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Abstract— The lattice Boltzmann (LB) method is a rel-
atively novel approach to numerical flow simulations, and
recent studies have proved that it is highly competitive to
traditional methods when simulating compressible and tur-
bulent flows (in terms of accuracy and efficiency). Although
this makes LB a good candidate for computing reactive
flows, applications in this field are still limited by the stiffness
of the governing equations and the large amount of fields
to solve. In this sense, the present study intends to provide
an effective tool for reactive flow simulations via the LB
method.

I. INTRODUCTION

Accurate modeling of reactive flows requires the so-
lution of a large number of conservation equations as
dictated by detailed reaction mechanism. In addition to
the sometimes prohibitively large number of variables
introduced, the numerical solution of the governing equa-
tions has to face the stiffness due to the fast time scales
of the kinetic terms. These issues make computations of
even simple flames time consuming, and have particularly
negative impact on the lattice Boltzmann method, whose
number of fields (distribution functions or populations) is
significantly larger than the number of conventional fields
(density, momenta, temperature, species mass fractions)
by a factor ranging from tens to hundreds for 2D and 3D
simulations. However, the dynamics of complex reactive
systems is often characterized by short initial transients
when the solution trajectories approach low-dimensional
manifolds in the concentration space, known as the slow
invariant manifolds (SIM). Thus, the construction of
SIM enables to establish a simplified description of a
complex system by extracting only the slow dynamics
and neglecting the fast.

The Method of Invariant Grids (MIG), based on the
concept of SIM, has been elaborated for combustion
applications with the aim of automating the model reduc-
tion procedure, and its realization follows two key steps.
First, an initial rough reduced description of the complex
chemical mechanism is constructed making use of the
notion of quasi equilibrium manifold (QEM). Second, the
latter initial approximation is iteratively refined until the
invariant grid is constructed. In fact, according to MIG,
the accurate reduced model (invariant grid) is the stable
fixed point of one of the following processes: Newton-like
iterations for solving the invariance condition regarded as
an equations, or relaxation due to a film equation of dy-
namics [1], [2]. Lately, the reduced model of the hydrogen

mechanism can be employed in a lattice Boltzmann code
for simulating laminar flames throughout a homogeneous
mixture.

II. REDUCED DESCRIPTION

In our study, the detailed mechanism of Li et al
[3] (9 species, 21 elementary reactions) for hydrogen
combustion is considered, and we search for a reduced
description with two degrees of freedom. To this end,
let us construct the 2D quasi equilibrium manifold for a
stoichiometric H2-air mixture under fixed pressure p =
1bar and enthalpy h̄ = 2.8kJ/kg, corresponding to the
temperature T0 = 300K for the stoichiometric unburned
mixture H2+0.5O2+1.88N2. A QEM is obtained solving
the following minimization problem:

min G
s.t.

∑
i

mi
jYi = ξj , j = 1, 2. (1)

Here, G represents the mixture-averaged entropy, and
the vector set {mj = (m1

j , ...,m
9
j )} is used to re-

parameterize the mass fractions Yi in terms of new vari-
ables ξj , which are expected to follow a slow dynamics.
Many suggestions for defining slow lumped variables in
chemical kinetics are known in the literature, and for
our purposes here we use the total number of moles
ξ1 and free oxygen ξ2, respectively (see, e.g., [4]). An
approximated solution to (1), computed making use of the
algorithm introduced in [5], is shown in Fig. 1, and it is
called quasi equilibrium grid (QEG). The corresponding
invariant grid is found by relaxation of the QEG Ω under
the following film equation of dynamics [1]

dΩ
dt

= ~f − P ~f, (2)

where ~f and P denote the vector of motion in the phase
space and a projector operator onto the manifold tangent
space, respectively. Following [1], here we adopt the
thermodynamic projector which enables to define the fast
motions toward the slow manifolds. Finally, the refined
grid, approximating the slow invariant manifold, is shown
in Fig. 2. More details can be found in the literature [6],
[7], [8].

III. LATTICE BOLTZMANN FOR REACTIVE FLOWS

We consider here the simplest lattice Boltzmann for-
mulation suitable for simulations of combustion. To this
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Fig. 1. Quasi equilibrium grid (QEG): Six coordinates function of the
parameters ξ1, ξ2.

