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Abstract— Although many techniques exist to generate a
reduced model from a large, detailed chemical model, few
model reduction techniques generate reduced models that
can reproduce the solution of the detailed model to within
known error bounds. Furthermore, error bounds imposed
on the reduced model at a finite set of reaction conditions
cannot be propagated through a numerical method to yield
error bounds on the numerical solution of the reduced model
relative to the solution of the detailed model. In order to
reproduce the numerical solution of the detailed model to
within a known error tolerance using a reduced model, the
reduced model must be generated with known error bounds
that are satisfied over a range of reaction conditions.

To generate a reduced model satisfying error bounds
over a range of reaction conditions, we propose the method
of range-constrained simultaneous reaction and species
elimination. This method uses the solution of an integer
linear program restriction of an integer linear semi-infinite
program to determine a reduced model from a given detailed
model, error tolerances on the time derivatives of state vari-
ables and range of reaction conditions. The reduced model
obtained from the solution of the integer linear program
can then be used within a numerical method to approximate
faithfully the solution of the detailed model from which it
was generated. Error bounds on the reduced model could
then be propagated through the numerical method in order
to obtain error bounds on the solution of the detailed model,
yielding a more computationally efficient means of obtaining
a numerical solution for currently intractable reacting flow
problems to within known numerical error.

I. INTRODUCTION

The purpose of a kinetic model reduction technique is
to generate an approximate, simplified chemical model
from a more detailed chemical model in order to re-
duce the computational effort needed to simulate reacting
flows. Many different methods exist to accomplish this
task (such as [6], [14] and [7]), based on very different
principles.

When carrying out model reduction, there are two com-
peting objectives: reducing CPU effort and minimizing
approximation error due to model reduction. Since the
purpose of model reduction is to enable the simulation
of computationally demanding reacting flow problems by
generating less resource-intensive reduced models, we
would like our model reduction technique to yield a
reduced model that decreases as much as possible the
CPU time required to simulate a reacting flow. Simul-
taneously, we would like to minimize the difference (or
error) between the solution of our reduced model and the
solution of the detailed model. Since CPU time limits
the set of reacting flow problems that can be solved

currently, our primary objective is to achieve maximum
reduction of CPU effort subject to constraints that ensure
that the error between the numerical solution of the
detailed model and the solution of the reduced model is
bounded to within acceptable limits over certain reaction
conditions (temperatures and species mass fractions). In
order to limit this error when using the reduced model
in a numerical integration routine, it is necessary to
bound the difference between the chemical source term
of the detailed model and the chemical source term of the
reduced model for each species. Although many methods
have some form of error control (usually in the form of an
adjustable parameter), few methods attempt to determine
error bounds on the chemical source term of the reduced
model with respect to the detailed model. Without these
error bounds, it is extremely difficult to estimate the error
in the solution obtained by applying a model reduction
technique when solving a detailed model numerically.

It is also worth noting that bounding locally the error
due to model reduction does not suffice [11]. Oluwole
et al. have demonstrated that error bounds satisfied by a
reduced model at points in state space do not necessarily
hold within their convex hull. For this reason, a reduced
model with error bounds satisfied at a finite collection
of points in state space may not satisfy its stated error
tolerances after one time step of numerical integration.
Consequently, it is absolutely critical that reduced models
be generated with error bounds on the time derivatives of
state variables, and that these error bounds are satisfied
over ranges in state space.

Optimization is a natural mathematical framework for
model reduction because elements of model reduction
problems can be adapted to an optimization formulation.
Typically, the mode of model reduction can be cast in
terms of decision variables of the optimization problem.
The mode of model reduction can be thought of as the
rules or allowable transformations that can take place
in generating a reduced model from a detailed model.
Reaction elimination [3] is one example of such rules.
Error bounds can be formulated as constraints, and CPU
effort can be formulated as an objective. Since simulation
CPU time cannot be expressed directly as a continuous
function of the decision variables, the number of reac-
tions, species, or state variables is typically used as a
proxy, because the CPU time needed to solve a reacting
flow problem scales empirically as O(NRN2

S), where NR
is the number of reactions and NS is the number of



species [13]. Adapting a model reduction technique to
an optimization framework ensures that a given detailed
model is maximally (or close to maximally) reduced,
subject to the error constraints and model reduction rules
supplied by the model reduction technique.

In this work, we propose using an optimization frame-
work to generate reduced models by simultaneous re-
action and species elimination, such that the resulting
models satisfy given error constraints over ranges in state
space. This approach, called range-constrained simultane-
ous reaction and species elimination, is a natural extension
of existing work on both reaction elimination [3], [10]
and simultaneous reaction and species elimination [8]. In
order to provide the necessary background for the devel-
opment of range-constrained simultaneous reaction and
species elimination, we first review the previous point-
constrained reaction and species elimination by Mitsos
et al. [8].

