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Abstract— This paper considers the ‘reduction’ problem
for large-scale distributed control systems. In particular,
we consider control-theoretic concepts for control systems
containing multiple instances of identical controllers or
components where the overall system is invariant with re-
spect to interchanging these identical components. The main
results are invariance of controllability, motion planning
and optimal control properties for an equivalence class of
symmetric systems of this type.

I. I NTRODUCTION

This paper considers nonlinear control-theoretic prop-
erties of large-scale distributed systems, which consist of,
perhaps many, interconnected subsystems. Since the size
of these systems can make analysis difficult or intractable,
the aim of this work is to exploit symmetry properties
of such systems to reduce their complexity. Unlike most
model reduction problems, the approach here isexact in
that some control-theoretic properties are equivalent in the
reduced order model and large model.

The type of symmetry we consider is when certain
subsystems of the overall system can be interchanged with
other subsystems without changing the dynamics of the
overall system. The general idea is that a distributed sys-
tem is comprised of sets of multiple, repeated instances of
identical hardware, which naturally can be interchanged.
We represent such symmetric distributed systems using a
graph-theoretic representation, as illustrated in Figure1.
Each node of the graph represents a subsystem of the
overall system, and if each of the nodes 2-11 are identical,
the system is characterized by anS10 symmetry (the
symmetric group of order10), which is a consequence
of the fact that each of the subsystems 2-11 can be
interchanged without altering the system.

When a subsystem is interchanged, the input/output
connections of the subsystem must match the input/output
connection of the replaced subsystem. For example,
consider a team of mobile robots working together to
manipulate an object. Suppose that each robot transmits
its horizontal position to one neighboring robot and its
vertical position to another. Clearly, if this robot is to
be replaced by a similar robot, the system would only
work if the correct,i.e., horizontal or vertical, position
is transmitted to the correct neighbor since each of the
neighbors are expecting and acting on a particular type of
information. For the system in Figure 1, for example, node
2 must interact with node 3 in the same manner that node
6 interacts with node 7, otherwise the dynamics of the
overall system will be altered if they were interchanged.
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Fig. 1. An eleven node distributed system.

The method presented in this paper constructs a formal
means of determining whether subsystems can be inter-
changed without altering the global system characteristics.
Furthermore, this method can be used to then determine
if a symmetric subsystem can be added without altering
some of the control-theoretic properties of the system.
In such a case, computations involving the “small” sym-
metric systems will provide a means to determine these
properties for larger, symmetric systems.

There have been many efforts toward controllability
of distributed systems [3], [5], [14], [1] and distributed
systems with symmetry [6], [15]. These efforts are limited
to linear systems; however, this paper considers fully non-
linear systems. There have also been many efforts toward
reducing nonlinear mechanical and control systems [8],
[9], [7], [10], [11], [2], [20], [21]. A similar approach
was considered by Tanaka [19], [18], [17]; again, those
results are limited tolinear controllability, as opposed to
the full nonlinear controllability considered in this paper.

II. D RIFTLESS SYMMETRIC NONLINEAR DISTRIBUTED

SYSTEMS

A. Nonlinear Distributed Systems

This overview is based upon our previous results
in [12]. We will consider smooth analytic driftless systems
of the form

Σ : ẋ = g1,1(x)u1,1 + g1,2(x)u1,2 + · · · (1)

+ g2,1(x)u2,1 + g2,2(x)u2,2 + · · ·

...



+ gn,1(x)un,1 + gn,2(x)un,2 + · · · x ∈M,

where M is a smooth manifold andgi,j are smooth
analytic vector fields onM . , andu = {u1, . . . , un} ∈ U ,
whereU is the set of admissible controls. We assume that
the set of admissible controls is a subset ofR

n such that,

Aff(U) = R
n,

where Aff(U) denotes the affine hull ofU . Since we are
considering distributed systems, the system is assumed to
be organized into subsystems, corresponding to which are
certain vector fields and control inputs. In Equation (1),
the first subscript on theg’s andu’s indexes the subsystem
to which the vector field and control input corresponds,
and the second subscript indexes different vector fields
and inputs within that subsystem. To avoid notational
clutter, if a vector field only has one subscript,i.e., gi(x),
then it represents theordered setof vector fields associ-
ated with nodei, i.e., gi(x) = {gi,1, gi,2, . . .}. Similarly,
ui would represent the ordered setui = {ui,1, ui,2, . . .}.
Any property defined for single-subscripted vector field
is understood to apply to each member in that set.

Elaborating further on the distributed nature of the
system, we assume thatM is partitioned into a set of
m regular submanifolds,Mi such thatM is the Cartesian
product of theMi, i.e.M =

∏m
i=1Mi. Each submanifold

Mi represents asubsystem, module, nodeor component
of the distributed system (all these terms will be used
interchangeably). For example, in a system of cooperating
robots, eachMi would represent the configuration space
for one robot in the system and{ui,1, ui,2, . . .} would be
the control inputs for that robot.

