4o2 => c7h14ooh2-4+o2
c7h14ooh3-5o2 <= c7h14ooh3-5+o2
c7h14ooh3-5o2 => c7h14ooh3-5+o2
c7h14ooh1-3o2 <= c7h14ooh1-3+o2

c7h14ooh4-2o2 => nc7ket42+oh
c7h14ooh1-3o2 => c7h14ooh1-3+o2
c7h14ooh4-2o2 <= c7h14ooh4-2+o2

c7h15o2-4 => c7h14ooh4-3
c7h15o2-3 => c7h14ooh3-4
c7h15o2-1 => c7h14ooh1-2
c7h15o2-2 => c7h14ooh2-3

c7h14ooh4-2o2 => c7h14ooh4-2+o2
c7h15o2-3 <= c7h15-3+o2
c7h15o2-3 => c7h15-3+o2

c7h15o2-1 <= c7h14ooh1-3
c7h15o2-4 <= c7h15-4+o2

c7h15o2-2 => c7h14ooh2-4
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c7h15o2-2 => c7h14ooh2-3
c7h14ooh2-4 => c7h14o2-4+oh

c2h5+ho2 => c2h5o+oh
pc4h9o2 => c4h8ooh1-3

ch2o+oh => hco+h2o
c7h15o2-3 => c7h14ooh3-4

ho2+oh => h2o+o2
c7h15o2-4 => c7h14ooh4-3
c7h15o2-1 => c7h14ooh1-2

c7h14ooh4-2o2 <= c7h14ooh4-2+o2
c7h15o2-3 <= c7h15-3+o2

h2o2+o2 <= ho2+ho2
c7h14ooh1-3o2 <= c7h14ooh1-3+o2

c7h15-4 => c2h5+c5h10-1
c7h15-3 => c4h8-1+nc3h7

-0,02 0 0,02

Importance Index

Fig. 5. Importance Indices right before the first jump. Top row: the fast time scale. Bottom row: the slow time scale.Left column: t = 0.3704×10−3s
(λfast = 0.2657 × 105s−1, λslow = 0.9938 × 102s−1). Right column: t = 0.4664 × 10−3s (λfast = 0.2421 × 105s−1, λslow =
0.3937× 104s−1).

5 → c714ooh3 − 5 + o2 to the slow timescale of the
explosive mode is still important, but the importance
of HO2 termination is diminished and can also occur
through the alternate route ho2 + oh → h2o + o2. It is
worth noting that, as the two eigenvalues converge short
before the first stage of ignition, the isomerization and
oxygen addition reactions that promote strongly the fast-
time-scale chemistry have an equally strong inhibiting
effect on the slow chemistry.

Similarly, Fig. 6 shows the Importance Indices for the
fast and the slow timescales at two instances right before
the second stage of ignition. In this period, fast chemistry
is carried out by chain-branching producing OH radicals
(e.g. h + o2 → o + oh and h2o2 +m → oh + oh +m)
assisted first (t = 0.2570 × 10−2s) by low-C-number
chemistry (mainly C2 and C1) and then (t = 0.2584 ×
10−2s) by the strongly exothermic oxidation of CO.
Similarly to what happens in the first stage, as the fast and

the slow eigenvalue approach to each other the reaction
having the strongest positive contribution to the fast time
scale (e.g. h+ o2→ oh+ o) inhibits the slow time scale
equally strong. Similarly, the reaction o + oh → h + o2
seems to have a converse but equivalent effect, i.e. it
inhibits the fast scale but promotes the slow one. Notably,
the strongly exothermal co+oh→ co2+h promotes both
fast and slow chemistry.

V. CONCLUSIONS

For initial conditions that are of relevance to practical
devices, the stoichiometric n-heptane mixture presents a
two-stage ignition behavior. Both ignition stages occur
at instances where two positive, real eigenvalues (corre-
sponding to a fast and to a slow time scale) converge and
yield one complex eigenvalue with a positive - but rapidly
decreasing - real part. In both stages of ignition, the
reaction groups contributing the most to the converging
fast and slow time scales contain a significant number of
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h+o2 => o+oh
oh+oh(+m) <= h2o2(+m)

c2h4+oh => c2h3+h2o
c2h3+o2 => ch2cho+o
c2h3+o2 => c2h2+ho2

ho2+oh => h2o+o2
ch3+ho2 => ch3o+oh

c3h5-a+ho2 => c3h5o+oh
h2o2+o2 <= ho2+ho2

ch3+ho2 => ch4+o2
h2o2+oh => h2o+ho2

h+c2h4(+m) <= c2h5(+m)
c3h6 <= c3h5-a+h

c2h4+ch3 => c2h3+ch4
ch3+ch3(+m) => c2h6(+m)
h+c2h4(+m) => c2h5(+m)

ch3+h(+m) => ch4(+m)
oh+h2 => h+h2o
c4h7 <= c4h6+h

c2h4+h => c2h3+h2
c4h8-1 <= c3h5-a+ch3

c4h7 => c4h6+h
ho2+h => h2+o2

c4h8-1 => c3h5-a+ch3
c2h3cho+h => c2h3co+h2

-0,05 0,00 0,05 0,10

Importance Index

h+o2 => o+oh
co+oh => co2+h
oh+h2 => h+h2o

h+o2 <= o+oh
oh+h2 <= h+h2o

o+h2 => h+oh
h+o2(+m) => ho2(+m)

h2o+m <= h+oh+m
hco+m => h+co+m

o+h2 <= h+oh
ho2+oh => h2o+o2
hco+oh => co+h2o

hocho <= hco+oh
o+h2o => oh+oh

c2h2+o => hcco+h
ch3+oh => ch2(s)+h2o
h+o2(+m) <= ho2(+m)
ch3+oh <= ch2(s)+h2o
ch2(s)+o2 => co+oh+h

o+h2o <= oh+oh
ch3+o => ch2o+h

ch2(s)+m => ch2+m
ch2+oh => ch+h2o

co+oh <= co2+h
hco+h => co+h2

0,00 0,10 0,20

Importance Index

ch3o2+m <= ch3+o2+m
ch3o2+m => ch3+o2+m

h+o2 => o+oh
h+c2h4(+m) <= c2h5(+m)

c2h3+o2 => c2h2+ho2
h+c2h4(+m) => c2h5(+m)

hco+m => h+co+m
ic3h7o2 <= ic3h7+o2
ic3h7o2 => ic3h7+o2

h+o2(+m) => ho2(+m)
co+oh => co2+h

co+ho2 => co2+oh
ho2+oh => h2o+o2
c3h6 <= c3h5-a+h

oh+oh(+m) <= h2o2(+m)
ch2o+oh => hco+h2o

c2h4+oh => c2h3+h2o
ch3+h(+m) => ch4(+m)

hco+o2 => co+ho2
h2o2+oh => h2o+ho2

c2h2+o => hcco+h
hoch2o <= ch2o+oh

ch3+ho2 => ch3o+oh
ch2o+ho2 => hco+h2o2

ch3cho+ho2 => ch3co+h2o2

-0,10 0,00 0,10

Importance Index

h+o2 => o+oh
co+oh => co2+h

h+o2 <= o+oh
h2o+m <= h+oh+m

ch2(s)+o2 => co+oh+h
hco+m => h+co+m

h+o2(+m) => ho2(+m)
h+o2 => o+oh

ho2+oh => h2o+o2
hocho <= hco+oh
ch3+o => ch2o+h

co+oh <= co2+h
hco+oh => co+h2o

h+o2(+m) <= ho2(+m)
ch3oh(+m) <= ch3+oh(+m)

hcco+o => h+co+co
ch3+ho2 => ch3o+oh

ch3+h(+m) => ch4(+m)
ch3+oh <= ch2(s)+h2o

ho2+h => oh+oh
hco+o2 => co+ho2

ch2(s)+m => ch2+m
h+c2h4(+m) <= c2h5(+m)

ch2o+oh => hco+h2o
o+h2o => oh+oh

-0,10 0,00

Importance Index

Fig. 6. Importance Indices right before the second jump. Top row: the fast time scale. Bottom row: the slow time scale. Left column: t =
0.2570 × 10−2s (λfast = 0.8253 × 105s−1, λslow = 0.3003 × 102s−1). Right column: t = 0.2584 × 10−2s (λfast = 0.5778 × 107s−1,
λslow = 0.4705× 105s−1).

reactions that have opposite effects to the fast and the slow
chemistry, most usually favoring the fast and inhibiting
the slow time scale.
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Abstract— We study the structure of a methane-air edge
flame stabilized against an incoming mixing layer. The flame
is computed using detailed chemical kinetics, and the analy-
sis is based on computational singular perturbation theory.
We focus on examination of the low-dimensional structure of
the flame, analyzing the number of exhausted modes, along
with the distribution of fast and active timescales. Results
are used to enhance understanding of the flame, and the role
of different chemical and transport processes in its observed
structure.

I. INTRODUCTION

Edge flames can be encountered in many reacting
flow configurations in which partial premixing of fuel
and oxidizer occurs [1]–[7]. The idealized edge flame
is composed of three distinct branches: a lean premixed
branch, a rich premixed branch and a diffusion flame
branch; hence it is also known as a triple or tribrachial
flame. The two premixed branches form curved fronts
behind which a diffusion flame develops and stabilizes.
Symmetric, tribrachial, edge flame structure, as well as
bibrachial and monobrachial edge flames have been ob-
served, depending on the incoming mixture composition
as well as the flow/mixing layer structure.

There is a large number of experimental, analytical and
numerical studies of triple and edge flames [2], [8]–[13].
The reviews by Buckmaster [6] and Chung [7] provide
a broad overview of the history and recent developments
in the study of edge flames. Methane-air triple flames in
particular have been the focus of numerous studies [4],
[5], [14], [15].

Based on the literature, it is evident that detailed C2

kinetics are necessary in modeling these flames. Taka-
hashi et al. [16] studied methane-air edge flame structure
using skeletal 17-species kinetics. The detailed chemical
structure of a methane-air edge flame was also studied
by Takahashi and Katta [17] using C2 and C1 chem-
istry mechanisms. Inclusion of C2 kinetics was found
to lead to an increase in the flame lift-off height. Use
of a global single-step reaction mechanism was found to
lead to significant differences in edge flame stability and
structure, including a dominant rich premixed branch, in
disagreement with the detailed chemistry predictions [18].

Walsh et al. [19] used a 26-species C2 mechanism
for computations of lifted methane-air diffusion flames.
They generally found good agreement with experimental
measurements, except at diluted fuel conditions. Ali and

Daou [20] presented an analytical study of the effect
of reversibility of chemical reactions on triple flames.
Cho and Takita [21] presented computational studies of
edge flames using detailed kinetics for both methane-
air and propane-air mixtures. Briones et al. [22] con-
ducted a numerical investigation of methane-air edge
flames using detailed kinetics, with a focus on liftoff,
stabilization, and blowout. Guo et al. [23] presented a
numerical study of methane-air edge flames using a subset
of GRImech3.0 [24] excluding Nitrogen chemistry. Najm
et al. [25] studied the NO structure in a methane-air
edge flame using GRImech3.0 [24], analyzing the four
significant NOx pathways.

In the present work we consider the methane-air edge
flame of [25], and focus on the analysis of the flame struc-
ture using Computational Singular Perturbation (CSP)
theory [26], [27]. CSP analysis enables identification of
fast and slow reaction processes in chemical models, and
the decoupling of fast-exhausted/dormant modes from the
slow modes that drive the time evolution of the chemical
system. The method relies on the identification of a
suitable set of basis vectors that enable the decoupling
of fast and slow processes. A leading-order approxima-
tion of these vectors is provided by the eigenvectors of
the Jacobian of the chemical source term. There is an
extensive literature on CSP and its utilization for analysis
and reduction of chemically reacting flows [26]–[41].

We set up the methane-air edge flame stabilized against
a prescribed uniform-velocity mixing layer using detailed
chemistry (GRImech3.0 [24]) and mixture-averaged trans-
port [42]. CSP analysis of the computed flame structure
highlights the spatial variation of the fast and driving
time scales and the number of exhausted modes over
the edge flame, revealing significant internal structure,
and identifying important associated chemical/transport
processes. In the following, we outline the setup of the
problem, then present the analysis of the edge flame using
CSP. We finish with conclusions summarizing the main
findings of the work.

II. PROBLEM SETUP

We consider a methane-air edge flame in two-
dimensions (2D) stabilized against an incoming mixing
layer flowfield with a uniform inflow velocity profile.
The computational model uses the low Mach number
approximation, and employs GRImech3.0 [24] kinetics
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Fig. 1. The two-dimensional spatial distribution of temperature,
shown with superposed heat release rate and ξ-contours (a) and the
dimension of the fast subspace M (b), shown with superposed wCH4
and ξ-contours. The ξ-contours are drawn at (0.9, 1.0, 1.1)ξst. This
is a 512×1024 subset of the domain, with x ∈ [0.4, 1.2] cm, y ∈
[0, 1.6] cm.

and mixture-averaged transport [42]. The rectangular do-
main size is 1.6 × 3.2 cm2. The inflow is specified with
a uniform velocity of 60 cm/sec and an analytically
prescribed mixture-fraction profile, going from pure air
on one side of the domain to pure CH4 on the other [25].
The mixture fraction ξ is defined as in Bilger [43]. Note
that ξ is zero in the air stream, and unity in the fuel
stream. The stoichiometric value of the mixture fraction
is ξ = ξst = 0.055 for the given fuel/air streams.

The global structure of the edge flame is illustrated in
Figure 1(a). The inflow at the bottom edge of the domain
is at 300 K, with the fuel stream on the right and the
air stream on the left. The mixture fraction contours are
drawn at (0.9, 1.0, 1.1)ξst. The flame temperature field
is shown, exhibiting a fast rise from the cold reactants
temperature to that of the hot combustion products across
a narrow region where the primary edge flame reaction
zone exists. The contours of the consumption rate of the
fuel, wCH4 , are superposed to highlight the curved pre-
mixed front structure, with clear rich and lean premixed
branches. The region behind the premixed flame edge,
extending along the central ξst line upwards through the
domain, has a diffusion-flame structure, approximating
the ideal one-dimensional non-premixed flame structure
with downstream distance.

III. CSP ANALYSIS OF THE EDGE FLAME STRUCTURE

We recall that, with an N -dimensional ODE system,
dy/dt = g, CSP employs a set of basis vectors/co-
vectors, ai/bi, i = 1, . . . , N , to decompose the source
term into a sum of (ideally) decoupled modes {Mk}N

k=1,
given by g =

∑M
r=1 arf

r +
∑N

s=M+1 asf
s, where fk is

the amplitude of Mk. The modes are ordered from fastest
to slowest, with associated time scales τ1 < · · · < τN .
The first M (fast) modes, having sufficiently small ampli-
tude according to chosen thresholds, are either “frozen”,
having no chemical activity, or “exhausted”, involving
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Fig. 3. WCH4 cut along different y levels

cancellations of opposed processes. The remaining N−M
modes are slow, constrained to evolve along a slow
manifold defined by the fast processes. In a PDE context,
we identify the CSP basis vectors based on the chemical
source term alone, however, the determination of M is
based on the projection of the full right-hand-side on this
basis. Finally, for any given mode k, the CSP Participation
Index (PI) of any process i, Pi

k, is a normalized measure
of the importance of that process in this mode, where
a process is defined as any of the forward/backward
reactions in the system, or a convection/diffusion transport
term for a given species.

With this cursory definition of terminology, we now
examine the structure of the edge flame using CSP
analysis. Figure 1(b) shows the spatial distribution of M ,
the dimension of the fast subspace, with superposed wCH4

and ξ-contours. The detailed structure of the M field is
complex, but some key features may be readily observed
in this 2D plot. The primary reaction zone region, where
wCH4 is largest, exhibits generally the lowest M values,
where only 3-8 modes are exhausted. Note however, the
misalignment between the wCH4 contours and the region
with lowest M values in the downstream end of the rich
edge flame branch. The central, diffusion flame region has
the highest number of exhausted modes, with M > 30. At

58



 

 

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
−9

(a)

 

 

1

2

3

4

5

6

7

8

9

10
x 10

−7

(b)

Fig. 4. The spatial distribution of the fastest chemical timescale τ1 (a),
and the driving chemical time scale τM+1 (b), in the edge flame, shown
with superposed wCH4 and mixture fraction contours. The ξ-contours
and domain size are as those in Fig. 1. Note that the color map for the
τM+1 plot has been truncated at 1 µsec for clarity.

the base of the edge flame, this high-M region coincides
with the ξ = ξst = 0.055 line, shifting towards leaner
mixtures mid-way up the domain. This is the region which
is closest to equilibrium as the reaction products from the
lean/rich sides of the edge flame come together.

Further, horizontal cuts of the domain at three y-
locations of (0.3, 0.5, 0.8) cm, showing the spatial profiles
of M and the chemical production rate of the fuel,
wCH4 , at different elevations in the edge flame, are shown
in Figures 2, and 3 respectively. The high M -plateau
in the cold gas is evident in the 0.3 cm profile, with
M ∼ 22 for x ∼ 0.4, 1.2 cm, and wCH4 ∼ 0. As we
approach regions of significant CH4 consumption, with
x ∼ 0.7, 0.93 cm, we find largely monotonic decrease in
M towards a minimum that roughly coincides with the
peak consumption rate of the fuel. Going further, towards
the domain centerline, M is found to increase again, with
an eventual peak value at x ∼ 0.8 cm. This picture is
roughly similar at the other two y-elevations. The central
peak is observed to shift towards the left, reflecting the
shift observed in the 2D image in Fig. 1(b). Similarly,
the locations of the minima in M are observed to shift
away from the centerline, reflecting the increased width
of the edge flame in Fig. 1(b). Further, these minima are
broader reflecting the increased thickness of the reaction
zone at these rich/lean locations. The minimum value of
M also increases, indicating that less/more modes are ac-
tive/exhausted in the premixed front nearer stoichiometric
conditions. Finally, note that the deviation between the
location of the M -minimum and peak fuel consumption
in the rich region at higher y-elevations, as observed in
Fig. 1(b).

Figure 4(a) shows the spatial distribution of the fastest
chemical timescale τ1 in the edge flame. The cold fuel-
rich region exhibits the fastest τ1, ∼ 0.7 ns, while the
curved preheat zone ahead of the primary edge flame re-
action zone exhibits the slowest τ1, ∼ 2.7 ns. In this zone,
important low temperature flame processes are active.

Specifically, this zone coincides with the regions of low
temperature peak production rates of HO2 and CH3O, and
associated processes. Thus, for example, the conversion
of NO to NO2 is peaked in this region, dominated by the
forward rate of the reaction R186: HO2+NO = NO2+OH.
Here and in the following, we use the reaction numbers
to identify the specific reaction in GRImech3.0 [24].
Moreover, we adopt the following convention, denoting
the net, forward, and backward reaction i by Ri, Fi, and
Bi respectively.

Along the domain inlet, and spanning the x-length of
the domain, we find that the processes with the largest PI
in mode 1, Pi

1, are largely the convection and diffusion of
O2. Occasionally, i.e. at some x-locations, the diffusive
fluxes of CH4 dominate, but the far majority of points
exhibit the stated dominance of O2 transport fluxes in
mode 1. Note that, in this region there is barely any chem-
ical activity, in fact many modes are frozen, such that the
only significant activity is the transport of reactants. Thus,
the observed dominance of these transport processes in
the PI of mode 1 (PI1), indicating that only transport is
significant along a1, is not surprising.

Looking at cuts at three elevations through the edge
flame (0.3, 0.5, 0.8 cm), the PI results for mode 1 at all y-
locations are as follows. The results are essentially similar
on either side of the flame, in the fuel or air streams, as at
the lower location near the domain inlet, with dominance
of O2 transport processes. As we enter the preheat zone
on either side of the thin premixed flame zones, various
transport processes gain dominance in narrow spatial
regions, namely diffusion and convection of Temperature,
H2, and H2O, along with the diffusion and convection of
CO on the air-side only. Going further into the preheat
zone, a range of reactive processes exhibit narrow regions
of dominance. These are: F97: OH+CH3 ⇒ CH2(S)+H2O,
F125: CH+O2 ⇒ O+HCO, F130: CH+CH4 ⇒ H+C2H4,
F142: CH2(S)+N2 ⇒ CH2+N2, B126: CH+H2 ⇐ H+CH2,
and, in the air-side preheat zone only, F144: CH2(S)+O2

⇒ H+OH+CO. These reactions are part of the cascade
of fast fuel-breakdown reactions. As for the region inside
the edge flame, including on either side the two primary
flames, the reaction R204: NNH = N2 + H, has the
dominant participation index in mode 1 at all y-locations.

Moreover, recall that examining the CSP pointer for ex-
hausted modes, allows the identification of the associated
CSP radical species for that mode. In other words, this is
the species whose fast consumption processes have high
PIs, and therefore are key participants in the associated
equilibrium and corresponding time scale of this mode.
In the present case, and considering all y-locations, we
find the following regarding mode 1. In the cold flow
region outside the edge flame, the species pointed to by
mode 1 is CH. Further, this mode is found to be either
frozen or exhausted in different parts of this region. While
the transport of O2 or CH4 dominates the PI, this is, as
indicated above, because there is hardly any chemical
activity. However, recall that the time scales τk result
from the analysis of the chemical source term. Further,
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the fact that this mode points to CH suggests that CH
consumption reactions are relevant here in establishing
τ1. In fact, looking at the most dominant PIs for chemical
processes we find that reactions F125: CH+O2 ⇒ O+HCO
(on the air side) and F130: CH+CH4 ⇒ H+C2H4 (on the
fuel side), both CH consumption reactions, are generally
among the highest amplitude PIs among the reactive
processes in this region. Further, it is likely that the
difference in τ1 between the cold fuel and air streams,
evident in Fig. 4(a), is a direct result of the dominance of
one or the other of these reactions in each zone. In the
preheat zones, where low-temperature chemistry is active,
and mode 1 is exhausted, the associated CSP pointer
points to CH2(S). This is consistent with the observed
dominance of several reactions involving CH2(S) in this
region in PI1, as observed above. On the other hand, inside
the edge flame, NNH is the corresponding species pointed
to by mode 1, again exhausted, which is again consistent
with the above dominance of R204 in PI1 in this region.

Consider next the spatial structure of the driving chem-
ical time scale τM+1, shown in Figure 4(b). Recall that
MM+1 is the fastest of the slow modes, such that the
system evolves locally with time scale τM+1. We note
first that the cold fuel/air regions, where largely only
slow transport processes are active, exhibit a large τM+1≥
1 µsec. Further, as we approach the primary flame, in the
preheat region, a narrow region of alternating fast/slow
activity is evident, before the broad region of fast chem-
ical activity in the edge flame is reached. In this internal
region, fastest chemical activity is evident in the primary
premixed flame zone, with slower τM+1evident in the
central region around ξst where chemical equilibrium is
approached.

Let us examine the PIs for MM+1 along horizon-
tal cuts. As for M1, the lack of chemical activity in
the cold flow regions outside the edge flame high-
lights the action of transport fluxes. Here again, we
find the transport of O2 to dominate the PI. Among
reactive processes, the reactions with the largest PIs
(albeit small relative to transport) in this region are
found to be F11: O+CH4 ⇒ OH+CH3, F179: N+O2 ⇒
NO+O, F216: HNO+O2 ⇒ HO2+NO, F291: CH2+O2

⇒ O+CH2O, and B207: NNH+O ⇒ OH+N2. As we
approach the flame edge, reaction fluxes become sig-
nificant, dominating the role of transport in PIM+1. In
the preheat zone, reactions such as F119: HO2+CH3 ⇒
OH+CH3O, and F98: OH+CH4 ⇒ CH3+H2O, as well
as F170: CH3O+O2 ⇒ HO2+CH2O are found to be
dominant. This is a reflection of the dominant role of
these reactions in the fuel breakdown chemistry on the
reactants side of the premixed flame.

Finally, we note that the detailed structure inside the
flame is quite complex. Consider in particular the region
with minimum M , in the vicinity of the primary premixed
flame reaction zone, shown in Figs. 1(b) and 2. In this
region, and focusing on a cut at y = 0.3 cm for illus-
tration, we find that reactions with dominant PIM+1 in
the lean branch include F97: OH+CH3 ⇒ CH2(S)+H2O,

F68: H+CH3OH ⇒ CH2OH+H2, F169: CH2OH+O2 ⇒
HO2+CH2O, and F126: CH+H2 ⇒ H+CH2. On the other
hand, in the rich branch, the following reactions dominate
this mode, F122: C+O2 ⇒ O+CO, F58: H+CH2O ⇒
HCO+H2, F168: HCO+O2 ⇒ HO2+CO, along with B126.
A detailed study of the internal structure of the premixed
flame primary reaction zone is greatly informed by these
specific findings, identifying the reactive processes con-
trolling the chemical evolution of the system in each
internal flame layer. Similar information is equally useful
in other internal regions of the edge flame.

IV. CONCLUSIONS

We have studied the structure of a methane-air edge
flame using CSP analysis. Results identified the structure
of the flame at different spatial locations, illustrating
the spatial distribution of the dimensionality of the fast
subspace and the structure of the fastest and active
modes. We identified the dominant processes defining
these modes, and highlighted their spatial distribution.
Of particular note, relevant to the fastest chemical mode
(whose structure is clearly consequential to requisite time
integration strategies), is the observation of the dominace
of R204: NNH = N2+H everywhere inside the edge flame,
with NNH being the associated CSP radical. On the other
hand, a number of CH and CH2(S) reactions dominate the
fastest mode in the premixed flame preheat zones around
the outer rim of the edge flame, with CH2(S) being the
associated CSP radial.
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Abstract— Although many techniques exist to generate a
reduced model from a large, detailed chemical model, few
model reduction techniques generate reduced models that
can reproduce the solution of the detailed model to within
known error bounds. Furthermore, error bounds imposed
on the reduced model at a finite set of reaction conditions
cannot be propagated through a numerical method to yield
error bounds on the numerical solution of the reduced model
relative to the solution of the detailed model. In order to
reproduce the numerical solution of the detailed model to
within a known error tolerance using a reduced model, the
reduced model must be generated with known error bounds
that are satisfied over a range of reaction conditions.

