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Abstract— The dynamics of proteins can be described
as the superposition of motions at a continuum of time
scales. In the special case of a protein immersed in an
implicit solvent, a stochastic differential equation (SDE) can
model the dynamics of the solute protein. Traditional model
reduction techniques fail because a priori characterization
of the slow variables in these SDEs is nearly impossible. We
present an approach that instead, does a local dimensionality
reduction of the SDE in a neighborhood of phase space,
which is adaptively performed when the reduced model is
no longer valid. The local slow variables, which we call
approximate normal modes (ANM), are found using the
diagonalization of a coarse-grained Hessian (CGH) from the
potential energy function. We call this procedure coarse-
grained normal mode analysis, or CNMA. Diagonalization
of the CGH can be achieved in O(N log N) time and O(N)
memory rather than O(N3) time and O(N2) memory of
ordinary diagonalization. CNMA is able to capture the low
frequency motions of the protein. An SDE on the ANM is
found by using a saddle-point approximation of the mean
fast-frequency force experienced by the slow variables, and
an implicit solvent model that considers the protein as
a Brownian particle. This mean force can be computed
at a cost no greater than a fine-grained force evaluation.
Discretization of the resulting SDE achieves very long time
steps compared to the discretization of the fine-grained SDE.
A metric is used to monitor the validity of the ANM as
slow variables and prompt re-diagonalization of the CGH
or adaptation of the time step used. I will present numerical
results on small peptide and protein system that show that
this coarse-graining scheme allows up to three orders of
magnitude speedup due to increase in the SDE discretization
time step, and that the scheme is able to preserve kinetics
when compared to the fine-grained SDE.

I. INTRODUCTION

Proteins are polymers of mostly naturally occurring
aminoacids. Proteins are molecular machines, and as
any machine, they must move in order to function.
Understanding protein motion or dynamics is critical to
solving problems as diverse as protein folding, functional
conformational changes, and to computationally predict
the effectiveness of drugs that target proteins. Simu-
lating protein dynamics remains very challenging. The
most straightforward approach, molecular simulation of
Newton’s equations of motion using standard atomistic
models, quickly runs into a significant sampling problem
for all but the most elementary of systems. While small
proteins fold or have biologically relevant conformational
changes on the microseconds to second timescale, detailed
atomistic simulations are currently limited to the nanosec-
ond regime, with a few “heroic” simulations breaking the
microsecond timescale.

The fundamental challenge to overcome is the presence
of multiple time scales: typical bond vibrations are on the
order of femtoseconds (10−15 sec) while proteins fold
on a time-scale of microsecond to millisecond. This is a
1012 difference in time scales! We tackle the problem of
developing timescale-coarse-grained models of proteins
to understand their thermodynamics (e.g. statistical prop-
erties) and kinetics (e.g. rates). Among other multiscale
problems, coarse graining dynamical protein models in a
rigorous and computationally tractable way is particularly
challenging. Two specific difficulties can be identified.

The identification of the slowest variables in the system
(e.g. associated with the slowest time scales and transi-
tion rates) is to a large extent an unresolved problem.
Even when people agree on a specific definition, the
actual computation can be intractable. This is the case
for example if one attempts to calculate the committor
function, the probability at a given point that the protein
folds rather than unfolds, by brute force. This is typ-
ically done by starting many trajectories from a given
point and directly computing how many fold the protein.
Additionally, computing dynamics of the slow variables
is non-trivial because they are intricately coupled to the
fast variables. In other words, there is in general no
timescale separation. In protein modeling, there is a dense
spectrum of frequencies due to the highly coupled nature
of the force field. Unfortunately, most multiscale methods
start by assuming that it is in fact possible to extract
variables whose time scale is significantly slower than
the rest. Some of the unresolved variables will have time
scale (faster but) comparable to time scales of some of
the resolved variables. No sharp cutoff can be found.
Therefore special techniques need to be developed to go
beyond the time scale separation approximation.