0.04
0.045

00.0050.01
0

0.01

0.02

ξ2
ξ1

Y
H

2

0.04 0.045 0 0.005 0.01
0.05

0.1

0.15

0.2

ξ2
ξ1

Y
H

2O

0.042 0.044 0.046 0
0.01

0.020

0.01

0.02

ξ2

ξ1

Y
O

H

0.042 0.044 0.046 0
0.01

0.020

0.02

0.04

ξ2

ξ1

Y
O

0.042 0.044 0.046 0
0.01

0.02
0

2

4

6

8

x 10
−3

ξ2

ξ1

Y
H

0.04
0.045

0
0.005

0.01
0

2

4

x 10
−4

ξ2

ξ1

Y
H

O
2

Fig. 2. Invariant grid approximating the slow invariant manifold.

end, following the suggestion of Yamamoto et al [9],
reactive flows can be simulated with the lattice Boltzmann
method as reported below. Note, however, that more
elaborate and complete LB models for mixtures [10],
[11] and compressible flows [12] shall be taken into
account in the near future, too. According to the standard
terminology, LB schemes are denoted as DMQN, meaning
that N particles move on a M-dimensional lattice. In Fig.
3, the most popular one-dimensional lattice is shown,
where each distribution function is represented by its own
peculiar velocity eα. In the following, we briefly review
the LB algorithm with the BGK [13] collision model.
A single-component medium is described by a small set
of populations, which can be regarded as microscopic
properties of the fluid. On the contrary, macroscopic
quantities such as density and momentum (energy for
thermal cases) are given by different moments of those
populations. In terms of pressure distribution functions

D1Q3

e
mx

e
0

e
x

Fig. 3. 1-dimensional 3-velocities lattice: D1Q3.

pα, the LB equation takes the following discrete form at
the lattice node x:

pα (x + eα, t+ δt) = pα (x, t)−
1
τF

[pα (x, t)− peqα (p,u)] ,
(3)

where the equilibrium populations peqα read:

peqα = wαp

[
1 + 3

(
eαuT

)
+

9
2
(
eαuT

)2 − 3
2
u2

]
. (4)

The pressure p and the fluid velocity u are given by:

p =
∑
α

pα, u =
1
p0

∑
α

eαpα, (5)

where the reference pressure p0 = ρ0/3, with ρ0 denoting
the reference density of the LB model. Let δt be the
time step, the relaxation parameter τF is related to the
kinematic viscosity ν by (see, e.g., [14])

ν =
2τF − 1

6
δt. (6)

In general, the discrete velocities can be regarded as
the nodes of a Gauss-Hermite quadrature applied to the
Maxwell- Boltzmann distribution function, and each of
them is characterized by a proper weight wα.

According to [9], the flow field is not affected by
the chemical reaction, transport coefficients are constant
and Fick’s law applies to the diffusion. In this case, the
background flow is treated as an one-component medium
whose pressure populations evolution obeys (3). Let h̄0 be
a reference enthalpy, the evolution equations for enthalpy
and concentration of species i are written as

h̃α (x + eα, t+ δt)− h̃α (x, t) =

− 1
τh

[
h̃α (x, t)− h̃eqα

(
h̃,u

)]
+ wαQh,

(7)

Yiα (x + eα, t+ δt)− Yiα (x, t) =

− 1
τYi

[Yiα (x, t)− Y eqiα (Yi,u)] + wαQYi
,

(8)

where

h̃ = h̄
/
h̄0 =

∑
α

h̃α, Yi =
∑
α

Yiα, (9)

and the equilibrium populations h̃eqα , Y eqiα are expressed
as in (4) after replacing p with h̃ and Yi, respectively.
Assume t0 is a factor for converting physical time into
LB time units: (t)LB = (t)phys

/
t0, the source terms take

the explicit form

Qh =
1
h0

(
9∑
i=1

ω̇iWi

ρ̄
hi

)
t0δt, QYi

=
ω̇iWi

ρ̄
t0δt, (10)



Fig. 4. Schematic representation of the 1D setup.

where ρ̄ is the mixture-averaged density, while ω̇i, Wi, hi
denote the rate of change, molecular weight and enthalpy
of species i, respectively. The thermal diffusivity κ and
diffusion coefficient Di of species i are related to the
relaxation parameters as follows [14]

κ =
2τh − 1

6
δt, Di =

2τYi − 1
6

δt. (11)

IV. EXAMPLE: FREELY PROPAGATING FLAME

In the following, we consider a stoichiometric
hydrogen-air mixture entering an adiabatic channel (con-
stant cross section) under room conditions (T = 300K,
p = 1bar) at fixed velocity vin = 1.2m/s. A heat source
is placed at the outlet in order to ignite the mixture (see
Fig. 4). A flame front is formed and propagates upstream
since the laminar flame speed is larger than the flow
velocity.