To generate a reduced model satisfying error bounds
over a range of reaction conditions, we propose the method
of range-constrained simultaneous reaction and species
elimination. This method uses the solution of an integer
linear program restriction of an integer linear semi-infinite
program to determine a reduced model from a given detailed
model, error tolerances on the time derivatives of state vari-
ables and range of reaction conditions. The reduced model
obtained from the solution of the integer linear program
can then be used within a numerical method to approximate
faithfully the solution of the detailed model from which it
was generated. Error bounds on the reduced model could
then be propagated through the numerical method in order
to obtain error bounds on the solution of the detailed model,
yielding a more computationally efficient means of obtaining
a numerical solution for currently intractable reacting flow
problems to within known numerical error.

I. INTRODUCTION

The purpose of a kinetic model reduction technique is
to generate an approximate, simplified chemical model
from a more detailed chemical model in order to re-
duce the computational effort needed to simulate reacting
flows. Many different methods exist to accomplish this
task (such as [6], [14] and [7]), based on very different
principles.

When carrying out model reduction, there are two com-
peting objectives: reducing CPU effort and minimizing
approximation error due to model reduction. Since the
purpose of model reduction is to enable the simulation
of computationally demanding reacting flow problems by
generating less resource-intensive reduced models, we
would like our model reduction technique to yield a
reduced model that decreases as much as possible the
CPU time required to simulate a reacting flow. Simul-
taneously, we would like to minimize the difference (or
error) between the solution of our reduced model and the
solution of the detailed model. Since CPU time limits
the set of reacting flow problems that can be solved

currently, our primary objective is to achieve maximum
reduction of CPU effort subject to constraints that ensure
that the error between the numerical solution of the
detailed model and the solution of the reduced model is
bounded to within acceptable limits over certain reaction
conditions (temperatures and species mass fractions). In
order to limit this error when using the reduced model
in a numerical integration routine, it is necessary to
bound the difference between the chemical source term
of the detailed model and the chemical source term of the
reduced model for each species. Although many methods
have some form of error control (usually in the form of an
adjustable parameter), few methods attempt to determine
error bounds on the chemical source term of the reduced
model with respect to the detailed model. Without these
error bounds, it is extremely difficult to estimate the error
in the solution obtained by applying a model reduction
technique when solving a detailed model numerically.

It is also worth noting that bounding locally the error
due to model reduction does not suffice [11]. Oluwole
et al. have demonstrated that error bounds satisfied by a
reduced model at points in state space do not necessarily
hold within their convex hull. For this reason, a reduced
model with error bounds satisfied at a finite collection
of points in state space may not satisfy its stated error
tolerances after one time step of numerical integration.
Consequently, it is absolutely critical that reduced models
be generated with error bounds on the time derivatives of
state variables, and that these error bounds are satisfied
over ranges in state space.

Optimization is a natural mathematical framework for
model reduction because elements of model reduction
problems can be adapted to an optimization formulation.
Typically, the mode of model reduction can be cast in
terms of decision variables of the optimization problem.
The mode of model reduction can be thought of as the
rules or allowable transformations that can take place
in generating a reduced model from a detailed model.
Reaction elimination [3] is one example of such rules.
Error bounds can be formulated as constraints, and CPU
effort can be formulated as an objective. Since simulation
CPU time cannot be expressed directly as a continuous
function of the decision variables, the number of reac-
tions, species, or state variables is typically used as a
proxy, because the CPU time needed to solve a reacting
flow problem scales empirically as O(NRN2

S), where NR
is the number of reactions and NS is the number of
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species [13]. Adapting a model reduction technique to
an optimization framework ensures that a given detailed
model is maximally (or close to maximally) reduced,
subject to the error constraints and model reduction rules
supplied by the model reduction technique.

In this work, we propose using an optimization frame-
work to generate reduced models by simultaneous re-
action and species elimination, such that the resulting
models satisfy given error constraints over ranges in state
space. This approach, called range-constrained simultane-
ous reaction and species elimination, is a natural extension
of existing work on both reaction elimination [3], [10]
and simultaneous reaction and species elimination [8]. In
order to provide the necessary background for the devel-
opment of range-constrained simultaneous reaction and
species elimination, we first review the previous point-
constrained reaction and species elimination by Mitsos
et al. [8].

II. EXISTING POINT-CONSTRAINED SIMULTANEOUS
REACTION AND SPECIES ELIMINATION FORMULATION

Bhattacharjee [1] proposed an integer nonlinear pro-
gramming (INLP) formulation for simultaneous reaction
and species elimination. Although this formulation was
novel, it was also computationally demanding, since algo-
rithms that solve INLPs are time-consuming. Mitsos et al.
[8] discovered an equivalent integer linear program (ILP)
reformulation of the original INLP that can be solved
much more quickly. The resulting point-constrained reac-
tion and species elimination ILP is presented below as in
[8], restricting the formulation to the case where αj = 1
for all j and βi = 0 for all i:

min
z,w

NS∑
j=1

wj , (1a)

s.t.

∣∣∣∣∣
∑NS
j=1 hj(Tl)Mj

∑NR
i=1 νjiziri(xl, Tl)

ρl(CP )l
− Γ

ref
0 (xl, Tl)

∣∣∣∣∣
≤ (atol)0 + (rtol)0|Γref0 (xl, Tl)|, l = 1, . . . , Nt, (1b)∣∣∣∣∣Mj

∑NR
i=1 νjiziri(xl, Tl)

ρl
− Γ

ref
j (xl, Tl)

∣∣∣∣∣
≤ (atol)j + (rtol)j |Γrefj (xl, Tl)|, j = 1, . . . , NS ; l = 1, . . . , Nt,

(1c)

(NR)jwj ≥
∑

{i: νji 6=0}

zi, j = 1, . . . , NS , (1d)

zi ∈ {0, 1}, i = 1, . . . , NR, (1e)

wj ∈ {0, 1}, j = 1, . . . , NS . (1f)

The formulation in (1) requires some explanation. In
(1), three subscripts are used. The subscript i indexes
the NR reactions present in the detailed mechanism,
and is used in conjunction with reaction-based quantities,
such as the rate of reaction. The subscript j indexes the
NS species present in the detailed mechanism, and is
used in conjunction with species-based quantities, such
as the species mass fractions. The subscript l indexes
Nt user-supplied points in state space to be used as a
reference data set for model reduction. This reference data
set defines the conditions in state space over which the
reduced model will be “valid,” in that it satisfies error

tolerances on the time derivatives of the state variables
relative to the detailed model. In our case, state space is
defined as the mass fractions of each species present in
the detailed model and temperature; we assume that our
detailed model describes the chemical source term in an
adiabatic-isobaric batch reactor.

Reaction elimination is encoded by the binary decision
variables zi, and species elimination is encoded by the
binary decision variables wj . If zi = 1, reaction i is
included in the reduced model generated by this tech-
nique. If zi = 0, reaction i is excluded from the reduced
model generated by this technique. Similarly, if wj = 1,
species j is included in the reduced model generated
by this technique. If wj = 0, species j is excluded
from the reduced model generated by this technique.
Consequently, an optimal solution to (1) yields a reduced
mechanism derived from the detailed mechanism supplied
as input to point-constrained simultaneous reaction and
species elimination. Given this interpretation of the binary
decision variables, the objective function (1a) equals the
number of species included in the reduced model.

Assuming that our detailed model describes the chem-
ical source term in an adiabatic-isobaric batch reactor,
the error constraints in (1b) and (1c) limit the difference
between the time derivatives of the state variables in
the detailed model and the time derivatives of the cor-
responding state variables in the reduced model. In these
equations, hj is the specific enthalpy of species j, Mj

is the molar mass of species j, νji is the stoichiometric
coefficient of species j in reaction i (using the standard
sign convention that νji > 0 if species j is produced
in reaction i, and νji < 0 if species j is consumed
in reaction i), ri is the molar rate of reaction i, xl is
the vector of species mass fractions in the batch reactor
at reference point l, Tl is the temperature in the batch
reactor at reference point l, ρl is the density of the gas
in the batch reactor at reference point l, (CP )l is the
specific heat capacity of the mixture in the batch reactor
at reference point l, Γref0 is the chemical source term for
the temperature evaluated at a reference point specified
as an argument, and Γrefj is the chemical source term
for species j evaluated at a reference point specified
as an argument. The absolute error tolerance for the
time derivative of species j is defined as (atol)j , and
the absolute error tolerance for the time derivative of
temperature is defined as (atol)0; these tolerances are set
by the user. Corresponding relative tolerances are defined
as (rtol)j for species j and (rtol)0 for temperature.

Mitsos et al. [8] recognized that in order to avoid the
production or destruction of mass via the reactions of the
reduced mechanism, a species may only be eliminated
from the detailed mechanism if all of the reactions in
which it participates (in the detailed mechanism) are also
eliminated. The mass conservation constraint (1d) encodes
this condition, where (NR)j is the number of reactions of
the detailed mechanism in which species j participates.
In the case of unimolecular, bimolecular, and explicit
termolecular reactions, participation of a chemical species
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is unambiguous. However, some reaction mechanisms
contain third body reactions, in which a molecule called
a third body acts upon the reactants to give them enough
kinetic energy for reaction to occur. If a third body
reaction is treated as a bimolecular reaction, in that the
third body species are not considered to participate in
that reaction, then the estimates of the time derivatives
of the state variables in (1d) may be inaccurate. For most
practical purposes, these inaccuracies are insignificant and
can be ignored. If the inaccuracies due to neglecting the
participation of third body species are significant, Mitsos
et al. [8] propose alternate treatments for third body
species.

Point-constrained species elimination has been applied
to mechanisms as large as the LLNL n-heptane mech-
anism [4] successfully. Due to the O(NRN2

S) scaling
of reacting flow solvers, simultaneous elimination of
reactions and species reduces the computational effort of
reacting flow solvers to a greater extent than elimination
of reactions only. However, since the chemical source
term is, in general, a non-convex function of the state
variables over the convex hull of the reference points
supplied to (1), the error in the reduced model is also a
non-convex function over the convex hull of the reference
points. Consequently, if a reduced model is generated
satisfying error bounds at the reference points, it is not
necessarily true that the reduced model also satisfies the
same error bounds at any point in state space within the
convex hull of the reference points. For this reason, if
error-controlled reduced models are desired over regions
in state space (for example, in a reacting flow solver using
an adaptive chemistry algorithm [12]), either a valid range
must be determined from a point-constrained reduced
model by using the range-finding algorithm of Oluwole
et al. [11], or the constraints in the point-constrained
model reduction formulation (1) must be revised to limit
errors over ranges in state space.

III. PROPOSED RANGE-CONSTRAINED SPECIES
ELIMINATION FORMULATION

By analogy to the previous work on reaction elim-
ination by Bhattacharjee et al. [1], [3] and Oluwole
et al. [10], we propose the following range-constrained
simultaneous reaction and species elimination formulation
as an extension of a combination of the work of [8] and
[10]:

min
z,w

NS∑
j=1

wj , (2a)

s.t.

∣∣∣∣∣
∑NS
j=1 hj(T )Mj

∑NR
i=1 νjiziri(x, T )

ρ(x, T )CP (x, T )
− Γ

ref
0 (x, T )

∣∣∣∣∣
≤ (atol)0 + (rtol)0|Γref0 (x, T )|, ∀(x, T ) ∈ Φ, (2b)∣∣∣∣∣Mj

∑NR
i=1 νjiziri(x, T )

ρ(x, T )
− Γ

ref
j (x, T )

∣∣∣∣∣
≤ (atol)j + (rtol)j |Γrefj (x, T )|, j = 1, . . . , NS ; ∀(x, T ) ∈ Φ,

(2c)

(NR)jwj ≥
∑

{i: νji 6=0}

zi, j = 1, . . . , NS , (2d)

zi ∈ {0, 1}, i = 1, . . . , NR, (2e)

wj ∈ {0, 1}, j = 1, . . . , NS , (2f)

where Φ is the Cartesian product of intervals Φ =
[xL,xU ]× [TL, TU ] in mass fraction-temperature space.
Note that the set Φ in (2) replaces the finite set of
reference points in (1). Even though (2) is linear in the
decision variables, it contains infinitely many constraints,
indexed by the set Φ, and is classified as a semi-infinite
program (SIP) [10].

Solving SIPs to global optimality is computationally
demanding, and current algorithms cannot determine an
optimal solution for large problem instances, correspond-
ing to large kinetic mechanisms. Bhattacharjee et al.
[2] developed an algorithm using interval extensions [9]
that determines guaranteed feasible points for an SIP by
formulating a restriction of the SIP. The optimal objective
function value of the resulting program is an upper bound
on the solution of the exact formulation of the original
SIP. In the case of the SIP in (2), this restriction will be
an ILP.

Oluwole et al. [10] used ideas from the SIP restric-
tion algorithm of Bhattacharjee et al. within a range-
constrained reaction elimination formulation to overesti-
mate the difference between the detailed model source
terms and the reduced model source terms with con-
straints similar to (2b) and (2c) and determine reduced
models guaranteed to satisfy the error constraints for
reaction elimination. Our proposed formulation extends
the work of Oluwole et al. by adding the binary variables
wj and the mass conservation constraint in (2d); it extends
the work of Mitsos et al. by replacing the finite set of
reference points with an interval in state space and modi-
fying the appropriate constraints accordingly. In applying
the approach of Oluwole et al. to (2), DAEPACK [15]
is used to generate Taylor model interval extensions that
overestimate the error between the detailed model source
terms and reduced model source terms. These overesti-
mates are used to formulate the ILP restriction of (2),
which is then solved to global optimality using CPLEX
[5]. Since an optimal solution of the ILP restriction of (2)
corresponds to a feasible point of the range-constrained
SIP formulation (2), the objective function value at this
point is an upper bound on the optimal objective function
value for the SIP. Cast in terms of the problem at hand,
our proposed algorithm will determine a reduced model
with fewer species that is guaranteed to satisfy error
bounds on the source term in the reduced model over
a specified range of conditions of interest, but it will not
necessarily determine the reduced model with the fewest
species satisfying those error bounds over the range of
interest.

IV. CONCLUSIONS AND FUTURE WORK

A method for automatically generating error-controlled
range-validated reduced kinetic mechanisms by simulta-
neous reaction and species elimination is presented. The
method follows either by extending the point-constrained
simultaneous species and reaction elimination formula-
tion to a range-constrained formulation, or by extending
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the range-constrained reaction elimination formulation to
include simultaneous reaction and species elimination.
The resulting range-constrained simultaneous reaction and
species elimination formulation is a semi-infinite program
solved approximately by constructing an ILP restriction
using interval extensions and solving that ILP to global
optimality. The solution obtained by this algorithm is a
feasible point for the original SIP, but it is not necessarily
the best possible.

Given the recent proliferation of model reduction meth-
ods in the literature, it would be interesting to attempt
to cast some of the existing model reduction methods
into the form of optimization problems for the sake
of comparison. Model reduction methods could then be
compared using comparable error constraints in order
to determine the extent to which they reduce the com-
putational requirements of reacting flow solvers. This
endeavor would also be useful in that it could facilitate
the combination of different model reduction methods in
order to further reduce the computational requirements of
reacting flow solvers.

Finally, it would be interesting to examine how error-
controlled model reduction methods interact with different
numerical methods, as well as different problem formu-
lations. Currently, little theory exists [10] to bound the
errors in the numerical solution of a reduced model, as
compared to the numerical solution of its corresponding
detailed model. A theory explaining how error-controlled
model reduction methods interact with different numerical
methods for solving reacting flow problems could then
be applied to range-constrained, error-controlled model
reduction techniques to solve reduced models to within
known error bounds, greatly enhancing the utility of
model reduction techniques by clearly quantifying the
error incurred by model reduction.
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Abstract— Numerous methods exist for generating
smaller, reduced chemical models from large, detailed
chemical models. These methods arise from a variety of
different theoretical backgrounds, yet few comparisons have
been made between different model reduction methods. In
order to assess the relative quality of these different model
reduction techniques, these methods must be compared with
each other using a common framework. As one element of
such a framework, we propose a formalism called affine
lumping. This formalism defines two affine mappings. The
first affine mapping is used to lump the state variables from
a detailed model to a reduced model with reduced state
variables. The second affine mapping is used to unlump
the reduced state variables and lift the reduced model
back into the original state space. Conditions are stated
under which the application of these two affine mappings
in succession yields a solution of the original model. Finally,
the techniques of species lumping by Li et al., computational
singular perturbation and reaction invariants are all cast as
special cases of affine lumping, to illustrate the potential
usefulness of the affine lumping formulation. Given that
three different model reduction techniques can be recast
using the affine lumping formalism, it is possible that other
model reduction techniques may be also be special cases of
affine lumping. The affine lumping formalism could then be
used as a common standard against which different model
reduction techniques can be compared in order to assess
their relative quality.

I. INTRODUCTION

Many practical problems involve combustion under in-
homogeneous, transient conditions, and therefore require
the use of numerical methods that solve large systems
of coupled, nonlinear partial differential equations of
the kind typically found in reacting flow solvers. These
practical problems typically require large, detailed chem-
ical models in order to simulate faithfully the physics
involved. However, reacting flow simulations of large
chemical models have prohibitively large computational
costs. Consequently, smaller reduced models are used
in place of large chemical models in order to obtain
approximate numerical solutions to the large chemical
models at decreased computational cost.

Many methods are available for generating reduced
models from detailed chemical models (see [2], [5], [3]
and [4] for examples). However, these different methods
originate from different theoretical backgrounds, includ-
ing methods based on singular perturbation, methods
based on a graph-theoretic interpretation of chemistry, and
others. Given this variation in the theoretical development
of model reduction methods, it is difficult to compare
two given model reduction techniques. Previous work

has made progress in this area by showing that the
intrinsic low-dimensional manifold (ILDM) technique is a
special case of computational singular perturbation (CSP)
[2], facilitating the comparison of the two techniques in
subsequent work. To make further progress in comparing
model reduction techniques, we propose a formalism
called “affine lumping.”

In this work, we provide a definition of affine lumping.
Affine lumping defines two affine mappings. The first
affine mapping transforms a detailed model to a reduced-
dimension representation called the reduced model; this
process is called lumping. The second affine mapping lifts
the reduced state variables into the space of the original
state variables, recovering a representation of the reduced
model in the original state variables that approximates
the detailed model; this process is called unlumping. It
can be shown that applying these two affine mappings in
sequence is equivalent to projecting the original model
onto an affine subspace. This projection is the reduced
model, lifted into the space of the original state variables.
It can be shown that under certain conditions, lifting
the solution of the reduced model into the space of the
original state variables yields a solution of the detailed
model. In other words, under certain conditions, the
solution of the detailed model lies in an affine subspace
so that the solution of the reduced model can be used to
construct the exact solution of the detailed model, and the
reduced model can be described with fewer differential
equations and state variables than the detailed model.

After presenting a definition of affine lumping, we
present examples of existing model reduction techniques
that are special cases of affine lumping. We show that
the species lumping technique of Li et al. [3], CSP and
the technique of reaction invariants reviewed by Waller
and Mäkilä [6] are all special cases of affine lumping
by translating the nomenclature and mathematics used
in each of these techniques to the nomenclature and
mathematics of affine lumping. These results suggest that
other methods could also be expressed using the affine
lumping formalism, and indicate that apparently different
techniques could have similar properties despite different
theoretical backgrounds. These similarities could then be
used in future work to assess the relative merits of each
model reduction technique that fits the formalism.

II. DEFINITION AND PROPERTIES OF AFFINE LUMPING

In order to define affine lumping, we first motivate
the definition by exploring the concept of lumping in
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the specific case of chemical reaction in an adiabatic-
isobaric batch reactor. Since the chemical source term in
this model is used within reacting flow solvers that use
operator splitting, it is the primary model under considera-
tion; we postpone discussion of any other models to future
work, since they will be extensions of this case. After
briefly discussing the model and informally discussing
ideas behind affine lumping, a definition of affine lumping
is provided. Finally, we state without proof the main
result of affine lumping: the solution of the reduced model
obtained from affine lumping can be used to reconstruct
the solution of the detailed model with no approximation
error, provided that the affine lumping and reduced model
have certain properties.

Consider the following model for a well-mixed, isolated
chemically reacting system (that is, an adiabatic-isobaric
batch reactor):

ẏ(t) = Γ(y(t)), (1)

where y(t) ∈ RNS represents the original state vari-
ables (such as species compositions, temperatures, and
pressures), and the source function Γ : RNS → RNS

describes changes in the state variables due to chemistry.
Consider the “affine lumping”:

φ(t) = A(y(t)− y0), (2)

where NS ≥ NL, φ(t) ∈ RNL is a set of reduced state
variables, A ∈ RNL×NS is the assembly (or lumping)
matrix, and y0 ∈ RNS is a point in the (original) state
variable space corresponding to the origin of the new
reduced-dimension space corresponding to the reduced
state variables. We treat the matrix A as a function of
the original state variables, and therefore, as a function of
the solution y(t), but assume that the functional form of
A(z) is piecewise constant over RNS (here, z is a dummy
variable). Therefore, instead of using the notation A(z),
we will use the notation A under the assumption that we
have restricted the use of A to a subset of RNS over
which its elements have constant values; this subset must
be specified when defining a specific instance of lumping.

Having given an informal description of affine lumping,
additional properties are needed to make a description
of the lumping process more concrete. Suppose that we
can find a generalized inverse D corresponding to A
(for the properties of generalized inverses, see [1]). The
matrix D ∈ RNS×NL will be called the disassembly (or
unlumping) matrix, since its purpose will be to recover
approximately the original state variables from their re-
duced state variable counterparts. Like A, we treat the
matrix D as a piecewise constant function over state
space. Therefore, instead of using the notation D(z), we
will use the notation D under the assumption that we
have restricted the use of D to a subset of RNS over
which its elements have constant values; this subset must
be specified when defining a specific instance of lumping,
and it must be equal to the subset used in defining A.

For any y∗ ∈ RNS , the values of the reduced state
variables resulting from lumping once the values of the
original state variables should be equivalent to the values
of the reduced state variables resulting from lumping
the values of the state variables, unlumping the resulting
values of the reduced state variables, and then lumping
again the values of the state variables obtained from
unlumping. Put another way, after lumping once, repeated
unlumping and lumping should yield the same values for
the lumped variables. Mathematically, this implies that for
any y∗ ∈ RNS , ADAy∗ = Ay∗, and thus

ADA = A. (3)

Equation (3) is Penrose’s First Equation, indicating that
D is a {1}-inverse of A.

Also, assume that A has full rank; if it does not, we
could describe the subspace R(A) with a smaller basis
and obtain an equivalent lumped representation using a
smaller assembly matrix and fewer variables. Since the
goal of this work is to reduce as much as possible the
number of state variables used to represent a chemically
reacting system, a full rank assumption is not restrictive.

Since A has full rank, by Lemma 1.2 of [1], it follows
that

AD = INL
, (4)

where INL
is an NL × NL identity matrix. From this

equation,

DAD = D (5)

also holds. Equation (5) is Penrose’s Second Equation,
indicating that D and A are {1, 2}-inverses of each other.

These arguments motivate the following definition of
an affine lumping:

Definition 2.1 (Affine Lumping): An affine lumping is
a 3-tuple (A, D, y0), where

1) A is a full rank NL×NS matrix called the assembly
matrix, with NL ≤ NS ,

2) D is a {1, 2}-inverse of A called the disassembly
matrix,

3) y0 ∈ RNS is the origin of the lumping.
Having defined affine lumping, we next explore the

properties of the definition. Suppose we have an affine
lumping (A, D, y0) associated with (1), and suppose that
y(t) is a solution to (1). From (2), the chain rule, and (1),
it follows that

φ̇(t) = Aẏ(t) = AΓ(y(t)). (6)

Therefore, given a solution y∗(t) of (1) with y∗(0) =
y∗0 , it is possible to prescribe initial conditions φ0 and
solve (6). Actually carrying out this process, however,
would defeat the purpose of lumping, since the idea of
species lumping is to cast the original state space into
a reduced-dimensional state space for the purposes of
reducing the computational effort needed to solve the
ODE system in the reduced space; solving the original
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ODE would yield all of the desired results. Consequently,
it is necessary to determine a closure relation that allows
us to express (6) as an autonomous ODE system.

The closure relation for constructing the solution of the
original model from a suitably defined reduced model can
be found under certain conditions using our main result,
stated here without proof:

Theorem 2.1: Given an affine lumping (A, D, y0), let
1) Z = {z ∈ RNS : z = Dw + y0, w ∈ RNL},
2) φ(t) ∈ RNL be a solution of the reduced model

φ̇(t) = AΓ(Dφ(t) + y0) (7)

with φ(0) = 0,
3) x(t) ≡ Dφ(t) + y0.
Suppose that Γ(z) ∈ R(D), ∀z in Z. It follows that

x(t) is a solution of (1) with x(0) = y0 and that φ(t) =
A(x(t)− y0).

If the conditions of Theorem 2.1 hold, then lifting the
reduced model into the space of the original state variables
yields the equation

ẋ(t) = DAΓ(x(t)). (8)

Aside from the change of variables from y to x (chosen
to distinguish between the solution of the detailed model
and the lifted solution of the reduced model), note that
the right hand side of the lifted reduced model (8) is
the same as the right-hand side of the original model
(1) premultiplied by the matrix DA. From Corollary 2.7
of [1], the matrix DA is a projector onto R(D) along
N (A), yielding the interpretation that the solution of the
reduced model, lifted into the space of the original state
variables, is the solution to the original model projected
onto the affine subspace R(D) + y0 along N (A).

It is worth noting that a simple choice for D that satis-
fies Theorem 2.1 is a maximal set of linearly independent
columns of the stoichiometry matrix N. However, in order
to reduce models more aggressively, the assumptions of
Theorem 2.1 will have to be relaxed so that the right-hand
side of the reduced model, lifted into the space of the
original state variables differs from the right-hand side
of the reduced model to within a known error bound.
A method for error-controlled affine lumping will be the
focus of future work.