II. COARSE-GRAINED NORMAL MODE LANGEVIN
DYNAMICS (CNML)

Rather than attempting to identify slow variables that
are valid globally, our approach is based on adaptively
identifying slow variables valid locally. Once these slow
variables have been identified, we derive a SDE where the
effect of fast variables is described through average and
fluctuating forces. We discretize this SDE, which allows
much longer time steps than the original fine-grained
equations of motion. Whenever these slow variables are
no longer valid, defined by a metric explained below,
we identify a new set of slow variables, or alternatively
adapt the time step for the solution of the SDE. Earlier,



we presented an approach using similar slow variables
and SDE, but that attempted no adaptive dimensionality
reduction in [7]. Our current approach is more robust and
scalable.

Choice of slow variables. Our slow variables are ap-
proximate low-frequency normal modes (ANM) derived
from a coarse-grained Hessian (CGH). Normal modes
are the eigenvectors of the Hessian matrix of the poten-
tial energy U at an equilibrium or minimum point x0

with proper mass normalization. More formally assume
a system of N atoms with 3N Cartesian positions and
diagonal mass matrix M. To perform the normal mode
analysis (NMA) for these systems we can formally expand
the potential energy about an equilibrium point, which
we assume to be a local minimum. The Hessian H is
a factor in the first non-constant, non-zero term of this
expansion and a harmonic approximation to the original
system can be found by truncating the expansion at this
point. To rewrite the harmonic approximation as a set
of decoupled oscillators it is insufficient to diagonalize
the Hessian as the resulting oscillators would be coupled
through the projected mass matrix. Instead we mass re-
weight the system using and then diagonalize the resulting
mass re-weighted Hessian, M− 1

2 HM− 1
2Q = QΛ, where

Λ is the diagonal matrix of ordered eigenvalues and
Q the matrix of column eigenvectors e1, · · · , e3N . The
frequency of a mode is equal to

√
|λ| where λ is the

eigenvalue. If we choose a cut-off frequency
√
λi to

partition the normal modes such that Q = [Q, Q̄],Q =
[e1, · · · , ei] and Q̄ = [ei+1, · · · , e3N ] are rectangular
matrices whose columns span a slow subspace C and fast
subspace C⊥ respectively. In the following discussion we
will assume the dimensions of Q to be 3N ×m. In the
linear case the time-step is bounded by the asymptotic
stability of the method [2] at a frequency equal to the√
|λi|, rather than the highest frequency in the system.

Our results show this is a good heuristic to choose the
time-step.

Dynamics of the slow variables. Once the slow vari-
ables have been identified, equations for the rate of change
of these variables need to be formulated. Let us denote by
q a set of resolved variables with momenta p. We assume
that the number of coordinates q is very small compared
to 3N where N is the number of atoms in the system.
Typically N can be as large as hundreds of thousands
while the number of resolved variables is 10 to 100. We
wish to find a way to calculate dp/dt in terms of q and
p only. The following exact equation for dp/dt can be
derived:

dq(t)
dt

= p,

p(t)
t

= −
drift︷︸︸︷
∇qA−

friction︷ ︸︸ ︷∫ t

0

Cr(s) · p(t− s) ds+

noise︷︸︸︷
r(t), (1)

Cr(s) =
〈
r(τ + s) r(τ)T

〉
, ∀τ (2)

(fluctuation dissipation theorem)

These equations are in reduced units and we neglected
the dependence of the memory kernel Cr on q and p.
The brackets 〈〉 define the thermodynamic average in the
canonical ensemble. Equation (1) can be derived using
the Mori-Zwanzig projection [8]. The potential A(q) is
the Potential of Mean Force (PMF, or Helmholtz free
energy) for variable q. The integral in (1) represents a
friction. In this model the friction includes memory so
this equation is often called the Generalized Langevin
Equation (GLE). The last term r(t) is a fluctuating force
with zero mean:

〈
r(t)|q0, p0

〉
= 0. This is a conditional

average over Cartesian coordinates x and momenta px

keeping q = q0 and p = p0 fixed.
This equation can be rigorously derived from statistical

mechanics and is therefore an attractive starting point
to build coarse grained models. However, it is also, in
principle, very expensive to calculate. The most common
approximation is to assume a separation of time scales;
then Cr(s) is simply equal to the auto-correlation of
dp(t)/dt which can be readily computed. As was pointed
out earlier this assumption does not hold in general.
We next discuss how our choice of slow variables and
saddle point approximation of the drift term make this
approximation feasible and results in a computationally
tractable coarse-grained dynamical model.

