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Abstract— This paper considers the ‘reduction’ problem
for large-scale distributed control systems. In particula,
we consider control-theoretic concepts for control systes
containing multiple instances of identical controllers or
components where the overall system is invariant with re-
spect to interchanging these identical components. The nmai
results are invariance of controllability, motion planning
and optimal control properties for an equivalence class of
symmetric systems of this type.

I. INTRODUCTION

This paper considers nonlinear control-theoretic prop-
erties of large-scale distributed systems, which congjst o
perhaps many, interconnected subsystems. Since the size
of these systems can make analysis difficult or intractable,
the aim of this work is to exploit symmetry properties Fig. 1. An eleven node distributed system.
of such systems to reduce their complexity. Unlike most
model reduction problems, the approach herexactin

that some control-theoretic properties are equivalertén t The method presented in this paper constructs a formal
reduced order model and large model.

) . . means of determining whether subsystems can be inter-
The type of symmetry we consider is when certain

bsvst fih il svst be interch dwi hanged without altering the global system charactesistic
subsystems of the overall System can be interchangedwi urthermore, this method can be used to then determine

other subsystems without changing the dynamics of thﬁ a symmetric subsystem can be added without altering

overall system. The general idea is that a distributed syss—fome of the control-theoretic properties of the system.

_tem IS comprised of set_s of multiple, repeate_d Instances 9h such a case, computations involving the “small” sym-
identical hardware, which naturally can be interchanged, . . . : .
N >~ “metric systems will provide a means to determine these
We represent such symmetric distributed systems using a . :
raph-theoretic representation, as illustrated in Fidure properties for larger, symmetric systems.
grap P ' du There have been many efforts toward controllability
Each node of the graph represents a subsystem of t &

- i . distributed systems [3], [5], [14], [1] and distributed
overall system, and if each of the nodes 2-11 are identica . o
the system is characterized by o symmetry (the ystems with symmetry [6], [15]. These efforts are limited

) L to linear systems; however, this paper considers fully non-
symmetric group of ordet0), which is a consequence y pap y

linear systems. There have also been many efforts toward
.Of the fact tha.t each of.the subsystems 2-11 can b(Feducing nonlinear mechanical and control systems [8],
interchanged without altering the system.

When a subsystem is interchanged, the input/outp o1 [7], [10], 111, [2], [20], [21]. A similar approach

" fh bsvst t match the inout/out as considered by Tanaka [19], [18], [17]; again, those
connections ot the subsystem must match the inputiou PYLsults are limited tdinear controllability, as opposed to
connection of the replaced subsystem. For exampl

&he full nonlinear controllability considered in this e
consider a team of mobile robots working together to Y pap

manipulate an object. Suppose that each robot transmit$. DRIFTLESS SYMMETRIC NONLINEAR DISTRIBUTED
its horizontal position to one neighboring robot and its SYSTEMS

vertical position to another. Clearly, if this robot is to A  Nonlinear Distributed Systems

be replaced by a similar robot, the system would only
work if the correct,i.e., horizontal or vertical, position

This overview is based upon our previous results

) . ) . in [12]. We will consider smooth analytic driftless systems
is transmitted to the correct neighbor since each of the [12] Y Y

. . . . (?f the form
neighbors are expecting and acting on a particular type o
information. For the system in Figure 1, for example, nodex : & = g1 1(x)u11 + g12(x)ure + - (1)
2 must interact with node 3 in the same manner that node + gon(@)us + gro(@)uss + -

6 interacts with node 7, otherwise the dynamics of the
overall system will be altered if they were interchanged.



+ gna(@)un1+ gn2(@)un2+--- x €M, g5 Again, to avoid unnecessary notational complexities,
where M is a smooth manifold and,; are smooth we will then Qrop the'thlrd subscrlpt (mdgxmg to yvh|ch
' control input in nodei the vector fields is associated)

analytic vector fields od/. , andu = {uq,...,u,} € U, .
wherel{ is the set of admissible controls. We assume tha%nd useF;.; to represent therdered sebf vector fields,

. . i, :iEi,j,l-Ei,j.,Qv'-'}-
the set of admissible controls is a subseRdéfsuch that, Let 7, — {V;1, " -,ng} be an ordered set of vertices

Aff(U) =R, which are connected tb; by edges directed from¥; to
the elements of; and letE; = {E,; ,...,E,; } be an
%dered set of edges directed framto elementd/;. The
fpanner by which/; and E; are ordered is determined by

where Aff(i{) denotes the affine hull dff. Since we are
considering distributed systems, the system is assumed

be organized into subsystems, corresponding to which al i A
interactions and/or communications between nodes. Note

certain vector fields and control inputs. In Equation (1), h derindy: i oqical h
the first subscript on thg's andu’s indexes the subsystem that or e_”ngvi IMpOSes some topologica strqcture on the
system; in particular, for nodes that can be interchanged,

to which the vector field and control input corresponds,

and the second subscript indexes different vector fieldgqetvi sets must be ordgrgd ident.ically V\_’ith re;pect to their
and inputs within that subsystem. To avoid notationape'ghbors so that their interactions with adjacent nodes

clutter, if a vector field only has one subscripé,, gi(z), are the same before and after they are interchanged to

then it represents therdered sebf vector fields associ- Maintain invariance of the overall system dynamics.

ated with node, i.e., g;(x) = {9i1,gi,2, - - -} Similarly,

u; would represent the ordered set= {u;1,u;z2,...}.