III. SPECIAL CASES OF AFFINE LUMPING

Having defined the affine lumping formalism and es-
tablished conditions under which a reduced model can
be used to determine exactly the solution of the detailed
model, we now give some examples of model reduction
techniques that are special cases of affine lumping. We
discuss three techniques: the technique of species lumping
by Li et al. [3], the technique of CSP by Lam [2] and the
technique of reaction invariants reviewed by Waller and
Mäkilä [6].

Li et al. [3] define their species lumping scheme using
the matrices M and M̄ that take the roles of the matrices
A and D, respectively, in an affine lumping. Cast in terms

of the notation for affine lumping by setting A = M,
D = M̄, and φ = ŷ, the species lumping scheme in [3]
is defined as

φ(t) = Ay(t), (9)

and the matrices A and D are related by AD = INL
.

Li et al. do not place any restrictions on A and D other
than to state that M̄ is one of the generalized inverses
of M. If we restrict M and M̄ to be {1, 2}-inverses of
each other, we have an affine lumping (A, D, y0) where
A = M, D = M̄ and y0 = 0. We postpone a more
detailed comparison of affine lumping with the species
lumping of Li et al. to future work.

Computational singular perturbation defines affine
lumping-like objects through the CSP basis vectors. Let
ACSP be the CSP basis matrix whose columns are the
CSP basis vectors, and let BCSP be the CSP reciprocal
basis matrix whose rows are the CSP reciprocal vectors,
such that

BCSP = (ACSP )−1. (10)

We assume here that the matrix ACSP is a constant,
rather than treating it as time-varying, as in the general
case of CSP.

To discuss CSP in the context of affine lumping, some
additional notation is necessary. Using the notation of Ben
Israel and Greville [1], denote by

Qk,n = {(i1, i2, . . . , ik) : 1 ≤ i1 < i2 < . . . < ik ≤ n}
(11)

the set of increasing sequences of k elements from the
set {1, . . . , n} for given integers 0 < k ≤ n. Also, for a
given matrix M ∈ Rm×n, and index sets I ∈ Qp,m and
J ∈ Qq,n, let the p × n submatrix MI∗ be the matrix
whose elements are mij for i ∈ I and j ∈ {1, . . . , n}
and let the m × q submatrix M∗J be the matrix whose
elements are mij for i ∈ {1, . . . , n} and j ∈ J .

Returning to CSP, let NL be the number of active, slow
CSP modes, and let S ∈ QNL,NS

be the set of indices of
CSP basis vectors corresponding to the slow CSP modes.
The matrices BCSP

S∗ and ACSP
∗S take the roles of A and

D in affine lumping and have the property that

BCSP
S∗ ACSP

∗S = INL
, (12)

implying that ACSP
∗S is a {1}-inverse of BCSP

S∗ by
rearranging (12) to yield Penrose’s First Equation. Since
ACSP
∗S and BCSP

S∗ are both full rank matrices, they are
{1, 2}-inverses of each other, by Corollary 2.1 of [1]. If
the approximate equations of state in [2] are treated as
equalities, then CSP replaces the original model (1) with
the approximate, reduced model

ẏ(t) = ACSP
∗S BCSP

S∗ Γ(y(t)), (13)

which resembles the reduced model lifted into the
space of the original state variables, shown in (8). This
result suggests that CSP fits the affine lumping formalism
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without defining a lumping operation explicitly. In order
to complete the definition of affine lumping from the CSP
basis matrices, an appropriate origin of the lumping must
be defined; in this case, set y0 equal to the current point in
state space at which these particular CSP basis matrices
are used to approximate the original model. Again, we
postpone a more detailed comparison for future work.

The reaction invariants methods use a basis transforma-
tion to change the state variables from the state variables
of the original model in (1) to state variables that can
be classified as one of two types: reaction variants and
reaction invariants. Reaction invariants are state variables
that are constant with time, and reaction variants are state
variables that change over time. Using the notation of
Waller and Mäkilä [6], suppose that v(t) ∈ RNL are
new state variables representing the reaction invariants,
and w(t) ∈ RNS−NL are new state variables repre-
senting the reaction invariants. Suppose also that there
exist matrices PRI ∈ RNS×(NS−NL), TRI ∈ RNS×NL ,
DRI ∈ R(NS−NL)×NS and LRI ∈ RNL×NS such that the
matrix [PRI TRI ] is nonsingular, and the equations

y(t) =
[

PRI TRI
] [

w(t)
v(t)

]
, (14a)[

DRI

LRI

]
=

[
PRI TRI

]−1
, (14b)

both hold. From (14b), it follows that LRITRI = INL
,

and by Penrose’s First Equation, TRI is a {1}-inverse
of LRI . Since the columns of the matrix [PRI TRI ] are
linearly independent, LRI and TRI are both full rank
matrices. Consequently, by Corollary 2.1 of [1], LRI and
TRI are {1, 2}-inverses, suggesting that LRI and TRI

take the roles of the assembly matrix A and disassembly
matrix D in an affine lumping scheme.

In addition, w(t) does not vary with time, so for given
initial conditions of the detailed model (1), w(t) is fixed.
Setting A = LRI and y0 = PRIw(0), we can use
(2) to define an affine lumping from the matrices of the
reaction invariants technique, and (LRI , TRI , PRIw(0))
is an affine lumping. A more detailed comparison of affine
lumping and reaction invariants will follow in future work.

IV. CONCLUSIONS AND FUTURE WORK

A formalism called affine lumping has been defined
to facilitate the comparison of different model reduction
techniques that attempt to reduce the number of state
variables used to describe a chemically reacting system.
In addition to defining affine lumping, conditions have
been stated under which an affine lumping can be used
to reconstruct exactly the solution of a detailed model
from a reduced model. The model reduction techniques
of species lumping by Li et al. [3], computational singular
perturbation by Lam [2] and reaction invariants [6] have
been shown to be affine lumpings, under certain assump-
tions.

To further develop this work, more detailed compar-
isons of the theory of affine lumping with the theory of

existing model reduction techniques should be conducted
to get a better idea of the breadth of techniques that can
be expressed using the ideas of projection and generalized
inverses as a theoretical basis. In parallel, a technique
to determine an error-controlled affine lumping could
be developed. The idea behind error-controlled affine
lumping would be to replace the condition under which
the solution of a detailed model can be reconstructed from
a reduced model exactly with conditions under which the
solution of a detailed model can be reconstructed from a
reduced model approximately with known error bounds.
These error bounds could then be used in conjunction with
additional information to determine the affine lumping
that yields the reduced model with the fewest reduced
state variables, subject to error bounds. Such a technique
could then be compared with existing techniques for
model reduction with (or without) error control in order
to better assess the strengths and weaknesses of various
model reduction methods.
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Abstract— The numerical solution of mathematical mod-
els for reaction systems in general, and reacting flows in
particular, is a challenging task because of the simultaneous
contribution of a wide range of time scales to the system
dynamics. However, the dynamics can develop very slow
and very fast time scales separated by a range of active
time scales. We propose a numerical technique consisting
of an algorithmic framework, named the G-Scheme, to
achieve multi-scale adaptive model reduction along-with the
integration of the differential equations (DEs). We assume
that the dynamics is decomposed into active, slow, fast, and
when applicable, invariant subspaces. Adjusting the active
DEs dynamically during the time integration is the most
significant feature of the G-Scheme, since the numerical
integration is accomplished by solving a number of DEs
typically much smaller than the dimension of the original
problem. To demonstrate the effectiveness of the G-Scheme,
we present results from an illustrative problem.

I. INTRODUCTION

Solutions of reaction systems in general are computa-
tionally very expensive because of the presence of a very
large range of scales. However, to within an arbitrary but
fixed accuracy, there are in general vary fast and very slow
time scales whose contributions to the active dynamics
is small. Recently, we proposed a new methodology [1]
that exploits this dynamic behavior to design a numerical
framework able to achieve adaptive reduction of the
dynamical system based on accuracy requirements. As
a result, the original problem not only becomes substan-
tially smaller, but more importantly non-stiff. The frozen
(slow) and near-equilibrium (fast) modes play crucial
roles in defining the active (dynamic) subspace, and thus
it is mandatory to account for their contributions. In this
work, we provide an overview of the G-Scheme and
present results of an illustrative low dimensional system
to demonstrate the effectiveness of the method.

II. BASIC CONCEPTS

The present work deals with model reduction concepts
that are used to develop a time accurate computational
tool that is able to exploit, adaptively, opportunities for
reduction from both fast/active and slow/active spectral
gaps. [1] The class of multi-scale problems which can
be efficiently addressed with the new framework is that
of stiff problems characterized by fast time scales of
dissipative nature. Operationally, the new framework is
designed to deal with the same class of problems as those
handled efficiently by BDF methods.

The proposed numerical technique consists of an algo-
rithmic framework, that for convenience will be referred
to as the G-Scheme, to achieve model reduction along-
with the numerical integration of a set of differential

equations (DEs). The method is directly applicable to
initial-value ordinary differential equations (ODEs), and
by using the method of lines to partial differential
equations (PDEs) as well. We describe the G-Scheme as
a “framework”, since the scheme consists of a modular
procedure, where several of its components can be re-
placed or improved, while the overall framework remains
unchanged, and can be used in different ways to achieve
different goals.

The rationale used in constructing the G-Scheme is
as follows [1]. The construction of reduced models for
a dynamical system whose asymptotic behavior might
involve fixed equilibrium points, or nontrivial limit sets,
such as limit cycles or chaotic attractors, is strictly related
to the occurrence of a gap in the spectrum of its character-
istic time scales (time-scale separation). A temporal gap
separates fast modes relaxing towards a SIM from the
slow modes that drive the system, whereas for systems
possessing nontrivial invariant limit sets, the temporal
dichotomy is between stable and unstable modes. In both
cases, the most relevant asymptotic behavior of the system
is confined to an invariant set which is attracting: the SIM
or the limit attractor.

The characterization of the local structure of these in-
variant subspaces can be of great importance in the devel-
opment of methods aimed at achieving a low-dimensional
description of dynamical systems. The basic idea is that
the invariant subspaces, ordered in a decreasing way
with respect to their characteristic time scales, provide
the most convenient and natural basis for describing
the unstable/slow and stable/fast components of the dy-
namics. Consequently, model reduction can be achieved
by filtering out the dynamically irrelevant degrees of
freedom associated with the most stable (fast) components
characterized by the most negative characteristic time
scales.

Ideally, one would like to decompose the tangent space
Tx at any point x ∈ C ⊂ RN in N invariant subspaces,
so that the dynamics within each invariant subspace is
fully decoupled from all other invariant subspaces, and
is associated with a single characteristic time scale. This
goal is not easy to achieve. However, decomposing the
tangent space in subspaces, not necessarily invariant,
characterized by time scales of comparable magnitude is
at the core of the G-Scheme [1]. We assume that the
tangent space Tx can be decomposed as the sum of four
subspaces,

Tx = E⊕H⊕ A⊕ T,

where the active subspace A contains all the current
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intermediate dynamic time scales, all scales faster and
slower than the active ones are confined in the fast and
slow subspaces T and H, respectively, and, E is the linear
subspace spanned by directions associated with invariants,
if any exist.

At each state point x corresponding to time t, the
G-Scheme introduces a curvilinear frame of reference,
defined by a set of orthonormal basis vectors with corre-
sponding coordinates, attached to the decomposition of
the tangent space in the four subspaces. At any time
instant of the system evolution, the curvilinear coordinates
are suitable (linear) combinations of the perturbations ∆x
of the original state vector x about x itself, which are
assumed to be valid only within a time scale suitably de-
fined. Thus, they can be thought of as “lumped” variables
dynamically adjusting to the system’s evolution.

The evolution of the curvilinear coordinates associated
with the subspace A is described by NA = dim(A) ≤ N
ODEs, whereas the variation of the curvilinear coordinates
associated with the subspaces T and H are accounted for
by applying NT = dim(T) ≥ 0 and NH = dim(H) ≥ 0
algebraic corrections derived from asymptotics of the
original ODEs. Note that if we have NE = dim(E) ≥ 0
invariants, they can be formally eliminated so that the
dynamics is restricted to move in the subspace H⊕A⊕T
that satisfies the invariants exactly. Adjusting the active
ODEs dynamically during time integration is the most
significant feature of the G-Scheme, because the numer-
ical integration of the state vector x ∈ RN is obtained
by solving a number of ODEs typically much smaller
than N . The active ODEs evolve in A, which is freed
from fast scales, and thus they are non-stiff. They can
be solved by resorting to any explicit time integration
scheme (e.g., ERK). When compared to a standard BDF
implicit scheme for stiff problems, the G-Scheme offers
the advantage of requiring the solution of NA � N
explicit instead of N implicit ODEs, at the expense of
identifying the time scales and computing the set of ortho-
normal basis vectors that define the curvilinear frame of
reference.

A. Basis Vectors and Time Scales

Clearly, the success of the G-Scheme relies on the
ability to identify a decomposition of Tx which ensures
minimal (ideally no) coupling among slow, fast, and active
subspaces. The problem of finding a frame of reference
yielding the maximal degree of fast/slow decoupling can
be approached by resorting to the CSP refinements proce-
dure [2]. In this work, we identify the set of basis vectors
ai, defining the mapping of the change of frame of refer-
ence, with the right eigenvectors of the Jacobian matrix J
of the vector field related to the problem of interest, with
the dual vectors aj coinciding with the left eigenvectors of
J . This yields a leading order approximation of the CSP
vectors [3]. As estimate of the characteristic time scales,
we consider the reciprocal of the eigenvalues, λi, of J .
The ordering of the basis vectors is critical for proper
decomposition. Here, we order the modes according to

the magnitude of the complex eigenvalues, that is

0 = |λ1| = · · · = |λE | < |λE+1| < · · · < |λH−1| �
|λH | < · · · < |λT | � |λT+1| < · · · < |λN |,

where

0 = |λ1| = · · · = |λE | identify the time scales in E,
|λE+1| < · · · < |λH−1| identify the time scales in H,
|λH | < · · · < |λT | identify the time scales in A,
|λT+1| < · · · < |λN | identify the time scales in T,

with NE = E, NH = H − E − 1, NA = T − H + 1,
and NT = N − T . Note that, because of this ordering,
(possibly complex) eigenvalues with both negative and
positive real parts can be found in H and A, whereas we
expect the eigenvalues in T to have dominant negative
real parts. This is the distinguishing feature of the class
of problems for which the G-Scheme is expected to
perform efficiently. The ratios εT ≡ |λT /λT+1| < 1 and
εH ≡ |λH−1/λH | < 1 are measures of the spectral gaps
between active and fast subspaces, and slow and active
subspaces, respectively. Since the G-Scheme approximates
the contribution of the very slow and very fast time
scales with asymptotic corrections, it is expected that its
accuracy and efficiency will be higher for larger spectral
gaps, that is for smaller values of εT and/or εH . The
controlling (driving) time scale of the dynamics is given
by the fastest of the (active) time scales present in A, and
will be of the order of τT = 1/|λT |.

III. THE G-Scheme

Consider the Cauchy problem defined by a set of
autonomous ODEs:

dx(t)
dt

= f(x(t)),

with x ∈ RN , and f : E ⊂ RN → RN . We wish to find
the numerical solution for t ∈ (t0, tf ] with given initial
condition x(t0) = x0.

The state vector x(t) at time t = tn + τ , with
τ ∈ Ω ≡ (0,∆t] ⊂ R, where ∆t = (tn+1 − tn),
can always be expressed as the sum of the state vector
x(tn), for n = 0, 1, 2, . . ., and a perturbation vector
∆x(τ). We note that tn is some fixed arbitrary time.
The component-wise representation of the perturbation
vector ∆x(τ) can be expressed in terms of curvilinear
coordinates ∆x = ∆ξiai = ∆ξjaj related to the sets
of orthonormal covariant and contravariant basis vectors
ai and aj , respectively, here taken to correspond to the
eigenbases of

J (x(t)) ≡
[
∂f
∂x

]
x(t)

.

We take a curvilinear frame of reference that varies
with time. If the system is autonomous, then the frame
of reference depends only on the state of the system.
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Fig. 1. The G-Scheme step-by-step starting from a given state x(tn)
on a subspace of dimension evaluated at tn: orange stars denote inter-
mediate new states before the application of head or tail corrections, the
blue circle denotes the new state after head and tail corrections onto the
subspace evaluated at tn and where the basis vectors are subsequently
updated to tn+1, orange circle denotes the new state x(tn+1) and the
location where the subspace dimension possibly changes. Note that in
reality the orange circles are not exactly on the SIM; we’re actually
calculating the ASIM. We do not show both the SIM and ASIM so as
not to make the figure unduly complex.

Subsequently, we can write

x (t) = xn + ∆x,

= xn +Ae ∆ξe +Ah ∆ξh +Aa ∆ξa +At ∆ξt,

= xn + ∆xe + ∆xh + ∆xa + ∆xt,

where

A(τ) ≡ [a1(τ) · · · ai(τ) · · · aN (τ)] ,

B(τ) ≡


a1(τ)
· · ·

aj(τ)
· · ·

aN (τ)

 , ∆ξ(τ) ≡


∆ξ1(τ)
· · ·

∆ξj(τ)
· · ·

∆ξN (τ)

 ,
where

A(τ)B(τ) = B(τ)A(τ) = I,

I being the identity matrix, Note that by construction, the
contribution ∆xe of the invariant subspace is identically
zero.

A. The Framework Step-by-Step

The G-Scheme is fully described in [1]. Here the
algorithmic steps of the framework are summarized with
reference to Fig. 1. We use indices i = 1, . . . , N , a =
H, . . . , T , h = E+ 1, . . . ,H−1, and t = T + 1, . . . , N .

We initialize the calculation by prescribing that
T (x(t0)) = N , and compute J(x(t0)), λi(t0) =
λi(x(t0)), A(t0) = A(x(t0)) and B(t0) = B(x(t0)).
Next, for each time interval tn (τ = 0), and for the state
vector x(tn), with n = 0, 1, 2, . . ., we proceed as follows:

1) Define the time step as:

∆t = γ/|λT (x(tn))|, γ ≤ 1; (1)

2) Update time:

tn+1 = tn + ∆t; (2)

3) Find H(x(tn)) since, as discussed in [1], it depends
on ∆t;

4) Solve the set of non-stiff ODE’s for τ ∈ Ω =
(0,∆t]:

d∆ξa

dτ
= Ba(tn) f (x(tn) +Aa(tn) ∆ξa(τ)) ,

∆ξa(0) = 0a; (3)

5) Update the state vector:

xa(tn+1) = x(tn) +Aa(tn) ∆ξa (∆t) ; (4)

6) Apply the head correction:

xh(tn+1) = xa(tn+1) +Ah(tn) ∆ξh
FF(∆t); (5)

where the head correction is estimated as:

∆ξh
FF(∆t) = ∆t Bh(tn) ·[
I +

1
2

Λh
h (x(tn), tn) ∆t

]
f (x(tn)) ;(6)

7) Apply the tail correction to project the solution onto
the subspace obtained using the basis vectors found
at tn:

xt(tn+1) = xh(tn+1) +At(tn) ∆ξt
SIM(tn)(∆t),

(7)
where the tail correction is estimated as:

∆ξt
SIM(tn)(∆t) =

−
(
Bt(tn)J(x(tn))At(tn)

)−1 ·
Bt (tn) f(xh(tn)); (8)

8) Update J(xt(tn+1)), λi(tn+1) = λi(xt(tn+1)),
and the set of new basis vectors A(tn+1) =
A(xt(tn+1)) and B(tn+1) = B(xt(tn+1));

9) Apply a bases rotation correction if necessary (i.e.,
if the fast subspace changes) to find the state
x(tn+1) by projecting xt(tn+1) located on the man-
ifold evaluated at tn onto the manifold evaluated at
tn+1:

x(tn+1) = xt(tn+1) +A(tn+1) ∆ξSIM(tn+1)(∆t);
(9)

where the basis rotation correction is estimated as:

∆ξSIM(tn+1)(∆t) =

−
(
Bt(tn+1)J(xt(tn+1))At(tn+1)

)−1 ·
Bt (tn+1) f(xt(tn+1)); (10)

10) Find T (x(tn+1)) as discussed in [1];
11) Update the counter: n = n+ 1;
12) If [tn+1 < tf ] go back to step (1).
The choice of the safety factor γ has an impact on

the local error of the solution, given that ∆t = γ O(τp
T )

where p is the formal order of accuracy of the quadrature
scheme adopted to integrate (3).
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IV. RESULTS USING A PLANAR ODE MODEL

The reference solutions presented in this section are
obtained with the module NDSolve in Mathematica c©

6.0, the Automatic method of integration (by default
an LSODA approach is used, switching between a non-
stiff Adams method and a stiff Gear BDF method), a
precision (or rtol) of 10−10, and accuracy (or atol) of
10−14. The calculations carried out with the G-Scheme
use the explicit Runge-Kutta four-stage scheme (ERK4)
to integrate the active dynamics, and, unless otherwise
stated, we use rtol = 10−4 and atol = 10−13 in the
threshold vector ε defined in [1]. We note that the present
meanings of rtol and atol as used by NDSolve and the
G-Scheme are somewhat different.

As a test featuring stiff explosive/dissipative nonlinear
behavior, we use the Semenov model, which represents
the dynamics of the first-order exothermal batch reaction
A→ B in a well-stirred jacketed reactor:

dy

dt
= ε−1f(y, z) and

dz

dt
= g(y, z),

where

f(y, z) = g(y, z)− δy ; g(y, z) = z exp(y/(1+βy)),

with parameter values β = 0.21, δ = 1.0, and ε =
10−3, and initial condition {y(0), z(0)} = {5, 2}. The
bifurcation properties of this model have been studied
in [4]. This model problem is aimed at illustrating the
operating characteristics of the G-Scheme.

For this set of parameters the solution proceeds from
the initial condition to a fixed point (equilibrium), but
with a fairly complex dynamics as can be seen from the
phase trajectory or from the time evolution of y shown in
Fig. 2. The relative error and the size of the time step are
shown as functions of time in Fig. 3. The total number
of time steps necessary to obtain the solution using the
G-Scheme is 63. In Figs. 4 we show the number of active
modes NA, and the values of the head (H) and tail (T )
indices as functions of time. It is clear from the figure that
most of the time it is only necessary to integrate one ODE;
integration of both ODEs is only necessary the first time
step, and near the sharp corners shown in Fig. 2. We also
see from Fig. 4 that from right after the initial condition
until after the first turn H = T = 2. This indicates that the
dynamics is effectively one-dimensional and is controlled
by the fast time-scale (explosive stage). Afterwards, with
the exception of the period spent in negotiating the second
turn, the dynamics is again effectively one-dimensional,
but this time it is controlled by the slow time scale
(dissipative stage) since H = T = 1.

To illustrate the internal mechanics of the G-Scheme,
Fig. 5 shows the contributions of the slow (head) and
fast (tail) corrections to the phase trajectory. Note that
in this two-dimensional Semenov model, as long as we
have one active mode, then at any time only a head or
tail correction to active dynamics can be applied. We see
from the figure that in the first turn only head corrections
are necessary. However, from the figure we see that small
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head corrections are applied before the second turn, while
tail corrections are necessary after the turn. In the figure,
the blue arrows identify the state vector change due to
the active time scales, the red/green arrows are parallel to
the slow/fast direction and identify the state vector change
due to the application of the head/tail correction, whereas
the black arrows refer to the reference solution evaluated
at the same time instants as the G-Scheme solution. The
distance between the points of the red and black arrows
or the green and black arrows is the error associated with
the particular values of γ and rtol used in this calculation.

V. CONCLUSION

We conclude by stressing that the main goal of this
work is the presentation of the G-Scheme framework and
the verification of its ability in achieving an adaptive
model reduction. Regarding this aspect, the validation
carried out by considering a range of test cases involv-
ing both linear and nonlinear behavior, both ODEs and
PDEs, containing both simple and non trivial asymptotic
dynamics, has successfully demonstrated the potential of
the G-Scheme [1]. We already have successfully tested
the G-Scheme in problems related to the kinetics of large
hydrocarbons. In addition to addressing issues related to
computational efficiency and error analysis, much work is
still needed to translate this framework into a useful com-
putational tool. We plan to make the package available
to users and voluntary developers under the open-source
paradigm in the near-future.
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Abstract— The theory relevant to the G-Scheme frame-
work is presented in a companion paper. Here, we will
present results relevant to hydrocarbon kinetics, to a CSTR
model involving CO/H2 mixtures, and reactive systems
described by PDEs to demonstrate the effectiveness of the
method. We also present results obtained by combining
a Wavelet Adaptive Multilevel Representation (WAMR)
technique to define the spatial discretization of the model
with the time integration carried out with the G-Scheme.
This approach allows to obtain time accurate solutions of
prescribed accuracy with a much lower number of space-
time degrees of freedom.

I. I NTRODUCTION

The next frontier in numerical simulation involves
multi-physics, multi-scale, multi-disciplinary problems.
Disciplines eager of computing power range from ge-
netics, earth climate, biology, energy and combustion,
micro/nano science and technology, among the most
prominent. This demand cannot be simply accommodated
by progress achieved in computer power alone, but re-
quires breakthroughs in physical-mathematical modeling
and numerical/algorithmic developments. Indeed, solu-
tions of reaction systems in general are computation-
ally very expensive because of the presence of a very
large range of scales. However, to within an arbitrary
but fixed accuracy, there are in general vary fast and
very slow time scales whose contributions to the ac-
tive dynamics is negligible. Recently, we presented a
new methodology [1] that exploits this circumstance to
design a numerical framework able to achieve adaptive
reduction of the dynamical system based on accuracy
requirements. As a result, the original problem not only
becomes substantially smaller, but more importantly non-
stiff. The frozen (slow) and near-equilibrium (fast) modes
play crucial roles in defining the active (dynamic) sub-
space, and thus it is mandatory to account for their
contributions. To demonstrate the effectiveness of the
method, we will present results relevant to three different
reactive systems, namely a Continuously Stirred Tank
Reactor (CSTR) with a CO/H2 mixture, the auto-ignition
of hydrocarbon/air mixtures in homogeneous systems, and
a reaction/diffusion system featuring limit cycle behavior.
The reaction/diffusion system is solved by combining
a Wavelet Adaptive Multilevel Representation (WAMR)
technique [2][3][4] to define the spatial discretization of
the model with the time integration carried out with the
G-Scheme.