Choosing low frequency modes as resolved variables
was motivated by the physical insight that low frequency
modes contain the physically relevant motions close to
the minimum [3], [4]. For small numers of modes we
observe that the coupling between C and C⊥ is small,
though not zero. The drift term of (1) can be simplified
using a saddle-point approximation. The mean force is
approximated by the instantaneous projection of the force
onto the slow subspace, subject to the constraint that the
conformation is a minimum in the fast subspace. This
is the most probable value of the mean force when the
spaces are decoupled. At that point the friction term can
be approximated as the autocorrelation of the slow force,
and the noise can be evaluated as white noise. Thus, we
numerically enforce a quasi-adiabatic decoupling between
C and C⊥.

The simplification of the drift term proceeds as follows.
The choice of frequency partition separates the positions
around the equilibrium point x0 into x̂ in C and x̄ in C⊥

such that x = x̂+ x̄+ x0. These are defined as

x̂ = Px(x− x0), x̄ = P⊥x (x− x0),

where the projection matrices take the positions from
Cartesian to mode coordinates and back to Cartesian
space, and are given by

Px = M−1/2QQTM1/2,

P⊥x = M−1/2
(
I−QQT

)
M1/2.

The mean force for the drift term for a particular value
of can be written as

Average f(x̂) = − 1
Z

∫
exp(−βU(x))δ

(P x(x− x0)− x̂)P f∇U(x)dx. (3)



We have introduced the usual canonical ensemble par-
tition function and the force projection matrix:

P f = M1/2QQTM−1/2.

The average f(x̂) is dominated by the slow force
term, −P f∇U(x), corresponding to the smallest U(x)
due to the Boltzmann weight. This U(xmin) is the
minimum potential energy that satisfies the constraint
P x(xmin − x0) = x̂. We can rewrite it as U(xmin) =
U(x0 + x̂ + x̄min). Since x0 + x̂ is fixed, this is equiv-
alent to minimizing the projection of the positions onto
the fast subspace. Hence x̄min = argmin U(x0 + x̂ +
x̄min) with x0, x̂ fixed. This implies that the mean force
can be approximated by the instantaneous slow force:

Average f(x̂) ≈ −P f∇U(xmin). (4)

A second important approximation is that the protein
is modeled using implicit solvent (ISM). ISMs have
been shown to be sufficiently accurate for a number of
applications, including protein folding studies, and they
are attractive because they greatly reduce the cost of
simulating a protein. Thus, to model the coarse-grained
dynamics of an implicitly solvated protein, (1) is simpli-
fied into a Langevin equation:

dx = vdt, Mdv = fdt− ΓMvdt

+ (2kBTΓ)1/2 M1/2dW(t), (5)

where f = −P f∇U(xmin) is derived in (4), t is time,
W(t) is a collection of Wiener processes, kB is the
Boltzmann constant, T is the system temperature, v
are the velocities and Γ is the diagonalizable damping
matrix. The system diffusion tensor D gives rise to Γ =
kBTD−1M−1. D is chosen to model the dynamics of an
implicit solvent and the coarse-graining of the dynamics.

Discretization of the dynamics. We discretize (5) using
the Langevin Impulse (LI) integrator [6]. We call this
discretization the Normal Mode Langevin (NML) prop-
agator. Schematically, half a step of NML performs the
following steps:
Half slow kick: advance velocities using half a long
timestep ∆t/2 using the projection of internal and random
force unto slow subspace C.
Slow Fluctuation: advance positions using the projection
of internal and random force unto slow subspace C.
Fast Fluctuation: minimize positions on fast subspace
C⊥ using steepest descent.