Since, it is often the case that the dynamics of any
one module or node is only affected by its own controller
and states as well as the control inputs and states of a
limited subset of the other nodes (usually its neighbors)
and to help aid in providing a clear presentation, we
will utilize a graph-theoretic representation of distributed
systems. Formally, we define the digraph of a nonlinear
control systemΣ, written asGΣ, to be the pair (V,E)
consisting of a set of verticesV = {V1, . . . , Vm} and
the set of edges, denoted byE, which are ordered pairs
of elements ofV. Each vertex represents one module
Mi, i.e., Vi = Mi. The edge directed fromVi to Vj ,
Ei,j = {Vi, Vj} ∈ E, represents a vector field which
maps elements of the verticesVi and Vj to the tangent
space of the end-point vertexVj i.e.,

Ei,j : Vi × Vj → TVj.

The edgeEi,j is the sum of thejth components of
the gi,k(x)’s from Equation 1 that multiply the control
inputs associated with nodei. If it is necessary to further
distinguish the edges by representing to which vector field
within the subsystem it is associated, a third subscript can
be added,i.e.,

Ei,j,k : Vi × Vj → TVj.

This edge,Ei,j,k, still maps between the same spaces, but
the third subscript indicates that it is thejth component of

gi,k. Again, to avoid unnecessary notational complexities,
we will often drop the third subscript (indexing to which
control input in nodei the vector fields is associated)
and useEi.j to represent theordered setof vector fields,
Ei,j = {Ei,j,1.Ei,j,2, . . .}.

Let Ṽi = {Vĩ1
, . . . , Vĩm

} be an ordered set of vertices
which are connected toVi by edges directed fromVi to
the elements of̃Vi and letẼi = {Ei,̃i1

, . . . , Ei,̃im
} be an

ordered set of edges directed fromVi to elements̃Vi. The
manner by which̃Vi andẼi are ordered is determined by
interactions and/or communications between nodes. Note
that orderingṼi imposes some topological structure on the
system; in particular, for nodes that can be interchanged,
theṼi sets must be ordered identically with respect to their
neighbors so that their interactions with adjacent nodes
are the same before and after they are interchanged to
maintain invariance of the overall system dynamics.

B. Symmetric nonlinear distributed systems

Now we will consider what it means for a nonlinear dis-
tributed system to be symmetric. This will be represented
by the fact that vector fields from various nodes will, in
some sense, be equivalent. Since the vector fields directed
from different nodes are defined on different spaces, we
need a definition of equivalence which is more than just
requiring that they be “identical.”

Definition 1: Two vector fields,g1 And g2 are equiv-
alent, denotedg1 ∼ g2, if there exists a diffeomorphism,
ψ : M 7→M , such that

ψ∗ ◦ g1 (W ) = g2 (ψ (W ))

whereW is an open set. Equivalently, we can define
Ei,j ∼ Ek,l by only considering thejth and lth com-
ponents ofgi andgk, respectively.

The definition of vector field equivalence applies to
general submanifolds without any assumptions regarding
the relationship between the coordinate systems defined
on different nodes; however, often each node will be
designed with a complimentary coordinate system so
that the diffeomorphism,ψ, in definition 1 is a simple
permutation of states and the open set,W , is the whole
domain of validity of the system equations. Equivalence
among vector fields can often be determined by inspec-
tion; however, this inspection is typically on an edge–
by–edge basis in contrast to the computational approach
involving the full control vector field.

Recall that the symmetric group of orderp!, denoted
Sp, is the group of permutations ofp objects and that
such a permutation of a setX = {1, . . . , p} is a one-to-
one mapping ofX onto itself. Such a permutationρ is
written

ρ =

(

1 2 · · · p

k1 k2 · · · kp

)

which represents that1 is mapped tok1, 2 is mapped
to k2, etc. Given an equivalence relation among vector
fields, we now define a symmetric nonlinear distributed
system.



Definition 2: Let asymmetry orbit, O ⊂ V, be a subset
of V containingp vertices,i.e.,O = {Vk1

, Vk2
, . . . , Vkp

},
let F = V \ O be the subset ofV containingn − p

fixed vertices,i.e., F = {Vf1
, . . . , Vfn−p

}, let Ṽkl
be the

ordered set of vertices connected toVkl
, and letρ ∈ Sp.

The systemΣ is asymmetric nonlinear distributed system
if

gki
∼ gρ(ki) ∀i ∈ {1, . . . , p} and∀ρ ∈ Sp.

Equivalently, a system is a symmetric nonlinear dis-
tributed system if

Ek,k̃l
∼ Eρ(k)l,ρ(k̃)l

and Ek̃l,k
∼ Eρ(k̃),ρ(k)l

,

∀k ∈ {k1, . . . , kp}, ∀l ∈ {1, . . . , (k̃l)m}, and∀ρ ∈ Sp.
Before we define nonlinear symmetric system equiva-

lence, we need to develop a technique which allows us
to compare the relative size of two systems. LetΣ1 and
Σ2 be symmetric nonlinear distributed systems and let
GΣ1

= {V1,E1} and GΣ2
= {V2,E2} denote their

corresponding digraphs. We say thatGΣ1
≥ GΣ2

if the
number of vertices inGΣ2

is greater than the number
of vertices in GΣ2

. Now nonlinear distributed system
equivalence is defined as follows.