II. BASIC CONCEPTS

The numerical technique proposed in [1], referred to
as theG-Scheme, embodies both the model reduction
and the subsequent numerical integration of the reduced
set of Ordinary Differential Equations (ODEs). TheG-
Schemeexploits the circumstance that systems arising
from large kinetic mechanisms contain a very large range
of scales with the fastest scales having a dissipative
nature. This property ensures that the actual dimension of
the system becomes much smaller than the original size
after a short initial transient period. This lower dimen-
sional subspace, named Slow Invariant Manifold (SIM),
is present if there exists a spectral gap of characteristic
time scales that separates slow and fast components of the
dissipative kinetic systems. In this case, the most relevant
asymptotic behavior of the system is confined in the
SIM or the limit attractor (for a system having nontrivial
asymptotic kinetics), which is invariant and exponentially
attracting. Consequently, model reduction can be achieved
by filtering out the dynamically irrelevant degrees of
freedom (irrelevancy is based on an accuracy requirement)
associated with the fastest components characterized by
the most negative characteristic time scales.

Ideally, one would like to decompose the tangent space
Tx at any pointx ∈ C ⊂ R

N in N invariant subspaces,
so that the dynamics within each invariant subspace is
fully decoupled from all other invariant subspaces, and
is associated with a single characteristic time scale. This
goal is not easy to achieve. However, decomposing the
tangent space in subspaces, not necessarily invariant,
characterized by time scales of comparable magnitude
is at the core of theG-Scheme. We assume that the
tangent spaceTx can be decomposed as the sum of four
subspaces,

Tx = E ⊕ H ⊕ A ⊕ T,

where the active subspaceA contains all the current
intermediate dynamic time scales, all scales faster and
slower than the active ones are confined in the fast and
slow subspacesT andH, respectively, and,E is the linear
subspace spanned by directions associated with invariants,
if any exist.

At each pointx of the Chemical Composition Space
(CCS), theG-Schemeintroduces a curvilinear frame of
reference, defined by a set of ortho-normal basis vectors,
with corresponding curvilinear coordinates, which is tied
to the decomposition of the tangent space in the four
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subspaces. The evolution of the curvilinear coordinates
associated with the subspaceA is described byNA =
dim(A) ≤ N ODEs, whereas the variation of the curvi-
linear coordinates associated with the subspacesT and
H are accounted for by applyingNT = dim(T) ≥ 0
and NH = dim(H) ≥ 0 algebraic corrections derived
from asymptotics of the original ODEs. Note that if we
haveNE = dim(E) ≥ 0 invariants, they can be formally
eliminated so that the dynamics is restricted to move
in the subspaceH ⊕ A ⊕ T that satisfies the invariants
exactly. Adjusting the active ODEs dynamically during
time integration is the most significant feature of theG-
Scheme, because the numerical integration of the state
vectorx ∈ R

N is obtained by solving a number of ODEs
typically much smaller thanN . The active ODEs evolve
in A, which is freed from fast scales, and thus they are
non-stiff. They can be solved by resorting to any explicit
time integration scheme (e.g., ERK). When compared to
a standard BDF implicit scheme for stiff problems, theG-
Schemeoffers the advantage of requiring the solution of
NA explicit instead ofN implicit ODEs, at the expense of
identifying the time scales and computing the set of ortho-
normal basis vectors that define the curvilinear frame of
reference.

A. Basis Vectors and Time Scales

Clearly, the success of theG-Schemerelies on the
ability to identify a decomposition ofTx which ensures
minimal (ideally no) coupling among slow, fast, and active
time scales. The problem of finding a frame of reference
yielding the maximal degree of fast/slow decoupling
can be approached by resorting to the CSP refinements
procedure [5]. In this work, we identify the set of basis
vectorsai, defining the mapping of the change of frame
of reference, with the right eigenvectors of the Jacobian
matrix J of the vector field related to the kinetic problem
of interest, with the dual vectorsaj coinciding with
the left eigenvectors ofJ . This yields a leading order
approximation of the CSP vectors [6]. As estimate of the
characteristic time scales, we consider the magnitude of
the reciprocal of the eigenvalues,λi of J . The ordering
of the basis vectors is critical for proper decomposition.
Here, we order the modes according to the magnitude of
the complex eigenvalues, that is

0 = |λ1| = · · · = |λE | < |λE+1| ≤ · · · ≤ |λH−1| ≪

≪ |λH | ≤ · · · ≤ |λT | ≪ |λT+1| ≤ · · · ≤ |λN |,

where

0 = |λ1| = · · · = |λE | identify the time scales inE,

|λE+1| ≤ · · · ≤ |λH−1| identify the time scales inH,

|λH | ≤ · · · ≤ |λT | identify the time scales inA,

|λT+1| ≤ · · · ≤ |λN | identify the time scales inT.

with NE = E, NH = H − E − 1, NA = T − H + 1,
and NT = N − T . Note that, because of this ordering,
(possibly complex) eigenvalues with both negative and
positive real parts can be found inH and A, whereas
we expect the eigenvalues inT to have negative real

parts, since this is the distinguishing feature of the class
of problems for which theG-Scheme is expected to
perform efficiently. The ratiosǫT ≡ |λT /λT+1| < 1 and
ǫH ≡ |λH−1/λH | < 1 are measures of the spectral gaps
between active and fast subspaces, and slow and active
subspaces, respectively. Since theG-Scheme approximates
the contribution of the very slow and very fast time
scales with asymptotic corrections, it is expected that its
accuracy and efficiency will be higher for larger spectral
gaps, that is for smaller values ofǫT and/or ǫH . The
controlling (driving) time scale of the dynamics is given
by the fastest of the (active) time scales present inA, and
will be of the order ofτT = 1/|λT |.

For the problems discussed below, the reference solu-
tions are obtained withDVODE [7] set with a precision
(or rtol) of 10−8, and accuracy (oratol) of 10−14. The
calculations carried out with theG-Schemeuse the ex-
plicit four-stage Runge-Kutta scheme (ERK4) to integrate
the active dynamics, and, except where noted otherwise,
rtol = 10−4 andatol = 10−14 are user-defined parame-
ters defining the relative and absolute values, respectively,
of the total variation of the state variable over the time
interval. They are used to form a threshold vectorεj(∆t)
defined as

εj (∆t) ≡ rtolj
∣

∣xj (tn+1)
∣

∣ + atolj ,

which is used to identify the integer indicesH andT that
enter in the definition of the dimensions of the subspaces
A, H, andT.

III. CSTR MODEL

As a test model featuring complicated nonlinear be-
havior we consider the isobaric CSTR system at very
low pressure involving CO/H2 kinetics proposed by Brad
et al. [8]. The kinetic mechanism involves11 species
and 33 reactions. The set of ODEs involves11 rate
equations and the energy conservation equation for the
molar concentrations and temperature representing the
state of the CSTR. The equations, the constants, as well
as all other constitutive relations are the same as in [8].
The CSTR is an open system which possesses three
invariants, one for each atomic species, with characteristic
time scales equal to the residence timetR = 1.

The dynamics of this system features different types of
asymptotic behavior (fixed point, limit cycle, and chaotic
attractor). Here we report results of theG-Schemeunder
the conditions involving limit cycle behavior, correspond-
ing to the initial condition{p0, T 0} = {14 torr, 680 K}.
The temperature evolutions along the periodic orbit is
shown in Fig. 1. Although we do not present additional
details on the solution, over each cycle one can note a
very fast ignition phase, where bothT and HO2 peak,
followed by a relaxation phase, during which HO2 is
consumed, and lastly a new re-generation phase, during
which HO2 is produced, with the latter two phases
occurring at nearly isothermal conditions. The relative
error in T is below1% (not shown), the maximum value
being attained during the explosive stage, whereas the
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error drops by several orders of magnitude during the
relaxation and re-generation phases. The periodicity
of the solution in Figs. 1 and of the number of active
modes,NA, shown in Fig. 2 demonstrates that theG-
Schemeis able to provide repeatable sequences of the
tangent space decomposition. The embedding dimension
of the asymptotic dynamics of the CSTR model along the
limit cycle, estimated as themax(NA) over a period is 6,
whereas the average number of active equations weighed
with respect to time, is approximately 5. Figure 3 (top)
shows the time evolution of the integration time step, from
which it is apparent that small time steps (≈ 10−5) are
required for accuracy reasons in the ignition regime, and
that large time steps (≈ 10−1.5) can be taken during the
relaxation and re-generation phases. Figures 2 (bottom)
and 3 (bottom) show that during the explosive regime both
theT andH indices increase in such a way that their dif-
ference decreases. Thus, although the driving time scale
τT becomes small during the explosion stages because of
the larger value ofT , the degree of reduction increases,
(NA attains the value of unity). Instead, in-between two
successive explosions,H and T attain constant values
(4 and 8, respectively), so thatNA remains uniformly
equal to 5. The analysis of the evolution of the time
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Fig. 3. Evolutions of integration time step (top), and theτH time-scale
(red points), theτT time-scale (blue points), and all other time-scales
(lines) (bottom).

rate of change ofJ demonstrates that the system has a
nearly linear behavior (also confirmed in Fig. 3 (bottom)
by the small changes in the time scales), whereas the
nonlinearities are confined within the explosions.

IV. H YDROCARBON K INETICS

The G-Scheme’s performance is compared to that of
the DVODE package, with reference to the auto-ignition
process of stoichiometric mixtures of Methane/Air,
Propane/Air, and n-Heptane/Air. The kinetic mechanisms
considered are those of GRI 3.0 [9] (53 species; 325 re-
actions), Petersenet al. [10] (119 species; 665 reactions),
and Curranet al. [11] (560 species; 2538 reactions),
respectively. The initial temperatureT0 is 750 K andp0 =
1 atm for all cases; they are chosen so as to yield a long
ignition time which makes the auto-ignition very stiff1.
The ratio of the reaction timeτrea to the ignition time
τign for the tests considered is reported in Table I. Indeed,
theG-Schemeis designed so as to be cost effective when
the problem is stiff. The typical accuracy level produced
by theG-Schemecan be appreciated by examining Fig. 4.
The figure displays a trajectory of the constant volume,
adiabatic, auto-ignition of a stoichiometric Propane/Air
mixture, in a two-dimensional cross-section of the 119-
dimensional CCS, and an enlargement of the temperature
evolution near the ignition time. The figure indicates that
the state values (points) found by theG-Schemefollow
the reference trajectory quite accurately, and that a small
time shift error (≈ 0.01) develops in the prediction of
the ignition time. The ratio of the average number of
degrees of freedom,〈NA〉 (average number of active
ODEs per iteration step), integrated by theG-Scheme to

1Here we assume a measure of stiffness to be given by the ratio
between the driving time scale during the ignition and the ignition time
itself.
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TABLE I

T0 = 750 K, p0 = 1 ATM , ALL CASES.

Mech τign [s] τrea [s] τrea/τign N 〈NA〉 〈NA〉/N
Methane 366.5 0.2 5.46 × 10−4 53 3.78 0.07
Propane 16.38 0.05 3.05 × 10−3 119 3.83 0.03
n-Heptane 2.93 × 10−1 3.50 × 10−3 1.19 × 10−2 560 41.11 0.07

C3H5O

C
2
H

4
O

1
-2

T

t

Fig. 4. Trajectory in CCS (left) and T evolution obtained for
Propane/Air (right) with DVODE (solid line) and G-Scheme (red
symbols).

the problem dimension,N (number of ODEs per iteration
step), given in Table I, is a measure of the degree of
(adaptive) reduction realized by theG-Scheme. Note that
the degree of reduction is highly problem-dependent: for
the cases studied, it is always below 10%. Figure 5
shows the time evolution of the active (NA), slow (NH),
and fast (NT ) subspace dimensions. Note thatNA is
initially equal to N = 119 (no reduction) and quickly
drops below 5; later, it stays between 20 and 30 during the
long nearly isothermal induction stage. It is noteworthy
to observe that even during the explosion stage, when the
temperature experiences the largest growth,NA remains
small because in this period most of the modes slower
than the driving ones are essentially frozen, soH stays
very close toT , and thus a small number of active modes
are obtained. Finally,NA attains a unit value while the
kinetics approaches the equilibrium state at the slowest
pace (τT = τE+1). Figure 6 shows the time evolution of
the time scales corresponding to modesH − 1, H , T ,
T + 1, andN . The regions betweenτH−1 and τH , and
τT and τT+1 represent the slow/fast gaps, respectively.
During the induction stage and the equilibrium stage ,
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Fig. 5. Active NA (black), slow NH (green), and fastNT (blue)
subspace dimensions; induction stage (left); explosion stage (right).

the fast gapǫT is well developed and clearly identifiable,
whereas the slow gapǫH is always rather narrow and
mostly identified by the enforced error control. Note that
during the explosion stage, the driving time scale attains
its lowest value although the value ofT keeps decreasing.
This happens because the large growth in temperature
induces a corresponding growth of the eigenvalues at all
scales. Thus all active scales become smaller, albeit still
confined in the rangeH−T ≈ 10-40. The region between
τT+1 and τN represents the fast subspace. The ratio
τH/τT is a measure of the stiffness of the reduced prob-
lem, which can be compared with the stiffness ratio of the
original problemτE+1/τN , from which one can conclude
that the reduced problem is significantly less stiff then the
original. Finally, the time evolution of the integration time
steps found by theG-SchemeandDVODE are shown in
Fig. 7. Note that both histories follow a similar pattern
with smaller steps during the initial transient and the
explosion stage, and larger steps during the induction
period and the approach to equilibrium.

V. REACTION-DIFFUSION MODEL

As a typical reaction-diffusion model exhibiting a rich
dynamic structure, we consider the model proposed by
Elezgaray and Arneodo [12] (EA model). The EA model
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Fig. 7. Integration time step evolutions obtained withDVODE (blue)
andG-Scheme(purple).

is a system of two coupled nonlinear PDEs:

∂u

∂t
= D

∂2u

∂x2
+ ǫ−1

(

v −
(

u2 + u3
))

,

∂v

∂t
= D

∂2v

∂x2
− u + α,

in (u(x, t), v(x, t)), (x, t) ∈ ([0, 1], [0,∞)), represent-
ing the concentrations of two chemical species with
an isothermal explosive kinetics displaying intermittent
bursting for some values of the parameters. HereD, α,
andǫ are positive parameters. The system is solved with
initial conditionsu(x, 0) = v(x, 0) = 0 for x ∈ [0, 1],
and boundary conditionsu(0, t) = u(1, t) = −2 and
v(0, t) = v(1, t) = −4 for t > 0. For small and large
values of diffusionD, the system stabilizes onto ignited
and extinguished steady states, respectively. Intermediate
values ofD correspond to operating conditions that allow
competition between the tendency to ignition due to
the nonlinear kinetics, and the extinguishing behavior at
the boundaries. This induces complex oscillations and
intermittent bursting in the center of the spatial domain.
In this case, no invariants are present, henceE = 0. The
calculations refer toD = 0.032, α = 0.01, andǫ = 0.01
so as to obtain a limit cycle behavior.

A Wavelet Adaptive Multilevel Representation
(WAMR) technique [2][3][4] is used to provide the
spatial discretization of the model. We analyzed this
same model problem in [1], where a uniform mesh
discretization was used. The time integration is obtained
by both the G-Scheme and DVODE, and the two
solutions are compared. To demonstrate the accuracy
of the G-Scheme, we plot in Fig. 8 the evolutions ofu
at the mid-pointx = 0.5 and the corresponding phase
trajectory’s approach to the limit cycle as computed by
DVODE and theG-Scheme with two different relative
tolerances (rtol = 10−3 and 10−4). The convergence
of the G-Scheme solutions to the reference orbit is
apparent, whereas a small time shift develops after 20
time units. In Fig. 9, we report the time evolution of
the number of wavelet collocation points,N , and of the
active modesNA found by theG-Scheme when using
the two tolerances. The number of collocation points at
one time instant defines the minimum number of spatial
degrees of freedom required to achieve the prescribed
spatial accuracy. Similarly the number of active modes
NA defines the minimum number of temporal degrees
of freedom required to achieve the prescribed temporal
accuracy. The number of collocation pointsN during
one cycle undergoes a slow growth up to about 260,
followed by a rapid decrease down to about 120. In
contrast, the number of active modesNA remains rather
constant during the slow growth ofN , and develops
two peaks a little earlier than the drop inN . The
largestNA is approximately150, and the smallest is10.
The integration time step,∆t, used by theG-Scheme,
oscillates between10−4 and 10−1 as can be seen from
Fig. 9.

In the present calculations, the coarsest spatial scale
consists of16 uniformly spaced collocation points, and
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Fig. 8. Time evolution ofu at x = 0.5 (left), and trajectories in the
(u-v)-plane, as computed by DVODE andG-Scheme with two different
relative tolerances (rtol = 10−3 and10−4).

the spatial resolution is adaptively increased up to a
resolution equivalent to a uniform mesh of16 × 210 =
16, 384 collocation points. Withrtol = 10−4, the number
of integration steps required to reach 20 time units is
3,390, which is equivalent to a total number of space-
time degreesof freedom (dof) of111, 083, 520. It should
be noted that in this problem we have two unknowns,u

and v, for each spatial point. Instead, the dof required
by the adaptive spatial discretization is914, 492, which
implies a saving factor of121.5. The actual number of
equations solved by theG-Scheme with is 262, 977, which
involves a reduction by a factor of3.5 with respect to
using DVODE and of422.4 with respect to using a
uniform mesh of equivalent spatial accuracy. Withrtol =
10−3, the equivalent reduction factor is approximately
540. Thus, combining the adaptive wavelet technique with
the G-Scheme allows to obtain a time accurate solution
of prescribed accuracy with a much smaller number of
space-time degrees of freedom.
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Abstract— A new set of importance indices based on the
G-Scheme framework are presented. They provide infor-
mation on the relative importance of selected processes in
determining the slow, active, and fast dynamics of individual
species/variables. These new indices are scaled measures
of the (projected) contribution of each process over the
currently driving time scale. This fact allows the introduction
of G-Scheme sensitivity indices as well as of new importance
indices.

I. INTRODUCTION

Lam carried out a CSP-based sensitivity analysis in [1]
showing that “the most interesting sensitivity questions
[in the analysis of a kinetic system] can be answered
by interrogating the CSP data,” i.e., participation and
importance indices, and pointers to CSP radicals. In
addition, he derived an estimate of the response of the
kinetic system in the slow time epoch as induced by
perturbations of the original vector field evaluated along
the unperturbed trajectory.

Later, the CSP data were extensively and successfully
used in the development of methods to generate simplified
kinetic mechanisms, where the opportunity emerged to
attribute the adjective “slow” to the original importance
index, and at the same time, to introduce a new “fast”
importance index [2]. These extended definitions of the
indices were instrumental to assess both the relative
importance of a specific process (reaction) in the slow
dynamics of a major (non-CSP radical) species/variable
through the corresponding slow importance index, and in
the construction of a slow invariant manifold defining an
equation of state for a CSP radical through the corre-
sponding fast importance index.

Recently, we introduced a numerical technique con-
sisting of an algorithmic framework [3], named the G-
Scheme, to achieve multi-scale adaptive model reduction
along-with the integration of the reduced differential
equations (DEs). The dynamics is decomposed into ac-
tive, slow, fast, and when applicable, invariant subspaces.
The G-Scheme introduces a locally curvilinear frame of
reference, defined by a set of orthonormal basis vectors
with corresponding coordinates, attached to this decom-
position. The evolution of the curvilinear coordinates
associated with the active subspace is described by non-
stiff DEs, whereas those associated with the slow and fast
subspaces are accounted for by applying algebraic correc-
tions derived from asymptotics of the original system. Ad-
justing the number of active DEs dynamically during the
time integration is the most significant feature of the G-
Scheme, since the numerical integration is accomplished

by solving a number of DEs typically much smaller than
the dimension of the original problem, with corresponding
saving in computational work.

Considering that the formulation of the set of ODEs
integrated in the G-Scheme is obtained by performing
a local perturbation of the system dynamics, in the
present work we derive a new set of local indices,
which provide estimates of the error affecting a specific
species/variable associated with the removal/modification
of a reaction/process contributing to the vector field.
Moreover, we introduce sensitivity indices to assess the
relative importance of a process to the slow, active, and
fast dynamics according to the decomposition of the tan-
gent space defined by the G-Scheme. Global information
can be deduced by considering the infinity-norm or the
time-weighted averages of these indices along selected
trajectories.

II. THEORY

In the G-Scheme framework, a local change of frame
of reference, defined by a set of orthonormal basis vectors
{ai}Ni=1 and their duals {bi}Ni=1, is used to decompose the
tangent space Tx at x(t) as the direct sum of four basic
subspaces1 Tx = E ⊕ H ⊕ A ⊕ T. Under this mapping,
the time evolution of the state vector x ∈ RN can be
obtained as:

x (t) = xn + ∆x,

= xn + ∆xe + ∆xh + ∆xa + ∆xt, (1)

where xn = x(tn) is the state vector at time tn, and
e = 1, E, h = E+1, H−1, a = H,T , and t = T +1, N .
The contributions of the four subspaces to the perturbation
vector ∆x over the currently active time scale2 τT , is
estimated, after local linearization, as:

∆xh ≈ τT AhBh
(
I + 1

2ΛhhτT
)
f (xn) , (2)

∆xa ≈ AaBa
(
eΛ
a
a τT−I
Λaa

)
f (xn) , (3)

∆xt ≈ −At (Bt J At)
−1
Bt f(xn + ∆xh + ∆xa)(4)

for the contribution of the slow, H, active, A, and fast,
T, subspaces respectively, where the matrices Ah,a,t are
formed by the column vectors ah,a,t, respectively, the
matrices Bh,a,t are formed by the row vectors bh,a,t, J is
the Jacobian matrix of the vector field f , and, to leading

1The active subspace A contains all intermediate, currently active
(dynamic) time scales. All scales slower/faster than the active ones are
confined to the subspaces H/T, and, if the system possesses invariants,
E is the subspace spanned by the directions associated with them.

2τT is the fastest of the time scales in the active subspace A.
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order, Λii ≈ Bi J Ai. By construction, the contribution
∆xe of the invariant subspace is identically zero.

Eq. (4) provides an estimate of the asymptotic contri-
bution of the fast scales, whose accuracy increases with
the magnitude of the gap between the fastest of the active
scales, τT , and the slowest of the fast scales, τT+1. In the
G-Scheme, the contribution of the active scales is obtained
by solving a set of nonlinear ODEs with an explicit solver
(ERK4).

Now, let us consider the case of a vector field having
the structure

f(x) =
R∑
k=1

fk(x) =
R∑
k=1

Skr
k(x) (5)

where Sk and rk(x) are the stoichiometric vector and the
(forward/reverse) rate associated with the k-th reaction,
R = 2Nr, and Nr is the number of reversible reactions.

It is worth recalling the definitions of the slow/fast CSP
importance indices:

Iis,k =
Cis,kr

k

R∑
k′=1

|Cis,k′rk
′
|

, Cis,k =
∑
s

ais(b
s · Sk),

Iir,k =
Cir,kr

k

R∑
k′=1

|Cir,k′rk
′
|

, Cir,k =
∑
r

air(b
r · Sk).

(6)

where s=1,T, and r=T+1,N. These indices measure the
(non-dimensional) relative importance of the instanta-
neous contribution of the k-th reaction to the slow/fast
dynamics of the i-th species in the projected vector
field Ps,rf(x(t)), with the projector matrices defined as
Ps,r = As,rB

s,r.
Given the linearity of Eqs. (2-4) and (5), the contribu-

tion of the k-th reaction reads (no sum on k):

∆xhk ≈ τT AhBh
(
I +

1
2

Λhh τT

)
Skr

k (xn) ,

∆xak ≈ AaBa
(
eτTΛaa − I

Λaa

)
Skr

k (xn) ,

∆xtk ≈ −At
(
Bt J At

)−1
Bt Skr

k (xn) .

(7)

where all coefficients are evaluated at xn. The terms ∆xtk
in (7) are evaluated at xn since these terms are computed
during the post-processing of numerical solutions gener-
ated by the G-Scheme, whereas ∆xt in (4) is evaluated at
xn+∆xh+∆xa since it is used to generate the solution
during the numerical integration. The state vector xn lies
by construction on a (N-T)-dimensional SIM, whereas in
general xn + ∆xh + ∆xa does not. As a consequence
the sum of the non-zero terms ∆xtk over all reactions at
xn is approximately zero whereas ∆xt in (4) is usually
different from zero3.

The terms ∆xh,a,tk in (7) are approximations of the
integral over the driving time scale, τT , of the projection

3The specific role of ∆xt in (4) consists in forcing the state vector
to lie on a (N-T)-dimensional SIM.

of the k-th reaction over the slow (h), active (a), and fast
(t) subspaces, that is:

∆xh,a,tk ≈
tn+τT∫
tn

Ph,a,t fk(x(t))dt, (8)

with the projector matrices now defined as Ph,a,t =
Ah,a,tB

h,a,t.
The variation ∆xik of the i-th species/variable due to

the action of the k-th reaction over the three subspaces
can be estimated as:

∆xik = ∆xi,hk + ∆xi,ak + ∆xi,tk . (9)

Summing over all reactions,
∑R
k=1 ∆xik, yields a good

approximation of the actual state vector change over the
time scale τT as computed by the G-Scheme integration.
Thus, we can introduce an error index as:

εi :=

∣∣∣∣∣
∑R
k=1 ∆xik

xi(tn + τT )− xi(tn)
− 1

∣∣∣∣∣ . (10)

which measures the accuracy of the linearizations used to
obtain Eqs. (7).