Any property defined for single-subscripted vector field Now we will consider what it means for a nonlinear dis-

is understood to apply to each member in that set. tributed system to be symmetric. This will be represented
Elaborating further on the distributed nature of theby the fact that vector fields from various nodes will, in

system, we assume that is partitioned into a set of some sense, be equivalent. Since the vector fields directed

m regular submanifolds)/; such thatM is the Cartesian from different nodes are defined on different spaces, we

product of theM;, i.e. M = [[“, M;. Each submanifold need a definition of equivalence which is more than just

M; represents aubsystemmodule nodeor component requiring that they be “identical.”

of the distributed system (all these terms will be used Definition 1: Two vector fieldsg; And g, are equiv-

interchangeably). For example, in a system of cooperatinglent, denotedg; ~ go, if there exists a diffeomorphism,

robots, each\/; would represent the configuration space : M — M, such that

for one robot in the system ar{di; 1, u; 2, ...} would be

the control inputs for that robot. Yo g1 (W) = g2 (¥ (W))

Since, it is often the case that the dynamics of AN\ here W is an open set. Equivalently, we can define

one module or node is only affected by its own controller o )
! E; ; ~ Ei; by only considering theth andith com-
and states as well as the control inputs and states of 6” ki DY Oy g

limited subset of the other nodes (usually its neighbors onents Of.gi. ?ndgk’ respectl.vely. . .
oy - . The definition of vector field equivalence applies to
and to help aid in providing a clear presentation, we

will utilize a graph-theoretic representation of distiibd general submanifolds without any assumptions regarding

systems. Formally, we define the digraph of a nonlinethe relationship between the coordinate systems defined

. : on different nodes; however, often each node will be
control systemy, written asGs, to be the pair V,E) . . . X
o ; designed with a complimentary coordinate system so
consisting of a set of vertice¥ = {V3,...,Vn} and that the diffeomorphismy), in definition 1 is a simple
the set of edges, denoted B, which are ordered pairs P ' b

of elements of V. Each vertex represents one module permqtatlon O.f _states and the open Séf‘t Is the vyhole
M;, e, V; = M, The edge directed fron¥; to V/, domain of validity of the system equations. Equivalence

E., — {V,,V;} € E, represents a vector field which among vector fields can often be determined by inspec-

maps elements of the verticés and V; to the tangent tion; howe"ef' t.h|s inspection is typically on an edge—
. . by—edge basis in contrast to the computational approach
space of the end-point vertéx i.e.,

involving the full control vector field.

Ei; :VixV; =TV;. Recall that the symmetric group of ordgl, denoted
Sp, is the group of permutations of objects and that
such a permutation of a sé&f = {1,...,p} is a one-to-
one mapping ofX onto itself. Such a permutation is
e{vritten

B. Symmetric nonlinear distributed systems

The edgeFE,;; is the sum of thejth components of
the ¢, x(z)'s from Equation 1 that multiply the control
inputs associated with nodelf it is necessary to further
distinguish the edges by representing to which vector fiel 1 9
within the subsystem it is associated, a third subscript can p=

. ki ke - Ky
be addedi.e.,
which represents that is mapped tok;, 2 is mapped
to ko, etc Given an equivalence relation among vector
This edge E; ; 1, still maps between the same spaces, bufields, we now define a symmetric nonlinear distributed
the third subscript indicates that it is thith component of system.

Ei,j,k : ‘/z X ‘/J — T‘/J



Definition 2: Let asymmetry orbjtO C V, be a subset planning algorithm and the third to preliminary results
of V containingp verticesj.e.,O = {Vi,, Vi,,..., Vs, },  for optimal control of such systems.
let F = V \ O be the subset o/ containingn — p

fixedvertices,i.e., F = {Vy,,..., Vs, _ 1, let Vi, be the A. Nonlinear Controllability

ordered set of vertices connectedity, and letp € S,.. Given an open sét C M, defineR" (xo, T) to be the
The systent: is asymmetric nonlinear distributed system Set of statesc such that there exists : [0, 7] — U that
if steers the control system from(0) = x¢ to z(T") = x;
and satisfies:(t) € W for 0 < ¢ < T, wherel{ is the set
Gk ~ Yok Vi€ {l,...,p} andVp € 5. of admissible controls. Define
E_quivalently, a system is a symmetric nonlinear dis- RV (20,<T) = U RY (0, 7). 2)
tributed system if 0<r<T
Epm ™~ Ep(k)pp(,;)l and Ej , ~ Ep(,;)w(k)“ We will refer to RW (z9,< T) as the set of states
- reachable up to timég".
Vk € {ki,....ky}, V€ {1,...,(ki)m}, andVp € S,,. Definition 4: A system issmall time locally control-

Before we define nonlinear symmetric sy_stem equivajgple (‘'STLC’, or simply ‘controllable’) if RV (z, < T)
lence, we need to develop a technique which allows Ugsntains a neighborhood af for all neighborhood§y’
to compare the relative size of two systems. bgtand 5 2o andT > 0.