II. EXISTING POINT-CONSTRAINED SIMULTANEOUS
REACTION AND SPECIES ELIMINATION FORMULATION

Bhattacharjee [1] proposed an integer nonlinear pro-
gramming (INLP) formulation for simultaneous reaction
and species elimination. Although this formulation was
novel, it was also computationally demanding, since algo-
rithms that solve INLPs are time-consuming. Mitsos et al.
[8] discovered an equivalent integer linear program (ILP)
reformulation of the original INLP that can be solved
much more quickly. The resulting point-constrained reac-
tion and species elimination ILP is presented below as in
[8], restricting the formulation to the case where αj = 1
for all j and βi = 0 for all i:

min
z,w

NS∑
j=1

wj , (1a)

s.t.
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(1c)

(NR)jwj ≥
∑

{i: νji 6=0}

zi, j = 1, . . . , NS , (1d)

zi ∈ {0, 1}, i = 1, . . . , NR, (1e)

wj ∈ {0, 1}, j = 1, . . . , NS . (1f)

The formulation in (1) requires some explanation. In
(1), three subscripts are used. The subscript i indexes
the NR reactions present in the detailed mechanism,
and is used in conjunction with reaction-based quantities,
such as the rate of reaction. The subscript j indexes the
NS species present in the detailed mechanism, and is
used in conjunction with species-based quantities, such
as the species mass fractions. The subscript l indexes
Nt user-supplied points in state space to be used as a
reference data set for model reduction. This reference data
set defines the conditions in state space over which the
reduced model will be “valid,” in that it satisfies error

tolerances on the time derivatives of the state variables
relative to the detailed model. In our case, state space is
defined as the mass fractions of each species present in
the detailed model and temperature; we assume that our
detailed model describes the chemical source term in an
adiabatic-isobaric batch reactor.

Reaction elimination is encoded by the binary decision
variables zi, and species elimination is encoded by the
binary decision variables wj . If zi = 1, reaction i is
included in the reduced model generated by this tech-
nique. If zi = 0, reaction i is excluded from the reduced
model generated by this technique. Similarly, if wj = 1,
species j is included in the reduced model generated
by this technique. If wj = 0, species j is excluded
from the reduced model generated by this technique.
Consequently, an optimal solution to (1) yields a reduced
mechanism derived from the detailed mechanism supplied
as input to point-constrained simultaneous reaction and
species elimination. Given this interpretation of the binary
decision variables, the objective function (1a) equals the
number of species included in the reduced model.

Assuming that our detailed model describes the chem-
ical source term in an adiabatic-isobaric batch reactor,
the error constraints in (1b) and (1c) limit the difference
between the time derivatives of the state variables in
the detailed model and the time derivatives of the cor-
responding state variables in the reduced model. In these
equations, hj is the specific enthalpy of species j, Mj

is the molar mass of species j, νji is the stoichiometric
coefficient of species j in reaction i (using the standard
sign convention that νji > 0 if species j is produced
in reaction i, and νji < 0 if species j is consumed
in reaction i), ri is the molar rate of reaction i, xl is
the vector of species mass fractions in the batch reactor
at reference point l, Tl is the temperature in the batch
reactor at reference point l, ρl is the density of the gas
in the batch reactor at reference point l, (CP )l is the
specific heat capacity of the mixture in the batch reactor
at reference point l, Γref0 is the chemical source term for
the temperature evaluated at a reference point specified
as an argument, and Γrefj is the chemical source term
for species j evaluated at a reference point specified
as an argument. The absolute error tolerance for the
time derivative of species j is defined as (atol)j , and
the absolute error tolerance for the time derivative of
temperature is defined as (atol)0; these tolerances are set
by the user. Corresponding relative tolerances are defined
as (rtol)j for species j and (rtol)0 for temperature.

Mitsos et al. [8] recognized that in order to avoid the
production or destruction of mass via the reactions of the
reduced mechanism, a species may only be eliminated
from the detailed mechanism if all of the reactions in
which it participates (in the detailed mechanism) are also
eliminated. The mass conservation constraint (1d) encodes
this condition, where (NR)j is the number of reactions of
the detailed mechanism in which species j participates.
In the case of unimolecular, bimolecular, and explicit
termolecular reactions, participation of a chemical species



is unambiguous. However, some reaction mechanisms
contain third body reactions, in which a molecule called
a third body acts upon the reactants to give them enough
kinetic energy for reaction to occur. If a third body
reaction is treated as a bimolecular reaction, in that the
third body species are not considered to participate in
that reaction, then the estimates of the time derivatives
of the state variables in (1d) may be inaccurate. For most
practical purposes, these inaccuracies are insignificant and
can be ignored. If the inaccuracies due to neglecting the
participation of third body species are significant, Mitsos
et al. [8] propose alternate treatments for third body
species.