In the same spirit of the CSP indices, we can now
introduce the following normalized indices (no sum on
k):

Gi(h,a,t),k =
∆xi;h,a,tk

R∑
k′=1

|∆xi;h,a,tk′ |
. (11)

The indices Gi(h,a,t),k provide a non-dimensional measure
of the integrated contribution over the driving time scale,
τT , of the k-th reaction to the slow (h), active (a), and fast
(t) dynamics of the i-th species/variable. By construction,∑
kG

i
(h,a,t),k = 1. The main difference between this set

of indices and the CSP-based importance indices (6) is the
fact that the former are scaled measures of the (projected)
contribution of each process to the change in the state
vector over the currently driving scale, whereas the latter
are scaled measures of the (projected) contribution of
each process to the vector field at one time instant. This
circumstance suggests using the estimates (7) to construct
sensitivity indices as illustrated in the next section.

A. Sensitivity Indices

Let us now consider the case of applying a perturbation
δfk at time tn to the original vector field f having the
structure

f − δfk =
R∑
k′=1

Sk′rk
′
− Skδr

k. (12)

That is, we perturb only the k-th reaction at time tn. We
now want to estimate the local response of the system,
i.e. its local sensitivity, to such perturbation.

To leading order, the perturbation on the k-th reaction
rate will be felt through Eqs. (7) only as a variation
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δ∆xh,a,tk of the corresponding ∆xh,a,tk as follows (no
sum on k):

δ∆xhk ≈ τT AhBh
(
I +

1
2

Λhh τT

)
Skδr

k,

δ∆xak ≈ AaBa
(
eτTΛaa − I

Λaa

)
Skδr

k,

δ∆xtk ≈ −At
(
Bt J At

)−1
Bt Skδr

k,

(13)

where, again, all coefficients are evaluated at xn.
Lam [1] provides an estimate of the response of the

kinetic system in the slow time epoch τT as induced by
perturbations δfk of the original vector field f as follows
(Eq. (54) of [1]):

δηm ≈ O

(
M∑

m′=1

τmm′ δfm
′

k

)
, m = T + 1, . . . , N,

(14)
with

δηm := bm · δx, and δfmk := bm · δfk, (15)

where δηm is the perturbation of the m-th fast curvilinear
coordinate ηm induced by δfk, and bm is the m-th dual
(fast) CSP vector. Inspection of Eq. (14) reveals that
when the projection of the perturbation δfk is orthogonal
or nearly orthogonal to the m-th CSP vectors am then
δηm ≈ 0, i.e., the system’s dynamics are unaltered by this
specific perturbation. As far as the order of magnitude of
the remaining (active and slow) mode amplitude pertur-
bations, Lam states that they can be similarly estimated
(or computed), and leaves to the reader the exercise of
deriving the explicit expressions.

The third expression in Eq. (13) is equivalent to
Eq. (14), once the estimate δηm is mapped back to
the perturbation vector4 δ∆x by inverting the definition
(15): δ∆x = amδη

m, and considering that in our case
τmm′ = (Bt J At)

−1, for m,m′ = T + 1, . . . , N . The first
two expressions in Eq. (13) are the explicit contributions
of the perturbations due to the active and slow modes5.

If the perturbation of the k-th rate has the form δrk =
αk rk in Eq. (13); e.g., if αk = 1, the k-th rate is zeroed
out in Eq. (12).

The variation δ∆xik of the i-th species/variable due
to the action of the k-th perturbed rate over the three
subspaces is estimated as:

δ∆xik = δ∆xi,hk + δ∆xi,ak + δ∆xi,tk . (16)

Thus, we introduce the error index

εi;h,a,tk (t) :=
|δ∆xi,h,a,tk (t)|

|xi(t+ τT )− xi(t)|
(17)

which measures the contribution at time t of the k-th
reaction to the perturbation of the i-th species/variable
over the driving time scale and for the slow (h), active
(a), fast (t) subspaces, respectively, and

εik(t) := εi;hk (t) + εi;ak (t) + εi;tk (t) (18)

4From Eq. (1), δx = δ∆x.
5The “slow” (head) modes in the G-Scheme are equivalent to the

“dormant” modes in Lam [1].

for the contribution over all subspaces.
Introducing the parameters Ψh,a,t

k as

Ψh,a,t
k = max

i=1,N

{
1
T

∫ T

t=0

εi;h,a,tk (t)dt

}
, (19)

allows us to rank the reactions from the most (largest
Ψh,a,t
k ) to the least (smallest Ψh,a,t

k ) significant to the
overall trajectory, and for the slow (h), active (a), fast
(t) subspaces, respectively, whereas

Ψk = max
i=1,N

{
1
T

∫ T

t=0

εik(t)dt

}
(20)

for the contribution over all subspaces.
Using the estimates Eqs. (13) allows the evaluation of

the logarithmic derivatives (local sensitivities) for each
subspace as

σh,a,tk :=
d ln(∆xh,a,t)
d ln(rk)

=
rk

∆xh,a,t
δ∆xh,a,tk

δrk
, (21)

and the overall (due to all time scales) local sensitivities:

σk :=
d ln(∆x)
d ln(rk)

=
rk

∆x

δ∆xk
δrk

, (22)

where both ∆xh,a,t and ∆x are given by the G-Scheme
reference solution.

B. Projected vs. Unprojected Estimates

An estimate ∆x̃k of the changes in the state vector on
the basis of the k-th unprojected contribution fk of the
vector field over the time scale τ is given by:

∆x̃k ≈
tn+τ∫
tn

fk(x(t))dt ≈
tn+τ∫
tn

(fk (xn) + Jxn∆x̃k) dt

≈
(
eJxn τ − I

Jxn

)
fk (xn) ≈ τ

(
I +

τ

2
Jxn

)
fk (xn) .

(23)
It is instructive to compare ∆x̃k with the estimate ∆xk
found after projection of the term fk, Eqs. (7) and (2)-(4),
as approximations of the actual value.

The estimate (23) is accurate only for time intervals τ
of the order of the smallest scale τmin contained in Jxn .
Clearly, when τmin � τT , Eq. (23) becomes inaccurate
on the scale τ ≈ τT , whereas Eqs. (2)-(4) become more
accurate as the gap between τmin and τT increases.
Thus, for non-stiff problems Eq. (23) can be used safely,
whereas Eqs. (2)-(4) ought to be used in stiff problems.

This conclusion might suggest that a set of (unpro-
jected) indices defined on the basis of the (net) reaction
rates as:

ωik =
Sik(rkf − rkr )

R∑
k=1

|Sik(rkf − rkr )|
, (24)

as in the DRG method [4], can be used safely for non-
stiff problems, whereas the (projected) indices defined in
(6) or (11) ought to be used in stiff problems.
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III. AN EXAMPLE

To provide a simple illustration of the differences
between the approximations of Eq. (2-4) and (23), we
resort to two 3-dimensional linear models, constructed
so as to have the real, negative eigenvalues diag(Λ) ={
−ε−1

T ,−1,−εH
}

, where εT , εH < 1 represent the gaps
between the active/fast, and active/slow subspaces. By
construction, the driving time scale is τT = 1. We next
consider a diagonal system, Model I, defined by choosing
a 3× 3 identity matrix as the right eigenvector matrix A,
and a fully coupled system, Model II, defined by choosing
A as

A =

−1.5 0.1 −0.3
3. 4. 1.
−1. −0.3 0.6

 (25)

with the dual basis matrix B = A−1. The linear model is
given byδyδw

δz

′ = A

(
−ε−1

T 0 0
0 −1 0
0 0 −εH

)
B

 δy − δyssδw − δwss
δz − δzss

 ,
(26)

with initial conditions δy(0) = δy0, δw(0) = δw0,
δz(0) = δz0, and δyss, δwss, δzss the fixed point values
approached at large times. For Model I, we set δy0 =
δw0 = δz0 = 1, and δyss = 0.1, δwss = 0.2, δzss =
0.3. For Model II, we set δy0 =

∑3
j=1A

1
jη
j
0, δw0 =∑3

j=1A
2
jη
j
0, δz0 =

∑3
j=1A

3
jη
j
0, with η0 = (1, 1, 1) and

δyss = 0, δwss = 0, δzss = 0.
These linear models mimic the (dissipative) dynamics

of the state vector perturbations due to a perturbation of
the vector field at any time t of the original trajectory
x(t). Thus, we should verify whether both Eqs. (2-4) and
Eq. (23) are able to approximate the value attained by the
state vector, starting from the given initial conditions, after
a time interval of the order of the active time scale (O(1)).
To this end, we report in Figs. 1-4, the comparison of the
perturbations δy, δw, and δz, computed by Eqs. (2-4)
and (23). Note that each symbol corresponds to the state
vector obtained using a different integration time step. The
accuracy can be assessed by comparing the symbols with
the solid lines, which trace the exact solutions. Although
many dots are drawn on the figures, the only interesting
comparisons refer to the time steps of order of 1, since
we expect to evaluate Eqs. (2-4) and (23) for τ = τT
(= 1).

Figs. 1-2 relate to Model I whose dynamics is fully
decoupled and each unknown decays with a single time
scale: δy with the fast scale τ = εT , δw with the active
scale τ = 1, and δz with the slow scale τ = ε−1

H .
Fig. 1 shows that already for a relatively narrow gap
(εT = εH = 0.2), Eqs. (2-4) at τ = 1 provide an accurate
approximation of the exact solution, whereas the time step
of order 1 is too large for the first order approximation
used in Eq. (23). This translates into an error which is the
largest for the fastest time scales (δy) and progressively
decreases for the slower time scales (δw and δz). In this
latter case, increasing the accuracy requires the increase

of the order of the polynomial in Eq. (23), or reducing
the time step to the order of εT . The comparison becomes
even more favorable for Eqs. (13) for gaps wider than 0.2.

In contrast, narrowing the gaps by taking εT = εH =
0.9, Fig. 2 shows that the accuracy of Eqs. (2-4) is far
from satisfactory for δy because at time τ = 1 the (not
so) fast process has not reached its asymptotic value.
Indeed, when the gap narrows too much, the problem is
neither stiff nor multi-scale, and therefore applying the
asymptotic corrections (2-4), instead of using the regular
perturbations (23) causes large errors.

Figs. 3-4 relate to Model II whose dynamics is fully-
coupled and all unknowns decay with all time scales. In
the stiff case, Fig. 3, the error incurred at τ = 1 on the
fast scale by Eq. (23) affects all the unknowns, whereas,
at τ = 1, Eqs. (2-4) provide accurate estimates for all
three solution components.

Finally, Fig. 4 shows that in the non-stiff case, using
Eq. (2-4), instead of the regular perturbation Eq. (23),
causes large errors.

IV. CONCLUSIONS

We have presented estimates of the contribution of each
process to the change in the state vector over the driving
time scale, projected over the slow, H, active, A, and fast,
T subspaces, respectively, in the context of the G-Scheme.
We used these estimates to define associated importance
indices. The main difference between the new set of
importance indices based on the G-Scheme framework
and the CSP-based importance/participation indices is the
fact that the former are scaled measures of the (projected)
contribution of each process to the change in the state
vector over the currently driving scale, whereas the latter
are scaled measures of the (projected) contribution of
each process to the vector field at one time instant.
We used this construction to formulate local sensitivity
coefficients. We compared the utility of this approach
for estimation of the change in the state vector with an
alternate approach that does not make use of projections
onto a slow manifold. We illustrated the need for using the
present projected approach in the case of a stiff problem,
where fast processes are quickly exhausted. On the other
hand, the unprojected approach is more appropriate when
there is no time scale separation.
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Fig. 1. Model I: εT = εH = 0.2 (stiff) and δy (red), δw (blue), δz (black). Lines are exact and symbols are computed from Eqs. (2)-(4) (left)
and Eq. (23) (right).
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Fig. 2. Model I: εT = εH = 0.9 (non-stiff) and δy (red), δw (blue), δz (black). Lines are exact and symbols are computed from Eqs. (2)-(4)
(left) and Eq. (23) (right).
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Fig. 3. Model II: εT = εH = 0.2 (stiff) and δy (red), δw (blue), δz (black). Lines are exact and symbols are computed from Eqs. (2)-(4) (left)
and Eq. (23) (right).
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Fig. 4. Model II: εT = εH = 0.9 (non-stiff) and δy (red), δw (blue), δz (black). Lines are exact and symbols are computed from Eqs. (2)-(4)
(left) and Eq. (23) (right).
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Sensitivity Analysis, Model Reduction, and Circadian Oscillators 

Linda Petzold 
Department of Mechanical Engineering 
Department of Computer Science 
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Sensitivity analysis is a powerful tool that enables model development, parameter 
estimation, design optimization and experimental design in a wide range of areas of 
science and engineering.  In this lecture we examine the forward and adjoint methods for 
sensitivity analysis applied to differential-algebraic equation systems and show how they 
can be extended to address some interesting problems in the study of the generation of 
circadian rhythms.  Then we show how sensitivity analysis can be used in the 
development of reduced order models for biochemical systems that preserve important 
qualitative properties such as the phase response behavior of a circadian oscillation. 
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Dimension Reduction and Tabulation of
Combustion Chemistry using ICE-PIC and ISAT
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Abstract— Progress is reported in the integration of
two methodologies to enable the efficiency application
of realistic combustion chemistry in computational fluid
dynamics. These methodologies are ICE-PIC (invariant
constrained-equilibrium edge manifold using the pre-image
curve method) for dimension reduction, and ISAT (in situ
adaptive tabulation) for tabulation of the reduced system.
New results are reported on the tangent vectors of the
constrained-equilibrium and ICE manifolds, which are im-
portant quantities in ICE-PIC/ISAT. The test case of a
partially-stirred reactor with methane combustion is used
to demonstrate the accuracy and efficiency of the combined
approach.

I. INTRODUCTION

Dimension reduction is essential to the use of detailed
chemical kinetics in computations of combustion and
many other reactive flows. Modern chemical mechanisms
for hydrocarbon fuel may contain of order 1,000 species
[1], and it is clearly impracticable to use this detailed
information directly in multi-dimensional computational
fluid dynamics (CFD) calculations. A combination of
three approaches that enables the use of detailed chem-
ical information consists of: (1) reduction to a skeletal
mechanism [2], [3], [4] involving of order 100 species;
(2) dimension reduction (DR) to reduce the number of
degrees of freedom to of order ten; and (3) tabulation to
significantly reduce the cost of expensive evaluations, e.g.,
the integration of ordinary differential equations (ODEs).
In this work we consider the integration of two successful
techniques, namely, the invariant constrained-equilibrium
edge pre-image curve (ICE-PIC) method for dimension
reduction [5], [6], [7], and in situ adaptive tabulation
(ISAT) [8], [9].

In the next section we briefly review the ICE-PIC
method as implemented in conjunction with ISAT. Then
we derive expressions for the tangent vectors of the
constrained-equilibrium manifold (CEM) and the ICE
manifold, which are needed by ISAT. Finally, at the
Workshop results will be given for the test case of
a partially-stirred reactor, showing the accuracy of the
dimension reduction and the efficiency gains achieved by
ISAT.

II. THE ICE-PIC METHOD

We give here a succinct overview of the ICE-PIC
method, as it is implemented in conjunction with ISAT.
More details can be found in [5], [6], [7].

We consider a gas-phase mixture of ns chemical
species composed of ne elements. The thermochemical
state of the mixture (at a given position and time) is
completely characterized by the pressure p, the species
enthalpy h, and the ns-vector z of the specific moles of
the species. To simplify the exposition, we take p and h
to be given constants, and so the state is given by z.

Due to chemical reactions, the composition evolves by

dz
dt

= S(z), (1)

where S is the ns-vector of chemical production rates.
The “reaction mapping” R(z, t) is defined to be the
solution to (1) after time t from the initial condition z.
And the mapping gradient A(z, t) is the ns × ns matrix
with components

Aij = ∂Ri/∂zj . (2)

In practice R and A are obtained together using the ODE
solver DASAC [10].

In the ICE-PIC method, the species are decomposed as
z = {zr, zu}, where zr is an nrs vector of “represented”
species, and zu is an nus-vector of “unrepresented”
species (with nrs + nus = ns and nrs < ns − ne).
At the present stage of development of the methodol-
ogy, the represented species are specified: ultimately, the
methodology should identify the optimal specification.
The “reduced representation” of the species used in ICE-
PIC is r ≡ {zr, zu,e}, where zu,e, is an ne-vector giving
the specific moles of the elements in the unrepresented
species. Thus r is a vector of length nr = nrs + ne,
and the dimensions of the system is reduced from ns to
nr < ns. This dimension reduction process can be written

r = BT z, (3)

where B is a known constant ns × nr matrix.
The fundamental issue in dimension reduction of com-

bustion chemistry is “species reconstruction” that is,
given r, define an appropriate full composition z. We
denote by zICE(r) the species reconstruction given by
the ICE-PIC method. We also consider zCE(r) which is
the constrained-equilibrium (maximum-entropy) compo-
sition, as used in the rate-controlled constrained equilib-
rium method (RCCE, [11], [12], [13]). This is readily
computed using the constrained-equilibrium code CEQ
[14].
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In the nr-dimensional reduced space, the “realizable
region” is the convex polytope in which each component
of r is non-negative. Its boundary consists of at most
nr facets on which one component of r is zero. The
“constrained equilibrium edge” is defined as zCE(r) for
all r on the boundary. The ICE manifold is defined as
R(zCE(r), t) for all r on the boundary and all t ≥
0. Thus the ICE manifold is the trajectory-generated
manifold originating from all the constrained equilibrium
compositions on the boundary. Some important properties
of the ICE manifold are:

1) existence: for all realizable r there exists a manifold
point zICE(r)

2) invariance: the ICE manifold is invariant with re-
spect to (1)

3) continuity: the ICE manifold is continuous
4) smoothness: the ICE manifold is piecewise smooth,

and is the union of smooth manifolds generated by
the facets

5) uniqueness: for a reasonable specification of the
represented species, the manifold is not “folded”,
so that for given r there is a unique manifold point
zICE(r).

Provided that the manifold is not folded, given a realizable
value of r, there is a unique “generating boundary point”
rg , and time τ such that

zICE(r) = R(zCE(rg), τ). (4)

The pre-image curve method is used to identify rg (given
r). Of course, consistency conditions are

BT zICE(r) = BT zCE(r) = r. (5)

At the Workshop, the presentation will focus on an
exposition of the ICE-PIC/ISAT methodology and on its
performance for the test case described in Sec.V. In the
next two sections, we present some new theoretical results
which provide quite simple means of determining the
tangent vectors of the constrained-equilibrium and ICE
manifolds.

III. THE CEM TANGENT VECTORS

An important quantity in the ICE-PIC method is the
ns × nr matrix TCE whose columns span the tangent
space of the CE manifold, and which relates infinitesimal
changes in zCE to those in r by

dzCE = TCEdr. (6)

We have obtained a new, simple expression for TCE .
It is presented here for the case of fixed pressure and
temperature, from which the corresponding result for
fixed p and h is readily obtained.

For the case considered, the constrained equilibrium
composition is given by [14]

zCE = N̄ exp (−g̃ + Bλ) , (7)

where N̄ =
∑ns

i=1 z
CE
i are the specific moles of all

species; g̃ are normalized Gibbs functions; and λ are
constraint potentials (or Lagrange multipliers).

Considering infinitesimals, we obtain from (7)

dzCE = zCEd ln(N̄) + ZBdλ, (8)

where Z is the diagonal matrix formed from zCE . Sum-
ming (8) over all the species leads to the constraint

0 = zT Bdλ = rT dλ. (9)

Equation (8) can be re-expressed as

dzCE = Mdλ̂, (10)

with

dλ̂ ≡ dλ +
rdN̄
|r|2N̄

, (11)

and

M ≡ zrT + ZB
(
I− rrT

|r|2

)
. (12)

We observe from (10) that the columns of M span the
tangent space. Let W denote any ns × nr matrix with
span(W) = span(M) = span(TCE). Then there exists
a non-singular nr×nr matrix D such that TCE = WD.
From (5) we obtain

BT dzCE = dr = BT TCEdr = BT WDdr, (13)

and hence
BT TCE = I, (14)

D = (BT W)−1, (15)

and finally
TCE = W(BT W)−1. (16)

In practice W is best taken as an orthonormal basis for
span(TCE), obtained from the SVD or QR decomposi-
tion of M.

It is interesting to observe that TCE is solely deter-
mined by zCE and B, and does not otherwise depend on
any thermodynamic information (such as p, T or g̃).

IV. THE ICE MANIFOLD TANGENT VECTORS

Also important in combining ISAT with ICE-PIC is the
matrix of ICE manifold tangent vectors TICE defined
such that

dzICE = TICEdr. (17)

We are considering now the relevant case of constant
pressure and enthalpy, so that (6) and (17) are at fixed
p and h. (This implies a re-definition of TCE .)

From (4), considering infinitesimal changes drg and
dτ , we have correspondingly

dzCE = TCEdrg, (18)

and

dzICE = A(zg, τ)TCE(rg)drg + S(zICE)dτ. (19)

Let k denote the index of the component of rg which is
zero on the boundary facet, i.e. rg

k = 0. Since we require
rg + drg to be on the boundary, it follows that drg

k is
zero. This consideration and (19) show that the tangent
space of the ICE manifold is spanned by S(zICE) and
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the nr − 1 vectors obtained from ATCE , with the k-th
column omitted. Then, by the same argument that leads
to (16), we have

TICE = Ŵ(BT Ŵ)−1, (20)

where Ŵ is an ns × nr matrix (obtained from S and
ATCE) which spans the ICE manifold tangent space.

V. RESULTS

At the Workshop, results will be presented for the test
case of a partially-stirred reactor (PaSR) with methane
combustion [9]. The results quantify the dimension reduc-
tion errors in the ICE-PIC and RCCE as functions of the
number of represented variable, nr. Also, the efficiency
of the ISAT implementation is characterized in terms of
table size and retrieve time.

VI. CONCLUSIONS

The combination of ICE-PIC and ISAT offers accurate
dimension reduction and efficient tabulation. Advances
have been made both in the theory (e.g., in the accurate
and efficient evaluation of the tangent vectors) and in the
computational implementation.
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Abstract— We discuss model reduction of multiscale net-
works of biochemical reactions used in systems biology
as models for cell physiology and pathology. For linear
kinetic models, which appear as ”pseudo-monomolecular”
subsystems of the nonlinear reaction networks, we obtain a
general reduction algorithm based on cycle averaging and
surgery. The same algorithm, when applied to stochastic
networks, allows to reduce simulation time by many orders
of magnitude.

I. INTRODUCTION

Systems biology uses networks of biochemical reac-
tions as paradigms for normal and pathologic cell func-
tioning. In such models, the cell has several compartments
(nucleus, cytosol, organelles, etc.) but each compartment
is considered to be well stirred. Transport between com-
partments is possible. The models are usually medium
size (tens to hundreds of reactions and species). There-
fore, their simulation by ODE solvers is not really a prob-
lem even for stiff systems. However, biological models
present specific difficulties. Thus, the reaction mechanism
is most of the time hypothetic and finding parameter
values is difficult. For such systems, we would like to
have simple rules allowing us to understand why a model
functions the way it does and which consequences have
on dynamics the various modifications of the mechanism.
Furthermore, one would like to known which aspects (for
instance parameter values) of the model are essential and
which are not. All these questions could be answered by
computing reduced mechanisms. Another specificity of
molecular systems in biology is their stochasticity. The
law of large numbers does not apply in biology as it does
in physics, where fluctuations existing at microscopic
scale are wiped-out in the thermodynamic limit (except
for critical and turbulent systems). Biological systems
behave similarly to critical or turbulent physical systems:
they have many fluctuating scales.Molecular species in
small number are responsible for stochastic phenomena
such as intermittence or bursting, occurring in protein
production, random action potential firing, calcium sig-
nalling, etc.. In systems biology, stochastic modelling by
Markov jump dynamics (Gillespie SSA algorithm [1])
represents a very time consuming industry. There are
two solutions to this problem. The first one is similar to
the one employed by stiff deterministic solvers: avoiding
adaptatively, but blindly the individual simulation of re-
actions that repeat very frequently. The second solution,
that we propose here is to pre-condition the system by

simplifying it to a less stiff model.
In this paper we present such a pre-conditioning algo-

rithm that works equally well for deterministic and for
stochastic models. This algorithm is based on nontrivial
generalizations of limitation (whose “naive” versions are
well-known for chains and acyclic networks) to hierar-
chies of cycles and on averaging.

II. ALGORITHMS

A. Linear submechanisms

There are two types of linear submechanisms:
monomolecular networks and first order networks. The
structure of monomolecular reaction networks can be
completely defined by a simple digraph, in which vertices
correspond to chemical species Ai, edges correspond to
reactions Ai → Aj with rate constants kji > 0. For each
vertex, Ai, a positive real variable ci (concentration) is
defined.

The deterministic kinetic equation is

dci
dt

=
∑
j

kijcj − (
∑
j

kji)ci, (1)

First order reaction networks include monomolecular
networks as a particular case, and are characterized by a
single substrate and by reaction rates that are proportional
to the concentration of the substrate. First order reaction
networks can contain reactions that are not monomolecu-
lar, such as A→ A+B, or A→ B+C. We shall restrict
ourselves to pseudo-conservative first order reactions, ie
reactions that do not change the total number of molecules
in a given submechanism (A → A + B reactions are
allowed, provided that B is external to the submechanism;
similarly A → B + C reactions are allowed, provided
that either B or C is external to the submechanism).
With such constraints, the total number of molecules in
the sub-mechanism is conserved and the kinetic equations
are the same as (1). Degradation reactions can be studied
in this framework by considering a special component
(sink), that collects degraded molecules. Further release
of the constraints is possible. For instance, the system
can be opened by allowing constant (or slowly variable)
production terms in Eq.(1). These terms will change the
steady state, but will not influence the relaxation times of
the system.

The algorithms described in the paper can be applied
to linear sub-mechanisms of a non-linear network, given
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fixed (or slowly changing) values of external inputs
(boundaries). For instance, even in systems of binary re-
actions, one can define pseudo-monomolecular reactions
when one of the substrates of the binary reaction is not
changing (or changing slowly). This condition can be
fulfilled if the substrate is in excess, for instance.