Y5 be symmetric nonlinear distributed systems and let | gt ¢ denote the smallest subalgebralote (M) (the
Go, = {V1,Eq} and Gy, = {V2,Ez} denote their e aigebra of smooth vector fields on a manifald
corresponding digraphs. We say that, > Gs, if the  \yhose product is the Lie brackef,-]) that contains
number of vertices inGs, is greater than the number g1s-..,gm. If dim(C) = dimM at a pointz, then the
of vertices ings,. Now nonlinear distributed system gystem described by Equation 1 satisfies ltiee Algebra
equivalence is defined as follows. _ _ Rank Condition('LARC’) at z. The following is well

Definition 3: Let X; and X; be symmetric nonlinear nown as ‘Chow’s Theorem.’

distributed systems andy, > Gs,. Since each system  Thegrem 5:If the system described by Equation (1)

is a symmetric nonlinear distributed system there existatisfies the LARC at a point, then it is STLC from
symmetry orbitsO; C V; and Oz C V3 containingp

. 4 Zo.
andq (p > q) vertices, respectively,e., The following is the main controllability result.
01 = {Virys Viknyas - > Vikn), } Proposition 6: If any one mgmberEn, of the equiva-
lence class of symmetric distributed control systemss
and STLC, then all members of the equivalence classe X
O2 = {Vika)1s Vika)as - -+ Vika)o - wherei > n of symmetric distributed control systems are
STLC.

The systemsl; and; areequivalent symmetric nonlin-
ear distributed systemis

1) Ek-,(l;l)l :‘“ Ekv(];l)2 Vk S {kl,...,kq},vl S

The proof is a straight-forward construction that makes
use of the fact that diffeomorphisms are natural with
respect to Lie brackets. A similar theorem for nonlinear

{Los (B)m} ) systems with drift based on the usual good/bad bracket
2) F1=V1\0; andF; = V2\ O, containthe same (et due to Sussmann [16] is similarly obtained.
number of vertices,e.,F; = Fa = {V4,..., Vi, },
and B. Nonholonomic Motion Planning
3) Ek_’(,;l)l ~ Ek_’(,;l)Q Vk € {1,....,m},Vl € Symmetries may be exploited in distributed systems for
{1,..., (]}l)m}_ motion planning purposes. Space limitations prevent their
Denote the equivalence class of systems defined by thigclusion here. An interested reader is referred to [13].
equivalence relation by. C. Optimal Control

Equivalence between symmetric nonlinear distributed : L .
. . The ultimate goal for considering the optimal control
systems requires that every member have an equivalent

. ! roblem are similar reduction resultse., solving the
input/output structure and the same number of fixed ..” = . .
. = optimization problem for a smaller system and using the
nodes. Furthermore, corresponding elements;ah each o
X . results for a larger system. Initial results related to the
system must be vector field equivalent. Note, not all

; . bifurcations of optimal solutions appear in [4]. We adopt a
digraphs have the same number of vertices and edges, sO_ ... ; ) . ;

: : o implified version of the robotic unicycle as a prototypical
the comparison is only between elements that exist in eac

digraph. To illustrate the notation used in the definitioandeI' The simple kinematics of this kind of robot are

of system equivalence, consider the following example. described by

y = u3.

IIl. RESULTS

This section presents three main classes of results
for symmetric distributed systems. The first is relatedThe problem is to find the controls,, (¢),u;,(t) for
to controllability, the second to a constructive motioneach robot; which steer a formation of robots of this



type from the start configuration to its goal configuration,
while maintaining a rigid body formation at the beginning
and end of the trajectory and minimizing the global
performance index

J= /Otf é ((uil)2 + (ui2)2) + :l_illk (di — 3)2 dt

subject to the robotic kinematic constraints in Equation 3,
wheren > 2 is the number of robotsd; = ((z; —
zi41)? + (yi — yige1)?)Y/? is the Euclidean distance from
ith to (i + 1)th robots,d is the desired distance between
two adjacent robots, and is a non-negative weighting
constant. The cost function minimizes a combination of
the control effort (first summation) and the deviation from
a desired formation (second summation). Bifurcations in
the nature and the form of the solutions are illustrated in
Figure 2 for a system of seven robots.
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Fig. 2. Bifurcation diagrams for a 7-robotic sys-
tem, robots 1 through 7, respectively.
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