Definition 3: Let Σ1 and Σ2 be symmetric nonlinear
distributed systems andGΣ1

≥ GΣ2
. Since each system

is a symmetric nonlinear distributed system there exist
symmetry orbitsO1 ⊂ V1 and O2 ⊂ V2 containingp
andq (p ≥ q) vertices, respectively,i.e.,

O1 = {V(k1)1 , V(k1)2 , . . . , V(k1)p
}

and
O2 = {V(k2)1 , V(k2)2 , . . . , V(k2)q

}.

The systemsΣ1 andΣ2 areequivalent symmetric nonlin-
ear distributed systemsif

1) Ek,(k̃l)1
∼ Ek,(k̃l)2

∀k ∈ {k1, . . . , kq}, ∀l ∈

{1, . . . , (k̃l)m}
2) F1 = V1\O1 andF2 = V2\O2 contain the same

number of vertices,i.e.,F1 = F2 = {V1, . . . , Vm},
and

3) Ek,(k̃l)1
∼ Ek,(k̃l)2

∀k ∈ {1, . . . ,m}, ∀l ∈

{1, . . . , (k̃l)m}.

Denote the equivalence class of systems defined by this
equivalence relation bȳΣ.

Equivalence between symmetric nonlinear distributed
systems requires that every member have an equivalent
input/output structure and the same number of fixed
nodes. Furthermore, corresponding elements ofẼi in each
system must be vector field equivalent. Note, not all
digraphs have the same number of vertices and edges, so
the comparison is only between elements that exist in each
digraph. To illustrate the notation used in the definition
of system equivalence, consider the following example.

III. R ESULTS

This section presents three main classes of results
for symmetric distributed systems. The first is related
to controllability, the second to a constructive motion

planning algorithm and the third to preliminary results
for optimal control of such systems.

A. Nonlinear Controllability

Given an open setW ⊆M , defineRW (x0, T ) to be the
set of statesx such that there existsu : [0, T ] → U that
steers the control system fromx(0) = x0 to x(T ) = xf

and satisfiesx(t) ∈ W for 0 ≤ t ≤ T , whereU is the set
of admissible controls. Define

RW (x0,≤ T ) =
⋃

0<τ≤T

RW (x0, τ). (2)

We will refer to RW (x0,≤ T ) as the set of states
reachable up to timeT .

Definition 4: A system issmall time locally control-
lable (‘STLC’, or simply ‘controllable’) if RW (x0,≤ T )
contains a neighborhood ofx0 for all neighborhoodsW
of x0 andT > 0.

Let C denote the smallest subalgebra ofV∞(M) (the
Lie algebra of smooth vector fields on a manifoldM
whose product is the Lie bracket,[·, ·]) that contains
g1, . . . , gm. If dim(C) = dimM at a pointx, then the
system described by Equation 1 satisfies theLie Algebra
Rank Condition(‘LARC’) at x. The following is well
known as ‘Chow’s Theorem.’

Theorem 5:If the system described by Equation (1)
satisfies the LARC at a pointx0 then it is STLC from
x0.

The following is the main controllability result.
Proposition 6: If any one member,Σn, of the equiva-

lence class of symmetric distributed control systems,Σ is
STLC, then all members of the equivalence class,Σi ∈ Σ
wherei > n of symmetric distributed control systems are
STLC.

The proof is a straight-forward construction that makes
use of the fact that diffeomorphisms are natural with
respect to Lie brackets. A similar theorem for nonlinear
systems with drift based on the usual good/bad bracket
test due to Sussmann [16] is similarly obtained.

B. Nonholonomic Motion Planning

Symmetries may be exploited in distributed systems for
motion planning purposes. Space limitations prevent their
inclusion here. An interested reader is referred to [13].

C. Optimal Control

The ultimate goal for considering the optimal control
problem are similar reduction results,i.e., solving the
optimization problem for a smaller system and using the
results for a larger system. Initial results related to the
bifurcations of optimal solutions appear in [4]. We adopt a
simplified version of the robotic unicycle as a prototypical
model. The simple kinematics of this kind of robot are
described by

ẋ = u1 (3)

ẏ = u2.

The problem is to find the controlsui1(t), ui2(t) for
each roboti which steer a formation of robots of this



type from the start configuration to its goal configuration,
while maintaining a rigid body formation at the beginning
and end of the trajectory and minimizing the global
performance index

J =

∫ tf

0

n
∑

i=1

(

(ui1)
2

+ (ui2)
2
)

+

n−1
∑

i=1

k
(

di − d
)2
dt

subject to the robotic kinematic constraints in Equation 3,
where n > 2 is the number of robots,di = ((xi −
xi+1)

2 + (yi − yi+1)
2)1/2 is the Euclidean distance from

ith to (i+ 1)th robots,d is the desired distance between
two adjacent robots, andk is a non-negative weighting
constant. The cost function minimizes a combination of
the control effort (first summation) and the deviation from
a desired formation (second summation). Bifurcations in
the nature and the form of the solutions are illustrated in
Figure 2 for a system of seven robots.
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