Coarse grained diagonalization. To adaptively find the
slow variables we need a cheap procedure to extract them.
We introduce a coarse-grained normal mode analysis
that is scalable (CNMA). CNMA uses a dimensional-
ity reduction strategy that allows computation of low
frequency modes in O(N logN) time, and with O(N)
memory, rather than O(N3) time and O(N2) memory of
brute-force diagonalization. The coarse-graining strategy
to computing the frequency partitioning is based on three
ideas. The first is to find a reduced set of normalized
vectors E that spans the low frequency space of interest,
C. The second is to recursively extract a minimal set of

Fig. 1. Illustration of the dimensionality reduction strategy for the
diagonalization. If the vectors in E span the low frequency space of
interest in H, then the diagonalization of S can produce a low frequency
basis set.

vectors Q from E and the coarse grained Hessian H. The
third is form H in linear cost, O(N).

Assume that we have found E. Figure 1 illustrates the
dimensionality reduction strategy. H is the Hessian at a
given simulation step. The dimensions of E are 3N × n,
where n� N. The quadratic product ETHE produces a
matrix S of reduced dimensions n × n. Below we show
that from the diagonalization of S we can obtain E. In
particular, we (cheaply) diagonalize the symmetric matrix
S to find orthonormal matrix Q̃ s.t.

SQ̃ = Q̃Ω,

for diagonal matrix Ω. We can then write

QTHQ = Ω,

for Q = EQ̃. Our subspace of dynamical interest, C,
is then defined as the span of the first m columns of Q.
Recall that m is the number of reduced collective motions,
typically in the range of 1 - 100.

We can evaluate how well the span of E represents
C using the following result (we skip the proof for
space limitation): Let the ith ordered diagonal of Ω be
σi = Ωii. Then the highest frequency mode in C, fmax,
satisfies

fmax ≤
√
|σm|.

Then the Rayleigh quotient σm can be used to establish
the maximum time step that can be taken in subspace
C for stability. It follows that if λm is close to the mth

ordered eigenvalue of H, then the first m vectors of Q
are a good representation of the low frequency space of
interest.

We form E, by starting from a ‘local’ block Hessian in
which each block H̃ij (composed of 1 or more residues)
is zero if i 6= j. The remaining blocks on the diagonal
are assumed to be independent of all other blocks. This
block Hessian is then diagonalized, which is equivalent to
performing independent diagonalization for each block.
Let us determine each block Hessian eigenvectors and
eigenvalues, Qi and Di, as follows:

H̃iiQi = QiDi.

Our hypothesis is that interactions among residues
responsible for the low frequency space of interest will
be included, either by projection or directly, in the first



Fig. 2. Segment of a BPTI molecule and its associated block Hessian
entries. Here, for illustration, a block is defined by one residue. Each
residue corresponds to a Hessian block containing all of the forces within
the residue, denoted ‘Full’. Adjacent residues have a corresponding
electrostatic block denoted ‘Elec.’, e.g. Elec. 13-14. Physically local
residues within the cutoff distance have a corresponding electrostatic
block, e.g. Elec. 13-38. Bonds connecting non-adjacent residues, such
as the disulfide bond shown, correspond to small 3x3 blocks in the
Hessian.

few eigenvectors of Qi, and need to be included in E.
The source of these vectors is as follows:

1) External low frequency motions due to nonbonded
interactions can be projected onto the first 6 eigen-
vectors of Qi, corresponding to conserved d.o.f.
per block. In other words, external forces mani-
fest themselves in rotations or translations of each
residue-block.

2) External low frequency motions due to bonded in-
teractions can be projected onto the dihedral space,
and will consist of up to 4 vectors of Qi, due to
the peptide bond dihedrals of up to 2 connecting
blocks.

3) Internal low frequency motions, for instance due
to side-chain dihedral motions, will also be in the
dihedral space and thus will be in Qi.