B. Dominant pathways by cycle surgery in deterministic
networks

The idea of dominant subsystems in asymptotic anal-
ysis of dynamical systems is due to Newton and de-
veloped by Kruskal [6]. Complex regulatory networks
in metabolism and signalling activate only a limited
number of pathways in order to fulfill a given physiologic
task. The set of active pathways can change for unusual
stresses (such as exposure to a toxin) or in pathologic
situations. The concept of dominant pathways could serve
to explain such dynamic transitions. In [3] we have based
the construction of dominant subsystems on a general-
ized limitation approach. This approach selects dominant
pathways and produces simplified reaction mechanisms.

We consider total separation of the constants namely
either kI << k′I or k′I << kI for all I = ij, I ′ = i′j′. In
this case the dominant subsystem can be worked-out by
cycle surgery [3]. The algorithm, justified by estimates for
the eigenvalues and eigenvectors (inspired, but not fully
covered by Gershgorin theorem) of the kinetic matrix [3],
consists of three stages:

I. Constructing the auxiliary reaction network.
For each Ai, let us define κi as the maximal kinetic

constant for reactions Ai → Aj : κi = maxj{kji}.
For correspondent j we use the notation φ(i): φ(i) =
arg maxj{kji}.

An auxiliary reaction networkW is the set of reactions
Ai → Aφ(i) with kinetic constants κi. The correspondent
kinetic equation is

ċi = −κici +
∑
φ(j)=i

κjcj , (2)

II Glueing cycles
In general, the auxiliary network V has several cycles

C1, C2, ... with periods τ1, τ2, ... > 1.
These cycles will be “glued” into points and all nodes

in the cycle Ci, will be replaced by a single vertex Ai.
Reactions A → B exiting from cycles (A ∈ Ci, B ∈

Cj , j 6= i or B ∈ Ci) are changed into Ai → B with
the rate constant renormalization: let the cycle Ci be the
following sequence of reactions A1 → A2 → ...Aτi →
A1, and the reaction rate constant for Ai → Ai+1 is ki
(kτi

for Aτi
→ A1). For the limiting reaction of the cycle

Ci we use notation klim i. If A = Aj and k is the rate
reaction for A → B, then the new reaction Ai → B has
the rate constant kklim i/kj . This rate is obtained using
quasi-stationary distribution for the cycle.

The new auxiliary network V1 is computed for the net-
work of glued cycles. Then we decompose it into cycles,
glue them, iterate until a acyclic network is obtained Vn.

III Restoration of cycles

The dynamics of species inside glued cycles is lost
after the previous step. A full multi-scale approximation
(including relaxation inside cycles) can be obtained by
cycle restoration. This is done starting from the acyclic
auxiliary network Vn back to V1 through the hierarchy of
cycles. Each cycle is restored according to the following
procedure:

For each glued cycle node Ami , node of Vm,
• Recall its nodes Am−1

i1 → Am−1
i2 → ...Am−1

iτi
→

Am−1
i1 ; they form a cycle of length τi.

• Let us assume that the limiting step in Ami is
Am−1
iτi

→ Am−1
i1

• Remove Ami from Vm
• Add τi vertices Am−1

i1 , Am−1
i2 , ...Am−1

iτi
to Vm

• Add to Vm reactions Am−1
i1 → Am−1

i2 → ...Am−1
iτi

(that are the cycle reactions without the limiting step)
with correspondent constants from Vm−1

• If there exists an outgoing reaction Ami → B in Vm
then we substitute it by the reaction Am−1

iτi
→ B with

the same constant, i.e. outgoing reactions Ami → ...
are reattached to the heads of the limiting steps

• If there exists an incoming reaction in the form B →
Ami , find its prototype in Vm−1 and restore it in Vm

• If in the initial Vm there existed a “between-cycles”
reaction Ami → Amj then we find the prototype
in Vm−1, A → B, and substitute the reaction by
Am−1
iτi

→ B with the same constant, as for Ami →
Amj (again, the beginning of the arrow is reattached
to the head of the limiting step in Ami )

C. Cycle averaging in stochastic linear chemical net-
works

The Markovian stochastic dynamics of a single
molecule in a linear reaction network is given by the
probability p(j, t) that the molecule is in Aj at the time
t. We can easily show that the master equation for p(j, t)
is the same as the deterministic kinetic equation (1).
Considering only one molecule does not restrict generality
because when several molecules are present in a linear
network, these behave independently. Thus, the simplifi-
cation method proposed for deterministic networks [3],
[2] can be also applied to stochastic networks.

Simplified stochastic models will represent pre-
conditioned models used in order to reduce simulation
time. Instead of searching for a multiscale approximation,
our purpose here is to find a reduced model that is
computationally effective and which captures dynamics
on time scales or order τ or slower. τ could be for instance
the experimental time resolution.

In order to present the simplification algorithm let us
use two simple examples.

First, let us consider a chain of molecular reactions
A1 → A2 → ...Am. The reaction rate constant for
Ai → Ai+1 is ki. All rate constants are considered well
separated, i.e. either ki << kj or ki >> kj for any i 6= j.
The smallest rate constant in the chain is denoted by klim.
If klim >> 1/τ (rapid chain), then within the timescale τ
all molecules A1 are transformed into molecules Am. We

96



can thus ignore the chain reactions and consider that the
entire initial mass of the chain is in Am. This is equivalent
to considering the chain at quasi-stationarity because the
steady state probability distribution of a chain is a Dirac
delta measure localized at the end of the chain. However,
if we do not simplify chains, then simulating them by
Gillespie’s SSA [1] will not be computationally expensive
because the mass of the chain is transferred to the end of
the chain Am in a number of steps that is relatively small.

As a second example, let us consider the cycle C
be the following sequence of mono-molecular reactions
A1 → A2 → ...Am → A1. Let all rate constants be well
separated and the smallest one be klim like before. We
add to the cycle one branching reaction; this transforms
Aj a component of the cycle into B a component exterior
to the cycle. We consider the following distinct situations:
(I) the branching reaction is Aj → B of rate constant k
and k << kj , (II) the branching reaction is Aj → B and
k >> kj , (III) the branching reaction is Aj → Aj + B,
or (IV) the branching reaction is Aj → Aj+1 + B of
rate constant kj . In the situation (I) the exit reaction is
faster and dominates the cycling reaction Aj → Aj+1.
According to the rule for auxiliary networks in this case
(that we call “broken” cycle) the cycle can be opened
(by eliminating the cycling reaction Aj → Aj+1) and
the resulting multiscale dynamics is the one of a chain;
we recover the previous example and in this case we
can safely decide to do nothing. In the situation (II) the
exit reaction is much slower than the cycling reaction.
In this case the molecules inside the cycle have rapid
transformations and the mass distribution inside the cycle
can be considered to reach quasi-stationary distribution.
As discussed in [4], [3], [2], the relaxation time of a
cycle with separated constants is the inverse of the second
slowest rate constant k(2) >> k(1) = klim. To under-
stand this, one should consider the two possible paths
to equilibrate a cycle, one passing through the slowest
step and the quicker one passing through the second
slowest step: the quicker short-cuts the first one. Thus,
a cycle can be considered quasi-stationary if k(2) >>
1/τ . A non-averaged fast cycle could be computationally
expensive in SSA, because a molecule can perform a huge
number of steps along the cycle on the timescale τ . The
corresponding condition involves the quasi-stationary flux
(not the relaxation time) and reads k(1) >> 1/τ .

From a quasi-stationary cycle, the mass is lost stochas-
tically, but slowly by the branching reaction. The inten-
sity of the loss process can be calculated by replacing
Xj by its average with respect to the quasi-stationary
distribution of the cycle. The average of Xj is X̄j =
N(t)klim/kj , where N(t) is the total mass inside the
cycle N =

∑m
j=1Nj . We obtain the average intensity λ̄ =

kX̄j = N(t)kklim/kj . In the situations (III) or (IV) the
average intensities of the branching reactions are kX̄j =
N(t)kklim/kj and kjX̄j = N(t)klim, respectively.

The result of the cycle averaging can be represented as
a simplification of the mechanism (cycle glueing), applied
only to non-broken cycles:

• “glue” the cycle into a single node C having the total
mass N

• replace the exit reaction of the type i) Aj → B of
rate constant k by a reaction C → B of effective
constant k′ = kklim/kj .

• replace the reaction of the type ii) Aj → Aj +B or
rate constant k by a reaction C → C+B of effective
constant k′ = kklim/kj .

• replace the reaction of the type iii) Aj → Aj+1 +B
of rate constant kj by a reaction C → C + B of
effective constant k′ = klim.

As a possible design rule, notice that, unless kj is the
limiting step in the cycle, one has klim/kj << 1. Then,
the average intensity of the exit reaction of the type i) or
ii) is weak and could represent a source of intermittence
in the system. This situation should be avoided for less
noise in the system, or created when noise is wanted.

III. APPLICATIONS

A. NFκB oscillations

The transcription factor NF-κB is involved in a wide
diversity of domains such as the immune and inflamma-
tory responses, cell survival and apoptosis, cellular stress
and neuro-degenerative diseases, cancer and development.
NF-κB is sequestered in the cytoplasm by inactivating
proteins named IκB. Upon signalling, IκB molecules are
phosphorylated by a kinase complex, then ubiquitinylated,
and finally degraded by the proteasomal complex. NF-
κB released from IκB molecules is then transported to
the nucleus to activate its target genes, among which
its inhibitor IκB. The produced IκB enters the nucleus,
binds to, back-translocates and re-sequester NF-κB in the
cytosol. This delayed negative feed-back is responsible
for oscillations of NF-κB activity.

The biochemical models for NFκB signalling discussed
in [2] contain linear sub-networks that were simplified
using the algorithm described in sub-section IIA. After
simplification, a mapping has been constructed between
parameters of the initial model and the parameters of
the simpler model. This mapping allowed us to find the
critical parameters and to asses their influence on the
capacity of the system to undergo sustained oscillations.
Thus, many reactions are dominated and not critical. The
precise values of their constants are not important for
the dynamics, although their relative order matters. The
details of this analysis can be found in [2].

B. Stochastic bursting of repressed operon

To illustrate reduction of stochastic models, we present
here a new application.

Under strong repression, protein production from a
bacterium operon undergoes stochastic bursting. The phe-
nomenon has been modelled by [5], see Fig.1. In this
model the bacterium is considered to be in exponential
growth phase, increasing size and dividing normally. Cell
growth is simulated by a linear increase of the volume
in time. During replication the nuclear material doubles
(variables D,D.R,DRNAP). At fission the nuclear material
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Fig. 1. Repressed operon models. The averaged cycles are in red.

is halved and all other components are divided among
daughter cells according to a binomial distribution.

The cycle averaging procedure can be applied three
times:
1.1 The cycle D,D.R is not-broken. It is glued to the
node D∗ whose total mass is equal to the mass of D and
D.R.
1.2 The limiting step of the cycle is klim = km1 << k1.
1.3 The branching reaction D → D.RNAP is replaced
by D∗ → D.RNAP of effective constant k′2 = km1

k1
k2.

2.1 The cycle D∗, D.RNAP is not-broken. It is glued to
the node D∗∗ whose total mass is equal to the mass of
D and D.R and D.RNAP .
2.2 We have k′2 << km2 hence the limiting step of the
cycle is k′2.
2.3 The branching reaction D.RNAP → TrRNAP is
replaced by D∗∗ → TrRNAP of effective constant k′3 =
km1
km2

k2
k1k3.

3.1 The cycle RBS,Rib.RBS is not-broken. It is glued
to the node RBS∗ whose total mass is the one of RBS
and of Rib.RBS.
3.2 The limiting step is km6 << k6.
3.3 The branching reaction Rib.RBS → ElRib + RBS
is replaced by the reaction RBS∗ → ElRib+RBS∗ of
effective constant k7∗ ≈ k7.

Notice that a loss of accuracy should be expected
from the application of the third averaging step. The
separation of the branching and cycling reactions is not
that good. Indeed, k7/km6 ≈ 0.22 while in theory we
need k7/km6 << 1. The trajectories obtained by SSA
(Fig.2) show the bursting phenomenon that can be now
understood by the resulting low intensity of the reaction
TrRNAP → RBS. The reduced models reproduce the
same behavior (with good accuracy for model 2, only
qualitatively for model 3).

In order to compare the performance of the models (in
terms of time complexity) we have represented the total
jump intensities for three models (exact SSA, second and
third averaged steps models) as functions of time on a
trajectory. The model that demands the least computer
time is the one with the smallest jump intensity. In Fig.3,
we notice a decrease of several orders of magnitudes of

Fig. 2. Trajectories obtained by SSA

Fig. 3. Jump intensities for the 3 models.

the total intensity from exact SSA to the second and third
averaging steps.
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Abstract— In this article it will be assessed how well
partially-premixed one-dimensional flames are represented
using premixed and non-premixed flamelet-based Flamelet
Generated Manifold (FGM) databases. A procedure is in-
troduced which enables combination of both types of FGM
databases as a function of local conditions. This allows a
more accurate description of detailed chemical kinetics while
the considerable speedup of computations enabled by the
FGM reduction method is retained.

I. INTRODUCTION

In LES and DNS simulations of turbulent reacting flows
the high computational cost associated with the large
system of stiff differential equations can become limiting
or even prohibitive for moderate and high Reynolds
numbers. To reduce the required efforts reduction methods
are commonly used. The Flamelet Generated Manifold
(FGM) [8], also known as Flamelet Prolongated ILDM
(FPI) [6], tabulates thermochemical variables originating
from one-dimensional laminar flame structures: flamelets.
The FGM reduction method assumes that in (turbulent)
three-dimensional flames locally flame structures can be
identified which closely resemble flamelets in composi-
tion space; the FGM reduction method can therefore be
considered to be a combination of classic flamelet- and
manifold methods. Any thermochemical variable is now
parameterized by a small number of control variables.
FGM databases can be generated using either premixed or
non-premixed flamelets. The question which is addressed
in this work is how well partially-premixed flames are
reproduced when premixed and non-premixed flamelet-
based FGM databases are used to represent combustion
chemistry. Bongers et al. [3] showed that a FGM database
based on premixed flamelets can accurately describe the
premixed part of partially-premixed counterflow flames.
However, in this study the considered range in mixture
fraction was limited since the fuel stream had the same
composition as a premixed system at the upper flamma-
bility limit. Previous work from Fiorina et al. [5] showed
that (premixed flamelet-based) FPI databases could not
accurately predict combustion parameters in partially-
premixed and non-premixed flamelets. A flame-index was
introduced to distinguish between premixed and non-
premixed combustion and in case of non-premixed com-
bustion the chemical source term for the reaction progress
variable was assumed to equal diffusive transport [1]. In
other words, no detailed chemistry was used for the non-
premixed combustion mode. From these two references
it can be concluded that a premixed flamelet-based FGM

Fig. 1. Two flamelet types used for this study: premixed (left) and
partially-/non-premixed (right) flamelets.

database can be used to describe partially-premixed com-
bustion provided that the gradient in mixture fraction is
kept small.
The novelty of this article is the use of detailed chemistry
for both the premixed and non-premixed combustion
mode, including a switch-function to distinguish (locally)
between the two different modes of combustion and
thereby enabling the determination of the most appropri-
ate type of FGM database. It will be discussed whether the
switch should be based on mixture fraction and reaction
progress variable gradients or using an additional control
variable.
In the next section it will be explained how individual
flamelets are computed and, subsequently, how FGM
databases are generated from these individual flamelets.
In the third section need to use an appropriate FGM
database to describe chemical kinetics is outlined. In the
last section a brief description of the work in progress is
given.

II. FLAMELET GENERATED MANIFOLDS

FGM databases are composed of many individual
flamelets, each flamelet having slightly different boundary
conditions. Boundary conditions, above all, determine the
type of flamelet: premixed or non-premixed. Schematic
representations of these flamelets types are shown in
figure 1. The main difference between these two types
is the direction of diffusion in composition space. In
premixed flamelets diffusion is only allowed along iso-
mixture fraction contours while in non-premixed flamelets
diffusion mainly takes place perpendicular to these iso-
contours.
For this study, partially-premixed combustion parameters
are mapped on two control variables describing mix-
ing (mixture fraction Z) and reaction progress (reaction
progress variable Y):

ψ = ψ (Z,Y) (1)
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in which ψ can denote any thermo-chemical variable.
The mixture fraction Z is defined by Bilger [2] and the
reaction progress variable, which has to be monotonous
in both lean and rich mixtures in order to facilitate an
unambiguous determination of dependent variables, is
defined as:

Y =
YCO2

MCO2

+
YH2O

MH2O
+

YH2

MH2

(2)

in which Yi and Mi denote a species mass fraction and a
species its molar mass respectively.

A. Flamelet equations
The flamelet equations [8] form a set of specific

transport equations for one-dimensional reacting flows
describing conservation of mass, species and enthalpy.
When unit Lewis numbers are assumed for all species
the set of equations reduces to:

∂ (ρ)
∂t

+
∂ (ρu)

∂x
= −ρK (3)

∂ (ρYi)
∂t

+
∂

∂x

(
ρuYi − λ

cp

∂Yi

∂x

)
= −ρKYi + ω̇i (4)

∂ (ρh)
∂t

+
∂

∂x

(
ρuh− λ

cp

∂h

∂x

)
= −ρKh (5)

in which x, ρ, u, K denote the physical coordinate per-
pendicular to the flame, the mixture density, the velocity
of the gas mixture and the flame stretch [7] respectively.
Yi, V, ω̇, λ, cp, µ and h denote the mass fraction of
species i, the diffusion velocity, the chemical production
rate, the thermal conductivity, the specific heat at constant
pressure, the dynamic viscosity and the total enthalpy, re-
spectively. Ns denotes the total number of species present
in the used reaction mechanism and subscript 2 refers
to the oxidizer stream. The low-Mach approximation is
applied to the equation of state to prohibit acoustic waves
propagating though the computational domain. For coun-
terflow diffusion flames an additional transport equation
for the unknown stretch field K has to be solved:

∂ (ρK)
∂t

+
∂

∂x

(
ρuK − µ

∂K

∂x

)
= −ρK2 + ρ2a

2 (6)

in which a denotes the applied strain rate at the oxidizer
side. This transport equation has been derived by Dixon-
Lewis [4]; here the formulation for two-dimensional carte-
sian geometries has been adopted. The set of governing
equations describing either premixed or non-premixed
flamelets is solved by the fully implicit solver CHEM1D
[9] developed at TUE.

B. Boundary conditions for the flamelet equations
When FGM databases are to be constructed from

unstrained steady premixed flamelets, equations 3, 4 and
5 are solved. K equals zero everywhere and equation 6
thereby is redundant. The equation of state closes the
system of equations. Boundary conditions for premixed
flamelets are:

u (x → −∞) = sL (Zu)
Yi (x → −∞) = ZuYi,1 + (1− Zu)Yi,2

h (x → −∞) = Zuh1 + (1− Zu) h2

in which subscript u denotes the unburnt mixture, sL

denotes the adiabatic flame propagation velocity and is
an eigenvalue of the system. Subscripts 1 and 2 refer to
the fuel- and oxidizer stream, respectively. The parameter
of this system is the stoichiometry of the fresh mixture
denoted by the mixture fraction Zu. Beyond flammability
limits thermo-chemical variables are linearly interpolated
between the leanest flamelet and pure oxidizer and the
richest flamelet and pure fuel, respectively. Chemical
equilibrium has been explicitly added to all flamelets.
When FGM databases are constructed from strained coun-
terflow diffusion flamelets, equations 3, 4, 5 and 6 are
solved. The equation of state again closes the system of
equations. Boundary conditions for strained counterflow
diffusion are:

Yi (x → −∞) = Yi,1

h (x → −∞) = h1

Yi (x → +∞) = Yi,2

h (x → +∞) = h2

K (x → +∞) = a (t)

in which subscripts 1 and 2 again refer to the fuel-
and oxidizer stream, respectively. The parameter of this
system is the applied strain rate a, which can be a
function of time in case of unsteady computations, and
is defined at the oxidizer side (x = ∞). Solving the
unsteady equations for conservation of mass, species mass
fractions and enthalpy results in a natural continuation of
the profiles in Z-Y space beyond the extinction strain rate.
The time-dependent solution of the unsteady equations,
which is treated as a family of solutions, is tracked until
the solution equals the mixing limit starting from a steady
solution with a strain rate equal to unity.

III. FGM VERSUS DETAILED CHEMISTRY

Laminar, one-dimensional CH4/air (21% O2 and 79%
N2 by volume) flames are simulated in a counterflow
setup. The boundary conditions will be varied from
premixed to fully non-premixed resulting in realizations
ranging from a premixed double flame, via a triple-flame
structure to a (single) diffusion flame structure. All setups
are simulated at ambient conditions (p = 1.01325 × 105

Pa and T = 300 K) and Lewis numbers are set to unity
for all species. The GRI 3.0 reaction mechanism [10] is
used to represent combustion chemistry.
For the FGM database based on unstrained, steady pre-
mixed flamelets, 400 flamelets with Z ∈ [0.25Zst, 2.0Zst]
have been used. For a given inlet composition, determined
by Z, Y is tracked. Equation 6 is removed from the system
of equations since K equals zero everywhere. Beyond the
flammability limits linear extrapolation between the lean-
est flamelets and pure oxidizer, and the richest flamelet
and pure fuel respectively, has been applied. The resulting
database has been interpolated onto an equidistant grid
with 375 points in both Z and Y direction. For the FGM
database based on non-premixed flamelets, 600 flamelets
with increasing strain rate have been used. The unsteady
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Fig. 2. OH mass fraction, which is a function of Z and Y , originating
from the non-premixed flamelet-based Flamelet Generated Manifold
database. OH is a typical indicator of combustion chemistry activity.

flamelet equations, equation 3, 4, 5 and 6 are solved while
the strain rate at the oxidizer side is increased by 1 s−2

on average using a Wiebe function, starting with a strain
rate equal to unity. For each solution, dependent on time,
Y is recalculated at each point according to equation 2
while for Z a transport equation is solved. The steady,
slow increase in strain rate implies that the flamelet will
extinguish at a given moment: the (extinguishing) flamelet
is tracked until it equals the mixing limit. By this means
the entire composition space between (near) chemical
equilibrium and the mixing limit can be spanned. The
resulting database has again been interpolated onto an
equidistant grid with 375 points in both Z and Y di-
rection. In figure 2 the OH mass fraction, which is a
function of the two control variables Z and Y , is shown
as an example.

When the FGM databases are used in flamelet computa-
tions equations 4 and 5 are replaced by transport equations
for the two control variables only:

∂ (ρZ)
∂t

+
∂

∂x

(
ρuZ − λ

cp

∂Z

∂x

)
= −ρKZ (7)

∂ (ρY)
∂t

+
∂

∂x

(
ρuY − λ

cp

∂Y
∂x

)
= −ρKY + ω̇Y (8)

The chemical source term for Y (ω̇Y ) is retrieved from
the FGM database using linear interpolation; when the
solutions for Z and Y have converged all species mass
fractions are retrieved from the FGM database in the same
way.

A. The need for using the appropriate FGM database

When premixed flamelets are computed using a pre-
mixed flamelet-based FGM and when non-premixed
flamelets are computed using a non-premixed flamelet-
based FGM it can be seen from figure 3 that combustion
chemistry and diffusive transport are well described by
the FGM database. However, if the non-appropriate type
of FGM database is used, i.e. premixed flamelets are
computed using a non-premixed flamelet-based FGM or
non-premixed flamelets are computed using a premixed
flamelet-based FGM, it can be seen from figure 4 that
errors appear when predictions using FGM databases
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Fig. 3. Results for steady premixed flamelets using a premixed flamelet-
based FGM (left) and steady non-premixed flamelets using a non-
premixed flamelet-based FGM (right). For the premixed flamelets black
lines with circle markers denote a flamelet with Z = 0.67Zst, blue
lines with square markers denote a flamelet with Z = Zst and red
lines with triangle markers denote a flamelet with Z = 1.5Zst. For
the non-premixed flamelets black lines with circle markers denote a
flamelet with a = 10 s−1, blue lines with square markers denote a
flamelet with a = 25 s−1 and red lines with triangle markers denote
a flamelet with a = 100 s−1. In all figures solid lines denote detailed
chemistry solutions while the markers (circles, squares or triangles)
denote solutions using FGM databases. Figures from top to bottom
represent CH4 mass fractions, O2 mass fractions, CO mass fractions,
H2 mass fractions and OH mass fractions.

are compared to detailed chemistry. These errors are
most significant for CO and H2 which are formed under
rich conditions but in non-premixed flamelets can diffuse
towards the reaction layer near the stoichiometric mixture
fraction where they are consumed again. When premixed
flamelets are considered this is not possible; this results
in higher CO and H2 under rich conditions. In figure 4
this effect is most visible in CO and H2 mass fraction
predictions in non-premixed flames using a premixed
flamelet-based FGM database. For OH it is observed that
errors using the wrong type of FGM database are not as
significant as for CO and H2. It will be examined whether
this can be attributed to the dominance of chemistry over
(convective and diffusive) transport.
It can be concluded that it is important to use the appro-
priate FGM database when accurate predictions of species
are desired, especially when CO and H2 are concerned.

B. Partially-premixed flamelets

For partially-premixed flamelets FGM databases which
are based on either premixed or non-premixed flamelets
are not sufficient. It will be examined whether the local
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Fig. 4. Results for premixed flamelets using a non-premixed FGM (left)
and non-premixed flamelets using a premixed FGM (right). Identical
symbols have been used as in figure 3.

source term for Y can be defined as a linear combina-
tion of the source term in premixed and non-premixed
flamelets for the same values for Z and Y:

ω̇Y (Z,Y) = αω̇P
Y (Z,Y) + (1− α) ω̇NP

Y (Z,Y) (9)

To determine the weight factor α several methods have
been proposed starting with the flame index method
proposed by Yamashita et al. [11], for which a modified
version for the use with FPI-databases was introduced by
Fiorina et al. [5]; nevertheless for one-dimensional flames
these indices exhibit a non-continuous behavior. Another
switch function formulation which will be examined
reads:

α = tanh

[
log

(
~∇Y · ~∇Y
~∇Z · ~∇Z

)]
(10)

which should exhibit a continuous and smooth behavior
throughout the entire domain.