Point-constrained species elimination has been applied
to mechanisms as large as the LLNL n-heptane mech-
anism [4] successfully. Due to the O(NRN2

S) scaling
of reacting flow solvers, simultaneous elimination of
reactions and species reduces the computational effort of
reacting flow solvers to a greater extent than elimination
of reactions only. However, since the chemical source
term is, in general, a non-convex function of the state
variables over the convex hull of the reference points
supplied to (1), the error in the reduced model is also a
non-convex function over the convex hull of the reference
points. Consequently, if a reduced model is generated
satisfying error bounds at the reference points, it is not
necessarily true that the reduced model also satisfies the
same error bounds at any point in state space within the
convex hull of the reference points. For this reason, if
error-controlled reduced models are desired over regions
in state space (for example, in a reacting flow solver using
an adaptive chemistry algorithm [12]), either a valid range
must be determined from a point-constrained reduced
model by using the range-finding algorithm of Oluwole
et al. [11], or the constraints in the point-constrained
model reduction formulation (1) must be revised to limit
errors over ranges in state space.

III. PROPOSED RANGE-CONSTRAINED SPECIES
ELIMINATION FORMULATION

By analogy to the previous work on reaction elim-
ination by Bhattacharjee et al. [1], [3] and Oluwole
et al. [10], we propose the following range-constrained
simultaneous reaction and species elimination formulation
as an extension of a combination of the work of [8] and
[10]:

min
z,w
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where Φ is the Cartesian product of intervals Φ =
[xL,xU ]× [TL, TU ] in mass fraction-temperature space.
Note that the set Φ in (2) replaces the finite set of
reference points in (1). Even though (2) is linear in the
decision variables, it contains infinitely many constraints,
indexed by the set Φ, and is classified as a semi-infinite
program (SIP) [10].

Solving SIPs to global optimality is computationally
demanding, and current algorithms cannot determine an
optimal solution for large problem instances, correspond-
ing to large kinetic mechanisms. Bhattacharjee et al.
[2] developed an algorithm using interval extensions [9]
that determines guaranteed feasible points for an SIP by
formulating a restriction of the SIP. The optimal objective
function value of the resulting program is an upper bound
on the solution of the exact formulation of the original
SIP. In the case of the SIP in (2), this restriction will be
an ILP.

Oluwole et al. [10] used ideas from the SIP restric-
tion algorithm of Bhattacharjee et al. within a range-
constrained reaction elimination formulation to overesti-
mate the difference between the detailed model source
terms and the reduced model source terms with con-
straints similar to (2b) and (2c) and determine reduced
models guaranteed to satisfy the error constraints for
reaction elimination. Our proposed formulation extends
the work of Oluwole et al. by adding the binary variables
wj and the mass conservation constraint in (2d); it extends
the work of Mitsos et al. by replacing the finite set of
reference points with an interval in state space and modi-
fying the appropriate constraints accordingly. In applying
the approach of Oluwole et al. to (2), DAEPACK [15]
is used to generate Taylor model interval extensions that
overestimate the error between the detailed model source
terms and reduced model source terms. These overesti-
mates are used to formulate the ILP restriction of (2),
which is then solved to global optimality using CPLEX
[5]. Since an optimal solution of the ILP restriction of (2)
corresponds to a feasible point of the range-constrained
SIP formulation (2), the objective function value at this
point is an upper bound on the optimal objective function
value for the SIP. Cast in terms of the problem at hand,
our proposed algorithm will determine a reduced model
with fewer species that is guaranteed to satisfy error
bounds on the source term in the reduced model over
a specified range of conditions of interest, but it will not
necessarily determine the reduced model with the fewest
species satisfying those error bounds over the range of
interest.

IV. CONCLUSIONS AND FUTURE WORK

A method for automatically generating error-controlled
range-validated reduced kinetic mechanisms by simulta-
neous reaction and species elimination is presented. The
method follows either by extending the point-constrained
simultaneous species and reaction elimination formula-
tion to a range-constrained formulation, or by extending



the range-constrained reaction elimination formulation to
include simultaneous reaction and species elimination.
The resulting range-constrained simultaneous reaction and
species elimination formulation is a semi-infinite program
solved approximately by constructing an ILP restriction
using interval extensions and solving that ILP to global
optimality. The solution obtained by this algorithm is a
feasible point for the original SIP, but it is not necessarily
the best possible.

Given the recent proliferation of model reduction meth-
ods in the literature, it would be interesting to attempt
to cast some of the existing model reduction methods
into the form of optimization problems for the sake
of comparison. Model reduction methods could then be
compared using comparable error constraints in order
to determine the extent to which they reduce the com-
putational requirements of reacting flow solvers. This
endeavor would also be useful in that it could facilitate
the combination of different model reduction methods in
order to further reduce the computational requirements of
reacting flow solvers.

Finally, it would be interesting to examine how error-
controlled model reduction methods interact with different
numerical methods, as well as different problem formu-
lations. Currently, little theory exists [10] to bound the
errors in the numerical solution of a reduced model, as
compared to the numerical solution of its corresponding
detailed model. A theory explaining how error-controlled
model reduction methods interact with different numerical
methods for solving reacting flow problems could then
be applied to range-constrained, error-controlled model
reduction techniques to solve reduced models to within
known error bounds, greatly enhancing the utility of
model reduction techniques by clearly quantifying the
error incurred by model reduction.
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