For simplicity, we use the assumption of equal diffusiv-
ity D for all species and Lewis number Le = κ/D = 1. In
this case, the mixture enthalpy h̄ and the element fractions
remain constant throughout the domain, and the reduced
dynamics takes place along the invariant grid constructed
as discussed in the section II. Notice however that, the
latter assumption is not restricting and a generalization
is obtained by extending the invariant grid with enthalpy
and element fractions as additional degrees of freedom.
On the other hand, in premixed systems, those quantities
are conserved up to small fluctuations and, for such
applications, the invariant grid is often sufficient. Finally,
in low-Mach combustion, the pressure p can be considered
constant for most cases.

Under the latter assumptions, the equations (8) can be
written in terms of the slow manifold parameters ξ1, ξ2

as follows:

ξjα (x + eα, t+ δt)− ξjα (x, t) =

− 1
τξ

[
ξjα(x, t)− ξjeqα

(
ξj ,u

)]
+ wαQξj ,

(12)

where, the equilibrium populations for the reduced vari-
ables ξj read

ξjeqα = wαξ
j

[
1 + 3

(
eαuT

)
+

9
2
(
eαuT

)2 − 3
2
u2

]
,

(13)
and the source terms take the form:

Qξj =
9∑
i=1

mi
jQYi

, ξj =
9∑
i=1

mi
jYi. (14)

The setup of Fig. 4 was simulated by solving both the
detailed model (7), (8) and the reduced one (12). In the
latter case, the source terms Qξj are tabulated at each
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Fig. 5. Fields along the channel at a given time: detailed model
(continuous line) and reduced model (circles).
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Fig. 6. Flame front position vs time with the inlet velocity vin =
1.2m/s.

node of the invariant grid, and accessed through multi-
variate linear interpolation. When simulating the reduced
model, a remarkable saving, in terms of both memory
(one-quarter of the density functions are stored at any
lattice node) and number of time steps (δtreduced ∼=
35δtdetailed), can be achieved. Moreover, based on the
comparison in Fig. 5, we can argue that the suggested
methodology enables to perform detailed simulations with
high accuracy. Finally, in Fig. 6 the flame position is
shown as function of time. The flame is defined as the
point with the highest heat release Qh at a given time.
The linear dependence indicates that the flame moves at
constant speed given by: SL = slope + vin ∼= 2.26m/s.
The value of the burning velocity SL is in perfect ac-
cordance with the detailed model prediction (up to 2%)
and in a good agreement with experimental data (see, e.g.
[15]).

V. EXAMPLE: PREMIX COUNTERFLOW FLAMES

Here, we consider the so-called counterflow laminar
flame as a two dimensional benchmark of the suggested
methodology. A well premixed stoichiometric H2-air mix-
ture is uniformly ejected from two parallel stationary flat
nozzles, located at y = ±Ly . When properly ignited, the
fuel reacts generating two twin flames in this counterflow,
while the burned gas exits the domain along the x-
direction. As illustrated in the sketch of Fig. 7, under
the assumption of symmetrical flow with respect to the
stagnation lines x = 0 and y = 0, the computational



Fig. 7. Schematic representation of the 2D setup.
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Fig. 8. Detailed model using the D2Q9 lattice: O mass fraction
evolution

domain can be restricted to the region where x ≥ 0
and y ≥ 0, and simulations can be carried out using
the standard 2-dimensional lattice D2Q9. In both models
(detailed and reduced), the mixture, initially under room
temperature T0 = 300K, is ignited by placing a hot spot
at the origin of the reference system. Very good agreement
is demonstrated as reported in Figures 8 and 9, where the
time evolution of O radical concentration is shown.

VI. CONCLUSIONS

Here, we suggest a methodology for using accurate
reduced chemical kinetics in combination with a lattice
Boltzmann solver for simulating reactive flows. It has
been shown that the Method of Invariant Grids (MIG) is
suitable for providing the reduced description of chem-
istry, and this approach enables to cope with stiffness
when solving the LB species equations. This is particu-
larly desirable in the case of explicit solvers, and it results
in a remarkable speedup.
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evolution
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