IV. WORK IN PROGRESS

It will be examined whether a switch function as de-
fined in the previous section yields an increase in accuracy
of predictions when FGM databases are used to replace
expensive detailed chemistry computations. The switch
function will be compared to the use of an additional
control variable, e.g. H2 mass fraction, for which an
additional transport equation has to be solved.
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Extending the Tools of Chemical Reaction Engineering to the Molecular Scale

Author: James B. Rawlings 
Department of Chemical and Biological Enginering 
University of Wisconsin 

In classical continuum chemical kinetics, two primary physical situations result in model 
reduction. The first case is the presence of fast and slow reactions.  In this case, the fast 
reactions are assumed to be in equilibrium and one expresses a slow-time scale evolution 
of all the species concentrations due to the slow reactions. In the second case, highly 
reactive intermediates rapidly approach and maintain a low quasi-steady-state 
concentration. In this case, one can express a simplified evolution equation for the large 
concentration species (reactants and products).  These two cases arise frequently in 
applications and are a standard part of the classical reaction engineering toolkit.  
Examples include Michaelis-Menten kinetics and Langmuir-Hinshelwood or Hougen-
Watson reaction mechanisms on catalytic surfaces.  

But when reactions are considered at small length scales (small catalyst particles, inside 
living cells, etc.), the concentrations are small enough that the stochastic fluctuations 
cannot be neglected.  In this regime, we often use kinetic Monte Carlo (KMC) methods to 
simulate the reaction networks of interest.  But when confronted with large separations in 
reaction rates or large separations in species concentrations, the computation time for the 
standard KMC simulation method becomes excessive, and standard KMC is no longer 
useful for simulating the reaction network of interest. 

This talk presents recent results for extending kinetic model reduction methods to handle 
this stochastic, molecular regime.  The resulting reduced chemical mechanisms can be 
quite different from what one expects based on knowledge of the results for only the 
macroscopic, deterministic setting.  The model reduction methods will be illustrated by 
application to a set of illustrative chemical kinetic mechanisms. 
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Abstract— For many biochemical phenomena in cells the
molecule count is low, leading to stochastic behavior that
causes deterministic macroscale reaction models to fail. The
main mathematical framework representing these phenom-
ena is based on continuous-time, discrete-state Markov pro-
cesses that model the underlying stochastic reaction network.
Conventional dynamical analysis tools do not readily gener-
alize to the stochastic setting due to non-differentiability and
absence of explicit state evolution equations. We developed
a reduced order methodology for dynamical analysis that
relies on the Karhunen-Loève decomposition and polynomial
chaos expansions. The methodology relies on adaptive data
partitioning to obtain an accurate representation of the
stochastic process, especially in the case of multimodal
behavior. As a result, a mixture model is obtained that
represents the reduced order dynamics of the system. The
Schlögl model is used as a prototype bistable process that
exhibits time-scale separation and leads to multimodality in
the reduced order model.

I. INTRODUCTION

The simplest description of chemical reaction pro-
cesses is based on rate equations, i.e. ordinary differ-
ential equations (ODEs) for species concentrations. This
macroscopic setting fails when the relevant volume or
the species numbers are small because of the increased
significance of stochastic noise due to random molecular
collisions [9], [22]. Stochastic reaction networks (SRNs)
account for intrinsic stochastic noise, and provide a
general framework for chemical reaction models at the
microscopic, molecular level. SRNs are generally gov-
erned by the Chemical Master Equation [7] (CME), which
is a differential equation governing the time evolution
of the Probability Density Function (PDF) of species
numbers. The chemical master equation is obtained by
modeling a SRN as a jump Markov process [23], [6], i.e.
discrete-state, continuous-time stochastic processes with
no memory. Since computing direct numerical solutions
for CMEs is still challenging (for recent efforts, see [15]
and references therein), simulation-based methods be-
come the main analytical tools. In particular, Gillespie’s
Stochastic Simulation Algorithm [4], [5] (SSA) provides
a simulation mechanism for the time-evolution of species
numbers at the microscopic scale, thereby effectively
sampling the CME solution. This allows determining
useful statistical properties of the system by averaging
without solving the CME itself.

In this work, we rely on Karhunen-Loève (KL) ex-
pansions [10], [14], [2] that represent the underlying
stochastic processes in terms of orthonormal random

variables, truncated to a reduced order model. This low-
order representation is constructed based on the observed
statistics of the stochastic process over a given period of
time. With a truncated KL expansion, each realization of
a stochastic process corresponds to a finite number of un-
correlated random variables, with non-standard distribu-
tions determined by the data. As a result, it is desirable to
represent these random variables with polynomial chaos
(PC) expansions [25] that enable computationally efficient
estimation of system properties.

However, a global PC representation with a finite
order and dimensionality does not accurately capture
random variables that exhibit strong multimodalities [18].
Adaptive multi-wavelet [11], [12], [13] or PC [24] bases,
both relying on stochastic domain decomposition, enable
efficient analysis of such processes in the continuous
deterministic setting. In this work, we extend the method-
ology proposed in [18] to obtain an adaptive, data-driven
partitioning that captures the structure and modalities of
intrinsic stochasticity. Our data partitioning algorithm,
which involves a combination of clustering and data
range bisection, leads to a mixture of PC expansions that
properly represents multimodal distributions by taking
advantage of the underlying data structure.

II. REDUCED ORDER MODELING VIA
KARHUNEN-LOÈVE DECOMPOSITION

As a reduced order model for a stochastic process
X(t, θ), consider the L-truncated Karhunen-Loève (KL)
expansion [10], [14]

X(t, θ) ≈ XKL(t, θ) = X̄(t, θ) +

L
∑

i=1

√

λifi(t)ξi, (1)

where X̄(t, θ) denotes the expectation with respect to the
sample space element θ. In the above KL expansion, the
λi are the eigenvalues of the covariance kernel with cor-
responding orthogonal eigenfunctions fi(t). The random
vector ξ = (ξ1, . . . , ξL) consists of L jointly distributed
and uncorrelated (but not independent) random variables.
Essentially, the dynamics of the full process X(t) is
captured by a single random vector ξ (we will drop the
argument θ for clarity, unless there is a need to put an
emphasis on the intrinsic randomness).

As a benchmark process that exhibits a bimodal behav-
ior, consider the Schlögl model [19], [6], [18], which is a
SRN involving two reversible reactions and three species
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Fig. 1. Hundred SSA realizations of the Schlögl model with the nominal
parameter set [17].
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Fig. 2. a) First ten KL eigenvalues, and b) the scatter plot for the
first two KL random variables for the Schlögl model with the nominal
parameter set [17].

X, A and B, but with A and B assumed to be present in
large and fixed numbers. We are interested in the number
of species X(t). With X(0) = 250 and the nominal set of
rate constants, the system exhibits bistable behavior over
a time window t ∈ [0, 20], see Fig. 1. Furthermore, Fig. 2
illustrates the corresponding eigenvalue spectrum and the
scatter plot of the projected samples of ξ1 and ξ2. The
huge gap between the first two eigenvalues and bimodality
along the ξ1-dimension are direct results of the bimodality
of the time-dependent process itself. Although the random
vector ξ has uncorrelated components, it may have a
complicated structure that is not known beforehand. We
then turn to spectral expansions in order to properly
represent the random vector ξ.

III. POLYNOMIAL CHAOS EXPANSION OF THE
REDUCED ORDER MODEL

We seek to approximate ξ with a random variable
represented by a d-th order, L-dimensional PC expansion

ξ =

P
∑

k=0

ckΨk(ζ1, . . . , ζL) ≡ g (ζ; C) , (2)

with the number of terms P +1 = (d+L)!
d!L! and multivariate

orthogonal polynomials Ψk(ζ). The components of the
random vector ζ are standard i.i.d. random variables. In
this work, we have used Hermite polynomials that are
orthogonal with respect to the PDF of a standard normal

random variable. Namely,

〈Ψj(ζ)Ψk(ζ)〉 ≡
∫

Ψj(ζ)Ψk(ζ)
e−

ζT ζ
2

√
2π

dζ

= 〈Ψ2
k(ζ)〉δjk . (3)

The above orthogonality relation leads to the projection
formulas

ck =
〈ξΨk(ζ)〉
〈Ψ2

k(ζ)〉 . (4)

However, in order to compute the stochastic projection
integral 〈ξΨk(ζ)〉, one needs an one-to-one correspon-
dence between samples of ξ and ζ. To resolve this,
we employ the Rosenblatt transformation [16], [17] that
enables the projection (4) in the same, ζ-space. Finally,
the full representation can be written as

X(t, θ) ≈ XKLPC(t, θ) = (5)

= X̄(t, θ) +

L
∑

i=1

(

P
∑

k=0

cikΨk(ζ)

)

√

λifi(t),

i.e. the process X(t, θ) is described in terms of deter-
ministic matrix elements cik and a random vector ζ =
(ζ1, . . . , ζL) of standard normal i.i.d. random variables.
However, as shown in [18], the global PC representation
is challenged if the random vector ξ has a multimodal
character, which is certainly the case for the Schlögl
model, see Fig. 2b.

IV. ADAPTIVE DATA PARTITIONING ALGORITHM

In order to tackle multimodalities, we analyzed various
approaches of partitioning the data set of samples of
ξ, and introduced a novel, hybrid and adaptive strategy
that involves approximate k-center clustering [8] to detect
the bimodalities, followed by data-range bisection. The
algorithm adaptively partitions the data set into subsets
that are simpler to represent with low-order PC, until this
representation is satisfactory in terms of the Kullback-
Leibler (K-L) divergence or relative entropy [3], [1]
between the PDFs of the data samples and the samples
of the corresponding representation (i.e., P (·) and Q(·),
respectively)

d(P ||Q) =

∫

P (x) log
P (x)

Q(x)
dx. (6)

Exact computation of the K-L divergence requires an
integration that is extremely costly in multiple dimen-
sions. Nevertheless, it can be estimated by Monte-Carlo
integration in terms of the data samples that are available.
Namely,

d(P ||Q) ≈ 1

N

N
∑

n=1

log
P (ξ(n))

Q(ξ(n))
(7)

=
1

N

(

N
∑

n=1

log P (ξ(n)) −
N
∑

n=1

log Q(ξ(n))

)

,

where ξ(n) for n = 1, 2, . . . , N are the samples drawn
from the distribution P (·), i.e. exactly the data samples
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that are to be PC-represented. This approximation of the
K-L divergence allows simple intuitive interpretation: the
second sum is the log-probability of having the particular
data set {ξ(n)}N

n=1 given a model that leads to the PDF
Q(·) (in other terms, the likelihood of the model), while
the first sum is the likelihood if the model had the exact
same PDF as the original data set (in a sense, a target
likelihood). The PDFs in (7) are computed by standard
KDE techniques [21], [20].

We have analyzed various data partitioning schemes
and found that the domain-based bisection approaches
(specifically, data range bisection, data median bisection
and data size bisection, see [17]) blindly split the data
without detecting the modalities. Therefore, we enhanced
the methodology with an initial clustering step (namely,
an approximate version of the k-center clustering is im-
plemented) that detects the modalities present in the data
structure. After this initial step, it is shown that the data
range bisection works better than the other approaches. It
consists of finding and bisecting the data range in each
direction simultaneously.

In order to find out whether an initial clustering is
needed and what the optimal number of clusters is, we
employ the explained variance criterion. The explained
variance for a specific clustering is a variance of a data
set that is obtained from the initial data set by replacing
each sample with the mean of its cluster. The fraction of
the explained variance over the total variance vanishes if
there is only one cluster (the set itself) and is equal to
one, if the number of clusters is the same as the number
of data samples. We run several trial clustering cases for
various fixed number of clusters and check the graph of
the explained variance fraction versus the cluster number.
This graph is generally increasing and concave down. If
there is a well-seen ‘elbow’ in the graph, then its location
corresponds to the optimal number of clusters. Otherwise,
there is no need to proceed with the clustering, and the
data is considered sufficiently unimodal [17].

The adaptive PC representation algorithm then pro-
ceeds as follows:

0. Obtain N SSA realizations X(t).
1. Perform KL decomposition up to the eigenmode

(dimension) L.
1a. As a result, obtain a set of N data samples of

the random vector ξ = (ξ1, . . . , ξL) and call it
the current data set S = {ξ(1), ξ(2), . . . , ξ(N)}.

1b. If the explained variance criterion [17] detects
modalities, cluster the data into the optimal
number of clusters and proceed considering each
cluster as a new data set. Otherwise proceed to
Step 2.

2. Use the Rosenblatt transformation and quadrature
evaluation of the projection integrals (4) to find a
finite order PC representation for the current data
samples: ξi =

∑P

k=0 cikΨk(ζ), for i = 1, 2, . . . , L.
2a. Compute the K-L divergence between the data

and the PC model using (7).

3. If the number of samples in the current data set
exceeds the threshold Nthr and the K-L divergence
is larger than the threshold dthr, partition the current
data set according to data range bisection, and recur-
sively return to Step 2 for each new data set. Else
keep the current PC representation and move to the
next untreated data set.

Fig. 3. The data partitions for the first two KL variables obtained from
a KL projection of N = 10

5 realizations of the Schlögl process.

Fig. 4. The scatter plot of the original data set and the samples obtained
from the mixture PC representation.

The final representation then corresponds to a PDF that
is a mixture of PDFs of PC representations of each of the
K subsets. Namely,

PDFξ
P C

(y) =

K
∑

j=1

pjPDF
g

“

ζ;C(j)
”(y), (8)

where pj is the fraction of data samples in the j-th
partition.

Fig. 3 shows the final partitions for a two-dimensional
data set for a random vector ξ = (ξ1, ξ2) that is obtained
by a KL projection of N = 105 realizations of the
Schlögl process. The data set itself and the samples
of its third order mixture PC model representation are
shown in Fig. 4. The K-L convergence analysis of our
hybrid methodology and other data partitioning strategies
is illustrated in Fig. 5. Although for this particular data set
- it is bimodal along the first dimension only - the plain
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data range bisection is as efficient as the hybrid approach,
it is shown [17] that the hybrid methodology is more
robust for general data sets with no a priori knowledge
of the data structure available.
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Fig. 6. a) The 5-mode KL truncated sum for the Schlögl process.
b) The final representation obtained from mixture PC expansions of
the underlying five-dimensional KL random vector. Both expansions
are obtained with N = 10

5 realizations with only every hundredth
realization shown for illustration purposes.

Finally, Fig. 6 illustrates the 5-mode KL-truncated sum

XKL(t) = X̄(t) +

5
∑

i=1

ξi

√

λifi(t) (9)

of the underlying Schlögl process as well as the process,
recovered from the third order mixture PC representation
of the KL-projected variables, i.e.

XKLPC(t) = X̄(t) +

5
∑

i=1

(ξPC)i

√

λifi(t). (10)

Clearly, the stochastic process X(t), first reduced to
XKL(t) (described by a random vector ξ) by the KL
projection, is further reduced to XKLPC(t) (described
by a set of deterministic matrices {C(j)}K

j=1, one for
each partition of the data samples of ξ) by our mixture
PC representation while preserving the skeleton of the
dynamics of the original process for further analysis of
the system, or as a reduced order model.
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Abstract— In previous work we proposed an approach for
the approximation of slow invariant manifolds by computing
trajectories as solutions of an optimization problem with
respect to their initial values. The objective functional of
the optimization problem is supposed to represent the extent
of relaxation of chemical forces. Following these ideas we
discuss this approach on the basis of results for three
example models of chemical reaction mechanisms.

I. INTRODUCTION

The need for reduced chemical kinetics is motivated by
the fact that the computational effort for a full simulation
of reactive flows, e.g. of fluid transport involving combus-
tion processes, is computationally extremely expensive.

For getting useful approximations of the full mech-
anism, we are convinced, that global information on
phase space dynamics should be used to determine the
reduced kinetics. As reaction kinetics are usually modeled
by ordinary differential equations (ODE), trajectories in
phase space that are solutions of these ODE bear global
information of the system dynamics. This information can
be exploited within a trajectory optimization framework
for identifying suitable reaction trajectories approximating
slow attracting manifolds, where – after a short initial time
– the system dynamics take place.

A suitable formulation of the computation of reduced
models as an optimization problem assures the existence
of a solution irrespective of assumptions on the time scale
structure and sophisticated optimization software can be
used for the numerical solution of these problems.

The optimization criterion for the identification of
suitable trajectories should represent the assumption that
chemical forces are maximally relaxed along these tra-
jectories. Various approaches for the formulation of opti-
mization criteria are conceiveable.

II. METHODOLOGY

A. General Problem Formulation

In our approach the general trajectory-based optimiza-
tion problem can be written as

min
c

∫ tf

0

Φ (c(t)) dt (1a)

The authors thank the German Research Foundation (DFG) for
funding, in particular in the Special Research Area (SFB) 568.

subject to

dc(t)
dt

= f (c(t)) (1b)

0 = g (c(0)) (1c)

ck(0) = c0k, k ∈ Ifixed. (1d)

Here the nonlinear function f describes the chemical
reaction kinetics for the chemical species vector c(t).
The element mass conservation is collected in g. Ifixed
is the index set of reaction progress variables chosen
for parameterization of the reduced model. These can in
principle be selected without restriction from the list of
all species and are fixed at t = 0 in (1d). All other species
concentrations at t = 0 are free variables and subject to
optimization. Thus the solution of the optimization prob-
lem is equivalent to species reconstruction. The computed
full composition should represent a point on the slow
invariant manifold. The final time tf is chosen as large
as necessary for approximately reaching the chemical
equilibrium point. The central issue to be addressed is
how to choose the objective function Φ in (1a). This will
be discussed in the following.

B. Entropy-Based Criteria

In previous work (including the first workshop on
model reduction in reacting flows, Rome 2007) the en-
tropy production rate was suggested as an optimization
criterion. Entropy production is related to the relaxation of
chemical forces and the development of partial equilibria
[1].

The formula for the entropy production rate with the
forward and backward reaction rates Rj,→ and Rj,←,
respectively, is

dSj
dt

= R (Rj,→ −Rj,←) log
(
Rj,→
Rj,←

)
(2)

for the j-th elementary reaction in the kinetic mechanism.
Here R is the gas constant. With (2) a relaxation criterion
for the objective function (1a) can be formulated

Φ(c(t)) =
m∑
j=1

dSj
dt

. (3)

This criterion was studied in [1] and [2]. The results
and the concept of the approach look promising but do not
provide a sufficiently accurate approximation of the slow
attracting manifold, in particular far from equilibrium. In
the following, alternative criteria have been investigated.
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C. Geometric Criteria

As stated above, a suitable reduction criterion Φ(c(t))
should characterize the relaxation of “chemical forces”.
From a physical point of view, curvature (in the sense of
the rate of change in velocity) is closely related to the
geometric interpretation of force. The aim of [3], [4], [5],
[6] was to make an attempt to transfer that relation to
the field of reaction kinetics in a way suitable to model
reduction via problem formulations such as in (1).

In chemical systems, dissipative forces are active. The
different time scales of dynamic modes result in an
anisotropic force relaxation in phase space. We consider
the tangent (reaction velocity) vectors ċ(t) = f(c(t)) of
reaction trajectories. The relaxation of chemical forces
results in a change of ċ(t) along a trajectory on its
way towards chemical equilibrium. This change along the
trajectory may be characterized by taking the directional
derivative of the tangent vector of the curve c(t) with
respect to its own direction v := ċ

‖ċ‖2 .
Mathematically that can be formulated as

Dv ċ(t) :=
d

dα
(ċ(t) + αv)

∣∣∣
α=0

= Jcf ·
f

‖f‖2
,

with Jcf being the Jacobian of the right hand side f
evaluated at c(t) and ‖ · ‖2 denoting the Euclidian norm.
Hence, we may choose the optimization criterion

Φ(c) =
‖Jcf · f‖2
‖f‖2

. (4)

The natural way for the evaluation of this criterion would
be a path integral along the trajectory towards equilibrium∫ l(ceq)

l(0)

Φ(c(l(t))) dl(t),

where l(t) is the length of the curve c(t) at time t given
by

l(t) =
∫ t

0

‖ċ(τ)‖2dτ.

This results in the reparametrization

dl(t) = ‖ċ(t)‖2dt. (5)

The objective used in (1a) would be

min
c

∫ tf

0

‖Jcf · f‖2 dt. (6)

However, an alternative norm for the evaluation of
‖Jcf · f‖ might be taken into account, which has already
been used in [7] and is motivated from thermodynamics.
In this norm the criterion adapted from (4) can be written
as

‖Jcf · f‖W
‖f‖W

=
(fT · (Jcf)Tdiag(1/ci)Jcf · f)1/2

‖f‖W
(7)

with W = diag(1/ci) being the diagonal matrix with
diagonal elements 1/ci. This criterion brings thermody-
namic considerations into play and represents the Rieman-
nian metric induced by the second differential of Gibbs

free enthalpy G

G =
n∑
i=1

ci[ln(ci/c
eq
i )− 1], W = Hess(G).

The corresponding metric has been discussed in the
context of an entropic scalar product [8]. The correspond-
ing optimization problem is

min
c

∫ tf

0

‖Jcf · f‖W dt. (8)

In the following results for both criteria (6) and (8) are
presented.

D. Numerical Methods

Problem (1) together with a suitable choice of Φ(c(t))
can be numerically solved with an appropriate solver
for nonlinear programming problems (NLP) coupled to
a numerical integrator. For our results MUSCOD-II [9],
[10] is used. This software package is based on a
multiple shooting discretization of trajectories and se-
quential quadratic programming (SQP) for the resulting
finite-dimensional NLP. For numerical integration on the
multiple shooting intervals DAESOL [11], [12] is used,
which is an integrator based on backward differentiation
formulae.

The computation of optimal trajectories for neighboring
fixed initial values for the reaction progress variables in
order to span higher-dimensional manifolds by families
of trajectories can be significantly accelerated by the
use of continuation methods embedding the problem into
a parametric family of optimization problems. Diehl et
al. describe an efficient numerical implementation of an
initial value embedding strategy in [13]; this stategy is
used for the computations presented below.

III. RESULTS

Here we present the application of the method de-
scribed above for three example problems. First a
temperature-independent six species hydrogen combus-
tion process is analyzed, then we study the benchmark
Skodje-Davis system and finally we discuss a temperature
dependent ozone mechanism involving oxygen as only
chemical element.

A. Example Mechanism: Hydrogen Combustion

In this section we consider a small test mechanism
taken from [8], that we already used for previous work:

H2

k±1

 2 H

O2

k±2

 2 O

H2O
k±3

 H + OH

H2 + O
k±4

 H + OH

O2 + H
k±5

 O + OH

H2 + O
k±6

 H2O

(9)
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Fig. 1. Solution of (1) with (4) as relaxation criterion for the hydrogen
combustion mechanism (9).

with the rate constants
k1 = 2.0, k−1 = 216.0
k2 = 1.0, k−2 = 337.5
k3 = 1.0, k−3 = 1400.0
k4 = 1000.0, k−4 = 10800.0
k5 = 1000.0, k−5 = 33750.0
k6 = 100.0, k−6 = 0.7714.

Together with the conservation relations

2 cH2 + 2 cH2O + cH + cOH = C1

2 cO2 + cH2O + cO + cOH = C2

this mechanism yields a system with four degrees of
freedom. For the computations with this mechanism mass
relations with C1 = 2.0 and C2 = 1.0 were chosen.

In Fig. 1 the results with the Euclidian norm criterion
(6) as objective functional are depicted. We analyze the
approximation accuracy of the slow manifold via check-
ing consistency (invariance) by restarting the solution of
the optimization problem from a later time point on the
earlier computed trajectory. If the slow invariant manifold
has been identified correctly, the solution of the second
optimization problem should be exactly on the trajectory
computed before, a property that we denote consistency.
The results are not too bad but can be improved.

The weighted norm proposed in (8) is used as a
criterion for the results presented in Fig. 2. The results
demonstrate that this criterion can be regarded to be nearly
consistent. These results encourage to test the criterion (7)
for the Davis-Skodje problem in the next section.

B. Davis-Skodje Problem
The well-known Davis-Skodje mechanism is our sec-

ond test case.
dy1
dt

= −y1
dy2
dt

= −γy2 +
(γ − 1)y1 + γy2

1

(1 + y1)2
,

where γ > 1 is a measure for the spectral gap or
stiffness respectively of the system. Results are shown
in Fig. 3. For large values of γ, representing a large gap
in time scales between fast and slow modes, the results
are acceptable. For small values of γ the approximation
is getting worse.
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Fig. 2. Solution of (1) with (7) as relaxation criterion for the hydrogen
combustion mechanism (9). The results look promising.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

y1

y 2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

y1

y 2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y1

y 2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y1

y 2

(a) γ=1.2 (b) γ=2.0

(c) γ=4.0 (d) γ=6.0

Fig. 3. Results for the Davis-Skodje problem with (8) as relaxation
criterion. Results for different values of γ are shown. The red curve is the
analytically computed SIM (slow invariant manifold). The black dashed
curve represents the analytic Maas-Pope-ILDM. The blue curves are
trajectories integrated from solution points of our optimization problem.

C. Example Mechanism: Ozone

The last test case is a three component ozone mech-
anism shown in Table I taken from [14]. It is chosen
to demonstrate the performance of our method taking
temperature dependence into account. Many approaches
based on time scale separation fail when the spectral gap
becomes too small. Together with the element conserva-
tion

cO + 2 cO2 + 3 cO3 = C

this mechanism yields a system with two degrees of
freedom. We use without loss of generality C = 1.

TABLE I
OZONE DECOMPOSITION MECHANISM FROM [14]. RATE

COEFFICIENT k = AT b exp(−Ea/RT ). COLLISION EFFICIENCIES

IN REACTIONS INCLUDING M: fO = 1.14, fO2 = 0.40, fO3 = 0.92.

