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Abstract— A 22-D glycolysis model is analyzed with CSP,
when it exhibits an oscillatory (limit cycle) behavior. Due to
the action of a number of fast dissipative timescales and of
significant decouplings, it is shown that the limit cycle lies
in a 3-D subdomain.

I. INTRODUCTION

The construction of complex mathematical models
in biology and genetics demands the development of
particular algorithmic tools for the acquisition of the
desired physical understanding. As a result, a number of
methodologies have recently been developed in order to
construct simplified models that are of low dimension but
retain all the significant features of the full model. These
methodologies have been employed successfully for the
analysis of a large number of problems in the field of
biochemistry, e.g. [1]-[5].

Simplification of large and complex nonlinear math-
ematical models is mainly based on the presence of
very fast dissipative time scales, which quickly become
exhausted, allowing slower scales to characterize the
evolution of the physical process. These fast time scales
do not affect the progress of the system directly, but they
simply constrain its evolution in a low dimensional space.
This situation is usually defined as stiffness and the low
dimensional space, where the system evolves according
to the slow time scales, is defined as a slow manifold.

Here, the CSP algorithm [6], [7] will be employed for
the analysis of a model describing the glycolysis cycle
of intact yeast cells as a homogeneous two-phase (intra-
cellular/extracellular) system [8]; the kinetics of which
involves 24 reactions among 22 metabolites, as shown
in Table I. Being one of the most significant topics in
biochemistry, glycolysis has been the subject of extensive
study.

For the 22-dimensional glycolysis model and the os-
cillatory regime examined here, CSP analysis shows that
the long term evolution takes place along a 3-dimensional
limit cycle. This feature is the result of (i) the existence
of two conservation laws, (ii) the development of ten
dissipative fast time scales, which force the trajectory to
move on a 10-dimensional slow manifold and (iii) the
effective decoupling on this manifold of three dimensions
from the remaining seven; the latter being practically
decoupled from all other dimensions of the problem as
well.

TABLE I
REACTIONS IN THE DETAILED MODEL [8]

1 ↔ Glcx

2 Glcx ↔ Glc
3 Glc + ATP → G6P + ADP
4 G6P ↔ F6P
5 F6P + ATP → FBP + ADP
6 FBP ↔ GAP + DHAP
7 DHAP ↔ GAP
8 GAP + NAD+ ↔ BPG + NADH
9 BPG + ADP ↔ PEP + ATP
10 PEP + ADP → Pyr + ATP
11 Pyr → ACA
12 ACA + NADH → EtOH + NAD+

13 EtOH ↔ EtOHx

14 EtOHx →
15 DHAP + NADH → Glyc + NAD+

16 Glyc ↔ Glycx

17 Glycx →
18 ACA ↔ ACAx

19 ACAx →
20 ACAx + CN−x →
21 ↔ CN−x
22 G6P + ATP → ADP
23 ATP → ADP
24 ATP + AMP ↔ 2 ADP

II. THE LIMIT CYCLE

The governing equations are of the form of the N-dim.
system:

dy
dt

= Q−1
(
S1R

1 + ...+ SNR
N

)
= g(y) (1)

where the elements of the N-dim. column vector y are the
concentrations of the metabolites (mM), t is time (min),
the N-dim. column state vector Sk and the scalar Rk

denote the stoichiometric vector and rate, respectively, of
the k-th reaction (see [8] for the expressions for the reac-
tion rates). The N ×N matrix Q is diagonal, its entries
equaling either unity for the intracellular metabolites or
the ratio of the extracellular volume to the total volume
of intracellular cytosol, yvol, for the extracellular ones.

The oscillatory behavior of the glycolysis model is
displayed in Fig. 1, where the evolution of the concen-
tration of nicotinamide adenine dinucleotide (NADH) for
the period 0 < t < 100 min is displayed; the behavior
of the other metabolites being similar. This oscillatory
motion develops as various transient components die-out,
is characterized by a frequency ωch = 2π/T ≈ 10 min−1

and evolves around a limit cycle. As is depicted in Fig. 2,
for the interval 450 < t < 500 min in which all fast



initial transients are exhausted, fully oscillatory motion is
established along a limit cycle at sufficiently long times;
the structure of the cycle suggesting that it occupies a
low-dimenisional subspace.
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Fig. 1. The evolution of the NADH concentration (mM) with time
(min) during the period 0 < t < 100 min. On the right, magnification
when fully oscillatory motion is established.
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Fig. 2. The trajectory on the [Glc] - [ATP ] and the [Glc] - [GAP ]
planes, during the period 450 < t < 500 min.