We expect that the eigenvectors identified above will
correspond to the first k ordered eigenvalues. The number
k will vary between blocks and will be determined by
selecting a cutoff frequency from the block eigenvalues.
Figure 2 illustrates the block structure of H for protein
BPTI with cutoff for the electrostatics. This is very similar
to a protein contact map. Contiguous residues give a tri-
diagonal block structure. Non-contiguous residues that are
nearby form off-diagonal blocks due to nonbonded forces.
Special structural features like disulfide bonds create 3×3
small blocks. The block structure of E follows from its
composition from eigenvectors of the block Hessians H̃ii.
Thus, the cost of the matrix-matrix multiplication will be
O(N).

The multilevel application of this dimensionality reduc-
tion leads to a scheme with O(N logN) cost. We first
diagonalize each residue. The cost for this stage is O(N)
as the average number of residue atoms is fixed and the
number of residues is proportional to N . We then need to
consider the diagonalization cost of the ‘block projected’
matrices. If we took a large system and recursively
assigned block size ‘factor’ b, each linear block dimension

is b times the previous, then we get a diagonalizations
with ba+1 = N , so total cost is O(N logN). This leaves
the projection of the actual Hessian, but we can assign
b ∝ 3
√
N logN to yield the correct scaling.

III. NUMERICAL RESULTS

Adaptive NML recovers long time dynamics. We ap-
plied NML to study the isomerization kinetics of blocked
alanine dipeptide (ACE ALA NME). With a small
molecule like alanine dipeptide it is possible to sample
for a sufficient length of time to measure the rates of
transition between two states: in this case we measure the
isomerization rate between the C7 equatorial and αR con-
formations. The rate from states A and B, denoted kAB ,
can be calculated using the approximation proposed by
Best and Hummer [1] from the probability of transition,
PTP , and the average transition time 〈tTP 〉:

2cAkAB = PTP /〈tTP 〉,

where cA is the equilibrium mole fraction of confor-
mation A. Figure 3(a) shows the free energy as a Ra-
machadran plot for Alanine Dipeptide using the sigmoidal
screened Coulomb potential of [5]. Conformation A is
C7 equatorial and C5 axial combined, and conformation
B is αR. Figure 3(b) shows that NML is capable of
correctly computing the rate with only 12 modes with
a rediagonalization frequency of 100 fs as the time step
increases up to 16 fs. As a reference, the rate computed
for the fine-grained SDE using molecular dynamics (MD)
with time steps up to 3 fs are shown. MD cannot go
beyond this time step due to the fast frequencies present
in the system. Let NML(m,freq) be NML where m is
the number of slow modes propagated, and freq refers
to the re-diagonalization frequency in femtoseconds. Fig-
ure 3(c) shows the isomerization rate for AD running
NML(m,0) (no re-diagonalization), NML(m,100) and
NML(m,1000). It can be observed that whereas the rate
quickly goes down for NML(m,0), the rate is correctly
computed for NML(m,100) for even 7 modes (only 1 real
mode excluding the 6 conserved modes). NML(m,1000)
is somewhere in between the two results.

Coarse-grained normal mode analysis is scalable. Five
models were used for the comparison of the ‘brute force’
diagonalization and the coarse grained CNMA method:
PIN1 WW domain (PDB 1I6C), BPTI (PDB 4PTI),
Calmodulin (PDB 1CLL), Tyrosine kinase (PDB 1QCF),
and F1-ATPase (PDB 2HLD). The results can be seen in
Figures 4(a) and 4(b), which match the scaling analysis
of O(N logN) time and O(N) memory.

NML with re-diagonalization using CNMA can
greatly accelerate dynamics calculations. We are
currently applying NML with re-diagonalization using
CNMA to study the folding of the WW domain and other
proteins. Figure 5 illustrates analytical predictions of the
accelerations in sampling the dynamics that we expect
when using our approach on progressively larger protein
systems. Thousand fold acceleration should be possible
for systems with a few thousand atoms.
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Fig. 3. (a) Ramachadran plot for the free energy (in kcal mol−1)
of alanine dipeptide using a sigmoidal screened Coulomb potential.
(b) Isomerization rate of alanine dipeptide as a function of the time
step using 12 modes and re-diagonalization every 100 fs. (c) Rate as a
function of varying re-diagonalization frequencies and number of modes.
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