Reaction A (cm,mol, s) b Ea

“
kJ

mol

”
O + O + M → O2 + M 2.90× 1017 −1.0 0.0
O2 + M → O + O + M 6.81× 1018 −1.0 496.0
O3 + M → O + O2 + M 9.50× 1014 0.0 95.0
O + O2 + M → O3 + M 3.32× 1013 0.0 −4.9
O + O3 → O2 + O2 5.20× 1012 0.0 17.4
O2 + O2 → O + O3 4.27× 1012 0.0 413.9
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The results for the Euclidian criterion (4) shown in
Fig. 4 appear to become worse in particular for low
temperatures. In contrast the weighted criterion (7) gives
much better results as illustrated in Fig. 5.
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Fig. 4. Solution of (1) with (6) as objective function for the ozone
mechanism as in Table I. Here red dots denote the solution for different
values of the progress variable cO2 . The blue trajectory can be regarded
as relaxed to the one-dimensional SIM after a short integration time.

IV. CONCLUSION

Here we present an extension of the model reduction
approach discussed at the first workshop in Rome and
in [5]. Various geometric criteria are investigated. In
many cases the results demonstrate a good quality of the
approximation of the slow attracting manifold. The SIM
can even be approximated with sufficient accuracy for the
ozone mechanism in the case of low temperatures.

To summarize, this approach looks promising for ap-
plication to realistic and large-scale detailed combustion
mechanisms. Even though a detailed and systematic inves-
tigation of the different criteria with a focus on theoretical
analysis, approximation accuracy and (numerical) appli-
cability remains a challenging task for our future work.
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Fig. 5. Solution of (1) with (7) as relaxation criterion for the ozone
mechanism as in Fig. 4. The results look much better even for low
temperature.
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Abstract—A new species reduction method called the 

Simulation Error Minimization Connectivity Method (SEM-

CM) was developed. According to the SEM-CM algorithm, 

a mechanism building procedure is started from the 

important species. Strongly connected sets of species, 

identified on the basis of the normalized Jacobian, are 

added and several consistent mechanisms are produced. The 

model is simulated with each of these mechanisms and the 

mechanism causing the smallest error (i.e. deviation from 

the model that uses the full mechanism), considering the 

important species only, is selected. Then, in several steps 

other strongly connected sets of species are added, the size 

of the mechanism is gradually increased and the procedure 

is terminated when the error becomes smaller than the 

required threshold. A new method for the elimination of 

redundant reactions is also presented, which is called the 

Principal Component Analysis of Matrix F with Simulation 

Error Minimization (SEM-PCAF). According to this 

method, several reduced mechanisms are produced by using 

various PCAF-thresholds. The reduced mechanism having 

the least CPU time requirement among the ones having 

almost the smallest error is selected. Application of SEM-

CM and SEM-PCAF together provides a very efficient way 

to eliminate redundant species and reactions from large 

mechanisms. The suggested approach was tested on a 

mechanism containing 6874 irreversible reactions of 345 

species that describes methane partial oxidation to high 

conversion. The aim is to accurately reproduce the 

concentration−−−−time profiles of 12 major species with less 

than 5% error at the conditions of an industrial application. 

The reduced mechanism consists of 246 reactions of 47 

species and its simulation is 116 times faster than using the 

full mechanism. The SEM-CM was found to be more 

effective than the classic Connectivity Method, and also than 

the DRG, two-stage DRG, DRGASA, basic DRGEP and 

extended DRGEP methods.  

I. INTRODUCTION 

Almost all published detailed reaction mechanisms 
contain redundant species and reactions [1]. Elimination 
of redundant species and reactions from a large reaction 
mechanism allows a significant decrease of simulation 
time. Also, other mechanism reduction methods, based for 
example on time scale analysis [2-4] or lumping [5] may 
be more efficient if the starting mechanism is smaller. 
Several reviews have dealt with the problem of 
mechanism reduction [1] [6-7].  

Frenklach et al. [8] suggested a method for the 
elimination of species and reactions from a detailed 

mechanism, when the aim was the reproduction of ignition 
delay times and temperature profiles. The first general 
systematic method for species reduction, which is called 
here the Connectivity Method, was suggested by Turányi 
[9] and since then several other methods have been 
published for this task [10-23].  

In this paper algorithms Simulation Error Minimization 
Connectivity Method (SEM-CM) and Principal 
Component Analysis of Matrix F with Simulation Error 
Minimization (SEM-PCAF) are described briefly. More 
details can be found in our recent article [23].  

II. SIMULATION ERROR MINIMIZATION  

CONNECTIVITY METHOD (SEM-CM) 

A. Definitions 

The aim of simulations is to reproduce the 
concentration profiles of the important species or to 
reproduce some important features. The mechanism 
reduction methods select further species to the group of 
important species to ensure the good agreement between 
the simulation results obtained using the full and the 
reduced mechanisms. A complementary set consists of 
those species that are not yet selected but would yield at 
least one additional selected reaction if these were 
introduced to the current group of selected species. Note 
that according to this definition, unions of complementary 
sets are also complementary sets. 

A species is designated a living species if its initial 
concentration is non-zero or it has an inflow term (e.g. 
non-zero inlet concentration in a PSR) or if it is formed in 
chemical reactions. The list of living species depends on 
the mechanism and also on the initial (or boundary) 
conditions. A mechanism is called consistent, if each of its 
species is living at least at one condition. 

B. The algorithm 

Connection of a complementary set to the group of 
currently selected species can be assessed by the 
following measure: 

∑ ∑∑
∈ ∈∈

==

seti groupj  
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ij
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where ( )( )ijjiij cffc ∂∂=J  is an element of the 

normalized Jacobian. 

The Simulation Error Minimization Connectivity 
Method (SEM-CM) can be summarized as follows. 
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Starting from the group of nimp important species, 
complementary sets strongly connected to them are added 
at each time and the formed reduced mechanisms are 
made consistent if necessary. Depth level m means that 
the first m complementary sets with the highest Ck values 
are considered. The complex model is simulated with each 
of these mechanisms and their sets of species with their 
errors are stored in a database. The reduced mechanism 
that has nimp+1 species and has the smallest error is 
identified in the database, and the previous procedure is 
repeated. If no such a mechanism exists, mechanism with 
species number nimp+2, nimp+3,  etc. is looked for. The 
mechanism building is terminated when the simulation 
error, using the reduced mechanism, becomes smaller than 
a required threshold. This way, a series of consistent 
reduced mechanisms are produced, usually with 
continuously decreasing error. 

While the SEM-CM procedure effectively reduces the 
number of species, the reduced mechanisms may still 
contain redundant reactions. 

III. PRINCIPAL COMPONENT ANALYSIS OF MATRIX F  

WITH SIMULATION ERROR MINIMIZATION (SEM-PCAF) 

A. The algorithm  

The procedure above results in a series of consistent 
reduced mechanisms with different number of necessary 
species. These mechanisms can be reduced further via the 
elimination of the redundant reactions. This may lead to a 
reduced mechanism that can be simulated much faster, 
while the error of simulation remains essentially the same. 

The identification of the redundant reactions is carried 
out using the principal component analysis (PCA) of the 

normalized rate sensitivity matrix F  [24]. This matrix is 

defined as ( )( )ijjiij kffk ∂∂=F  This method has been 

encoded as the PCAF option of KINALC [25]. In this 
program the user has to suggest one or several thresholds 
for the eigenvalues and the eigenvector elements.  

Increasing the threshold values of PCAF in small steps 
results in the elimination of further reactions, and it causes 
small, but non-monotonic changes in the error of 
important species. Therefore, it is impossible to find the 
optimum threshold values based on a systematic search. 
Thus, the PCAF procedure is adapted here in such a way, 
that many different thresholds are tried automatically. 
Initially, low thresholds for the eigenvalues and 
eigenvectors are selected, leading to the elimination of 
few reaction steps. Then, both thresholds are changed 
independently, resulting in several different, smaller 
reduced mechanisms. Each of the obtained reduced 
mechanisms is investigated for consistency. If a 
mechanism is found not to be consistent, then the 
corresponding thresholds are considered to be too high, 
and this mechanism is discarded. 

B. Optimization for simulation time 

Simulations are carried out with all consistent 
mechanisms, and the errors and CPU times are recorded. 
Many different reduced mechanisms may have an error 
that is very close to the smallest error found. However, 
these mechanisms may have significantly different 
numbers of reactions, thus the required computing times 
for the simulations may vary considerably. The aim is to 

find the fastest one among all reduced mechanisms having 
similarly small errors. Mechanisms having errors not more 
than a few percent higher than the smallest error are 
investigated further. From all these mechanisms, the one 
having the smallest CPU time is accepted as the 
recommended reduced mechanism. 

IV. EXAMPLE 

Anthony Dean and his co-workers developed a large 
elementary reaction mechanism [26] in order to describe 
the homogeneous gas-phase chemistry in the anode 
channel of natural gas fuelled solid-oxide fuel cells 
(SOFCs). At the operation of the fuel cell, air is added to 
the natural gas to prevent deposit formation. Thus, the 
mechanism has to describe the partial oxidation of 
methane up to high conversion. The full reaction 
mechanism includes 345 species and 6874 irreversible 
reactions. This mechanism, due to its large size, cannot be 
used in reacting flow models for the optimization of fuel 
cell geometry and operating conditions. Our goal was to 
produce a reduced mechanism, which reproduces the 
simulation results of the original mechanism for all large 
concentration species within a few percent of error.  

The selected initial parameters were representative for 
the SOFC operation, that is temperature and pressure were 
chosen to be 900 °C (1173.15 K) and 1 atm (101325 Pa), 
respectively. The simulations were carried out at 
isothermal and isobaric conditions. The composition of 
the initial mixture was 30.0 % v/v methane and 70.0 % v/v 
air. 

Home-made Fortran codes were developed for the 
SEM-CM and SEM-PCAF calculations. Another series of 
Fortran codes were produced for the application of the  
various DRG and DRGEP methods, including the original 
DRG method [15], and also later improvements like linear 
time reduction [16], two-stage reduction (restart) [16] and 
DRGASA [18]. The applied DRGEP method included as 
options scaling and group-based coefficients [21]. The 
Connectivity Method was applied using a modified 
version of KINALC [25]. 

Species CH4, N2, O2, H2, H2O, CH2O, CO, CO2, C2H2, 
C2H4, C2H6 and benzene (C6H6) were considered 
important. The mole fraction of these species exceeded 
0.001 during the 1000 s simulation time. 

 Fig. 1 compares the best versions of all investigated 
methods. Considering the maximum errors as a function 
of the number of species, the classic Connectivity Method 
has the worst performance. At 5% required error, it leaves 
139 species in the reduced mechanism by eliminating 206 
species. DRGEP is usually better than the two-stage DRG 
(DRG restart). Using DRGASA, the error is increasing by 
eliminating more and more species, and this method 
results in a small mechanism of 57 species at 5% error. 
SEM-CM using depth level 1 gives a reduced mechanism 
of similar size. However, SEM-CM using high depth level 
(in this case up to depth level 256) is the best of all these 
methods, since it provided a 47-species reduced 
mechanism. 

In the DRG method, it is generally assumed that the 
simulation error decreases monotonically when threshold 
ε is lowered, provided that threshold ε is small (e.g. less 
than 0.2). It is true for the error of flux calculation, but not 
for the simulation error of the concentration profiles. Fig. 
2 shows that by decreasing epsilon the simulation error 
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decreases in large steps and also non-monotonically, while 
the number of species in the reduced mechanism increases 
in a monotonic way. The result is that almost the same 
simulation error can be obtained with mechanisms of very 
different size using the DRG method. This shows that in 
the DRG method several epsilon values should be tried 
and the resulting mechanisms should be checked by 
simulations.  

 

Fig. 1. Maximal simulation errors of the mechanisms as function of 

species number, obtained by the Connectivity Method (CM), DRG with 

restart, the basic DRGEP, DRGASA-improved results of the DRG-

restart method, and SEM-CM (depth levels 1+4+…+256). 

 

Fig. 2. Maximal simulation error and the number of species as a 

function of epsilon using the original DRG method. 

Table I shows the numerical results for the best versions 
of the DRG, DRGEP, CM and SEM-CM methods. 
DRGEP and CM required about 1 minute CPU time. Both 
DGRDASA and SEM-CM (depth level 1) required about 
10 minutes. SEM-CM (depth level 1+4+…+256) required 
about 10.5 hours on a desktop PC, but provided far the 
smallest reduced mechanism of 47 species and 613 
irreversible reactions. When SEM-PCAF was applied on 
the result of the SEM-CM reduction, the number of 
irreversible reactions could be reduced to 297. If the 
SEM-PCAF method is applied again on the mechanism 
obtained as the result of the combined SEM-CM and 

SEM-PCAF methods, then an even smaller mechanism is 
obtained, that consists of 246 reactions. 

The Table also indicates the speed-up of simulations as 
a result of mechanism reduction. SEM-CM (1+4+…+256) 
alone gave 58.4 times speed-up, while the increase of 
simulation speed is 103 times if the SEM-CM and SEM-
PCAF methods are combined. The simulation of the final 
reduced mechanism having 47 species and 246 reactions 
is 116 times faster, than that of the initial mechanism of 
345 species and 6874 reactions. 

TABLE I.  
PERFORMANCE OF THE MECHANISMS FOR THE REQUIRED 5%  MAXIMUM 

ERROR WITH THE SMALLEST POSSIBLE NUMBER OF SPECIES THAT CAN BE 

ACHIEVED BY EACH METHOD.  
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821 1172 2494 962 613 297 246 

Simulation 

time (s) 
0.720 1.32 4.87 0.875 0.465 0.263 0.233 

speed-up 

(×times) 
37.7 20.5 5.57 31.0 58.4 103 116 

 

V. DISCUSSION 

Previously published methods for species reduction 
include the Directed Relation Graph (DRG) method [15-
19], the DRG with Error Propagation (DRGEP) method 
[20-21] and the Connectivity Method [9]. These methods 
investigate the system of kinetic differential equations (or 
the reaction graph, which is an equivalent form) for the 
detection of redundant species and reactions in a large 
reaction mechanism. The size of the obtained reduced 
mechanism is controlled by a threshold, which cannot be 
related directly to the error of reduction, that is the 
deviation between the simulation results obtained by full 
and the reduced mechanisms. A range of reduced 
mechanisms can be obtained by systematically changing 
this threshold.  

In the mechanism reduction approach used in this 
paper, several thousands of reduced mechanisms are 
produced based on the investigation of the kinetic 
differential equations. Using the results of simulations, the 
best one is selected for a given level of error. This 
approach was implemented for the elimination of both the 
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redundant species (SEM-CM) and the redundant reactions 
(SEM-PCAF).  

Similar approaches have been published in the 
literature. Turányi [9] recommended the elimination of all 
consuming reactions of each species, one by one, and 
considering those species as redundant for which the 
simulation results of these reduced mechanisms remained 
within an error limit for the important species and/or 
important reaction features. This method could not predict 
the effect of the simultaneous elimination of species 
groups. Petzold and Zhu [11] generated reduced 
mechanisms using a nonlinear integer programming 
approach. The simulation error was calculated and used 
for the optimization process. The method worked well for 
few-step mechanisms, but for large mechanisms it was 
applicable only with many extensions and human 
decisions, like grouping of the reactions and pre-selection 
of the most important reactions.  

DRGASA [18] also has a similar reduction philosophy. 
Like in the Simulation Error Minimization Connectivity 
Method used in this paper, another method (DRG) is used 
as a guideline, reduced mechanisms are produced, and the 
final reduced mechanism is selected on the basis of the 

simulation results. This is the reason why DRGASA 
performs much better than the other DRG-based methods. 

According to the Simulation Error Minimization 
Connectivity Method (SEM-CM), a mechanism building 
procedure is initiated by creating a small consistent 
mechanism comprising the important species and their 
reactions with other species, extracted from the full 
mechanism on the basis of the normalized Jacobian.  

According to the PCAF method with Simulation Error 
Minimization (SEM-PCAF), several consistent reduced 
mechanisms are produced using the PCAF method [24] 
with various thresholds; then simulations are carried out 
with all the candidate mechanisms. The reduced 
mechanism having the least CPU time requirement is 
selected from the ones related to small errors of reduction. 
Application of the SEM-PCAF method after the SEM-CM 
halved the number of reactions and almost doubled the 
simulation speed.  

The suggested mechanism reduction methods were 
programmed in Fortran 90 and made fully automatic, thus 
these are readily applicable for the reduction of other 
reaction mechanisms. The code is available from our Web 
site [25].  
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Abstract—Mechanism reduction must work for the 
mechanisms being used in current kinetics research.  Recent 
mechanisms and their uses in combustion research are 
reviewed, attempting to quantify and limit the needs of new 
mechanism reduction techniques.  These mechanisms also 
provide an ongoing challenge to reduction practitioners.  

I. INTRODUCTION

Chemical kinetic reaction mechanisms have become 
essential parts of computational models for many types of 
practical combustion systems, ranging from flames and 
shock tubes to internal combustion engines, gas turbines 
and industrial furnaces.  Most practical combustors have 
complex geometries,  are essentially three dimensional 
and must be modeled with 2D or 3D fluid mechanics, and 
many such systems also feature other complex physics 
processes in addition to chemical kinetics.  In the past, 
most of the computer resources would be given to the 
CFD simulation, with sharply reduced or simplified 
treatments of most or all of the major physics and 
chemistry submodels.  However, in recent years, 
modeling approaches have become unwilling to sacrifice 
so much realism and accuracy in these submodels and 
have addressed problems in which one or more of these 
submodels provide important and complex interactions 
with the fluid mechanics.   

In this paper, one class of those submodels is discussed 
in detail, that of the detailed chemical kinetics of practical 
hydrocarbon fuels.  The focus will be not only on the 
complexity of the fuel combustion model but also on the 
features of some of the combustion problems of current 
importance and on the demands these problems place on 
the kinetics model.  Systematic reduction of the kinetics 
submodels must retain the ability to reproduce those 
essential features that were in the original kinetic model.   

II. SURROGATES FOR PRACTICAL FUELS 
   Current attention has been focused on developing 
kinetic mechanisms for practical, largely transportation 
fuels.  A recent publication by the US DOE [1] on Basic 
Research Needs for Clean and Efficient Combustion of 
21st Century Transportation Fuels noted that gasoline, 
diesel fuel, jet fuel, natural gas, and related transportation 
fuels consist of complex mixtures of hundreds or 
thousands of different chemical species, almost all of 

which have never had detailed kinetic mechanisms 
developed for them.  The most common strategy to deal 
with this dilemma is based on the observation that most 
of the chemical components in these practical fuels can 
be placed into one of a small number of structural classes, 
such as n-alkanes, olefins, aromatics, branched alkanes, 
and cyclic alkanes.  For example, one such analysis of 
samples of gasoline, jet fuel and diesel fuel is 
summarized in Figure 1. 

5

Gasoline 
has many 
branched 
alkanes

Gasoline is lower in
cycloalkanes

Jet fuel has the 
highest
n-alkane

Fig.1.  Compositions of some transportation 
fuels, sorted by structural classes

   Over the years, kinetic mechanisms have been 
developed and validated for one or more hydrocarbon 
species from each of these classes, and in some classes,  
especially that of n-alkanes and branched alkanes, 
mechanisms from many different species have been 
developed.  Some recent examples from our LLNL 
library  include n-alkanes including n-heptane [2] and all 
of the n-alkanes from n-octane through n-hexadecane [3], 
branched alkanes including iso-octane [4], the 5 structural 
isomers of hexane [5] and the 9 structural isomers of 
heptane [6], cyclic paraffins including cyclohexane [7] 
and methyl cyclohexane [8], aromatics such as toluene 
[9], and large olefins such as di-isobutylene [10] and the 
isomers of hexene [11].  There are many other 
mechanisms from different researchers that have 
comparable features.  Many other smaller examples of 
detailed mechanisms for species from most of these 
classes  in the range of C2-C5 also exist within larger 
detailed mechanisms.  These all provide an extensive 
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“palette” from which to build mixtures of species, for all 
of which detailed kinetic mechanisms exist, to reproduce 
the structural features of any desired realistic practical 
hydrocarbon fuel.   These representative fuels and the 
structural classes they represent are illustrated in Fig. 2. 

7

Fuel Surrogate Palette for Diesel

n-alkane
branched alkane
cycloalkanes
aromatics
others

butylcyclohexane
decalin

hepta-methyl-nonane

n-decyl-benzene
alpha-methyl-naphthalene

n-dodecane
n-tridecane
n-tetradecane
n-pentadecane
n-hexadecane

tetralin

Fig. 2.  Examples from each structural class for  
a sample of representative diesel fuel 

Progress towards construction of surrogate mixtures for 
diesel fuel [12], gasoline [13] and jet fuel [14] have all 
shown that a good surrogate includes one or, even better, 
several representatives from each structural class which is 
present in the real fuel in significant amounts.  Of course, 
the relative amounts of fuel in each class will be different 
for each type of practical fuel, to reflect the trends shown 
in Fig. 1.  In addition, it is widely recognized that the 
average fuel molecule size in gasoline is smaller than the 
average fuel molecule size in jet fuel, and both are 
generally smaller than in diesel fuels. 

III. MOLECULE SIZES AND MECHANISM SIZES 

As the size of a fuel molecule increases, the number of 
chemical species and elementary reactions grows rapidly, 
so the detailed reaction mechanisms require more 
computer resources and solution time to integrate to find a 
problem solution.  This growth in mechanism size is 
accompanied by a corresponding increase in the 
complexity of the kinetic problems that must be solved. 

Both the increased size of the mechanism and 
complexity of the desired solutions place greater demands 
on mechanism reduction strategies.  Some sample 
mechanism sizes are illustrated here: 

Fuel                        # species             # reactions 
Hydrogen       7        25 
Methane        30         200  
Propane      100         400 
Hexane       450       1500 
n-heptane      550       2450 
iso-octane     860       3600 
PRF (n-heptane+ 
        iso-octane)   990       4060 
n-decane      940       3900 
n-hexadecane     2116       8130 
methyl decanoate       3030       8580 
methyl stearate           2440                     12750 

IV.   PROBLEM NEEDS FROM MECHANISMS 

 Many of the combustion phenomena that must be 
solved involve autoignition.  Autoignition kinetics 
controls such phenomena as engine knock in spark 
ignition engines, ignition in diesel engines, and ignition is 
homogeneous charge, compression ignition (HCCI) 
engines.  In each case, the reacting gases pass through a 
low temperature regime, an intermediate temperature 
regime, and finally a high temperature regime in which 
the final ignition occurs.  The overall reaction pathway 
that controls all of these processes is the following:   

RH

R

RO2

QOOH

O2QOOH

olefin + HO2
cyclic ether + OH
olefin + ketene + OH

keto-hydroperoxide + OH

O2

O2

olefin + R

(low T branching)

RH

R

RO2

QOOH

O2QOOH

olefin + HO2
cyclic ether + OH
olefin + ketene + OH

keto-hydroperoxide + OH

O2

O2

olefin + R

(low T branching)

Fig. 3.  Reaction pathways for low and  
high temperature regimes 

Under these conditions, the gases go through a region of 
so-called negative temperature coefficient (NTC) of 
reaction, in which the overall rate of reaction and heat 
release can actually decrease with increasing reaction 
temperature.  The kinetic sources of this phenomenon are 
quite subtle and require a detailed simulation of a rather 
complicated series of reactions generally referred to as the 
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alkylperoxy radical isomerization reaction paths [15].  The 
kinetic description of this region has been shown to be the 
source of such features as octane and cetane numbers for 
hydrocarbon ignition [16] and reproduction of these 
features requires a model to include all of the key reaction 
sequences, most of which are strongly dependent on the 
molecular structure of the fuel molecule.  It is very 
challenging to devise a mechanism reduction algorithm 
that can reproduce all of these features.  The features are 
rather subtle and change the amounts of low temperature 
heat release by only a few degrees of temperature, but 
these small features make a large difference in the 
amounts of low temperature heat release that is observed 
and in the onset of ignition under practical conditions 
[17].   
 For example, a commonly used set of experiments that 
are used to validate hydrocarbon oxidation over a wide 
range of conditions are the shock tube experiments of 
Adomeit et al. [18,19] at Aachen in Germany.  In these 
experiments, stoichiometric mixtures of fuel and air are 
ignited at elevated pressures (i.e., 13.5 and 40 bar).  The 
ignition delay times depend on the initial temperature in a 
highly non-linear manner, as shown in Fig. 4. 

Fig. 4.  Shock tube ignition delay times for n-heptane and 
n-decane, from experiments [18,19] and model [3]. 

This behavior may seem outrageously academic and 
unimportant, but it is actually the key to understanding 
and predicting octane and cetane numbers and predicting 
ignition in HCCI engines.  For example, if two different 
fuels are used in a modern HCCI engine [20], the 
experimental and computed rates of heat release for those 
two fuels are shown in Fig. 5. 

Fig. 5.  Heat release rate as a function of crank angle in an 
HCCI engine for two fuels with different octane ratings. 

The fuel with lower octane, PRF80, releases heat at early 
times which advances ignition, while the iso-octane fuel, 
with a higher octane, does not have the same low 
temperature heat release and needs a higher intake 
temperature to ignite at the same temperature as the 
PRF80 fuel.  This behavior is important to the engine 
designer and must be reproduced in the detailed and in the 
reduced reaction mechanism.  
 Current kinetic mechanisms also can describe the limits 
of ignition properties in gasoline and diesel engines.  The 
metric commonly used in gasoline is the octane number, 
and the primary reference fuels for octane number are n-
heptane and iso-octane, one of which, n-heptane, indicates 
easy ignition and an octane number of zero, and  iso-
octane, which is very difficult to ignite and has an octane 
number of 100.  These fuels can be represented as follows 

At the same time, the reference fuels for cetane number, 
which measures ignition quality under diesel conditions, 
are n-hexadecane for the easily ignited fuel, and 
heptamethyl nonane, the difficult to ignite component 

The differences in ignition quality are due to structural 
differences that are, in turn, reflected in nuances in 
reaction rates that must be retained in a reduced 
mechanism that is derived from the fully detailed 
mechanism.   

V.  CONCLUSIONS 
 Historically, mechanism reduction has focused on 
larger scale phenomena in combustion phenomena, and on 
smaller hydrocarbon fuel molecules.  Recent advances in 
kinetic modeling have provided a much more detailed 
description of hydrocarbon combustion, with much larger 
mechanisms, and requiring description of much more 
detailed and more refined experimental phenomena.  Both 
of these trends create much greater demands on the 
process of mechanism reduction.  
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