III. CSP RESULTS

Using CSP, various simplified models can be con-
structed when the solution evolves along the limit cycle,
providing different levels of accuracy. Shown in Fig. 3 is
the accuracy provided when six or ten fast modes are
considered exhausted (M=6 or 10). Since τ11 ≈ ωch,
M=10 provides the maximum simplification possible.
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Fig. 3. M=6, 10. The relative error of [ATP ] and [GAP ] when
comparing the solutions of the full and simplified models.

The better accuracy provided by the M=6 simplified
model, relative to the one provided by the M=10 one, is
due to the fact that a larger time scale gap exists in this
case; i.e., τ6/τ7 is smaller than τ10/τ11.

Considering the M=10 case, CSP data indicate that the
ten fast time scales affect the most the ten variables:

yr = ([BPG], [GAP ], [AMP ], [PEP ], [F6P ],
[NADH], [DHAP ], [ACA], [Glc], [EtOH])T

where [X] denotes the concentration of X in mM , the
rates of change of which relate to that of the remaining

twelve variables with the relation:

dyr

dt
= Gr

s

dys

dt
(2)

where Gr
s is a N ×M matrix [9] and

ys = ([ATP ], [G6P ], [ADP ], [FBP ], [NAD+],
[Glyc], [Pyr], [Glcx], [EtOHx], [Glycx],
[ACAx], [CN+

x ])T
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Fig. 4. M=10. The evolution in time (min) of the M components
in the LHS of Eq. (2) and the most important additive terms of the
corresponding components in the RHS; i.e. gi (i=1,M) and of the largest
Gi

kgk (k-1,N-M).

Shown in Fig. 4 are the ten components in the LHS of
Eq. (2) along with the most important additive terms of
the corresponding components in the RHS. Inspection of
the displayed data reveals that the rate of change of the



variables in yr depends on the rate of change of only five
elements of ys, namely:

ys1 = ([ATP ], [G6P ], [ADP ], [FBP ], [NAD+])T

being independent on the rate of change of the rest:

ys2 = ([Glyc], [Pyr], [Glcx], [EtOHx], [Glycx],
[ACAx], [CN+

x ])T

Further analysis indicates that the rate of change of ys2

decouples not only from yr but from ys1 too. The validity
of this statement is demonstrated by the results displayed
in Fig. 5, where the solution of the original model is
compared with that of a perturbed model; the latter
consisting of the original model in which the magnitude
of the rate of change of the variables in ys2 is increased
by 20% for all times after t = 25 min. Both solutions
were computed on the basis of initial conditions lying on
the limit cycle.
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Fig. 5. The effects on the concentration of the metabolites in ys2

([Glyc], [Pyr]), yr ([BPG], [GAP ]) and ys1 ([ATP ], [NAD+])
of a 20% perturbation in the magnitude of the rate of change of the
seven components in ys2 imposed from t = 25.

In other words, in the perturbed model the governing
equations for yr and ys1 are similar to the ones in the
original model, while the governing equation for ys2 is
initially, up to t = 25 min, similar to that of the original
model, say:

ys2

dt
= gs2(yr,ys1,ys2) = gs2(y) (3)

being replaced for all subsequent times, t ≥ 25 min, by
the equation:

ys2

dt
= 1.20 gs2(yr,ys1,ys2) = 1.20 gs2(y) (4)

The results displayed in Fig. 5 show that the per-
turbation imposed from t = 25 is immediately felt
by the components in ys2, such as [Glyc] and [Pyr].
Regarding the components in yr, such as [BPG] and
[GAP], Fig. 5 verifies that the imposed perturbation has
no effect on them. Moreover, Fig. 5 indicates that the
imposed perturbation has no effect in the components of
ys1, such as [ATP ] and [NAD+].

These results indicate that a 5-dimensional simplified
model can be constructed for the accurate simulation of
the glycolysis process along the limit cycle.. This size
can be further reduced by taking into account the two
conservation laws:

[NAD+] + [NADH] = const.
[ATP ] + [ADP ] + [AMP ] = const.

that involve variables in yr and ys1, so that a 3-
dimensional simplified model can be constructed, involv-
ing the rate of change of [ATP], [G6P] and [ADP] only.

IV. CONCLUSIONS

A demonstration on the usefulness of the N × M
matrix Gr

s was presented, in identifying the couplings
operating along the limit cycle. This matrix, measuring
the sensitivity of the variables in yr with respect to those
in ys [9], identifies the couplings enforced by the fast
time scales as the solution relaxes and then moves on the
slow manifold.
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