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Abstract— The theory relevant to the G-Schemeframe- Il. BAsiC CONCEPTS

work is presented in a companion paper. Here, we will . . .
present results relevant to hydrocarbon kinetics, to a CSTR The numerical technique proposed in [1], referred to

model involving CO/H2 mixtures, and reactive systems @as the G-Schemge embodies both the model reduction
described by PDEs to demonstrate the effectiveness of the and the subsequent numerical integration of the reduced
method. We also present results obtained by combining set of Ordinary Differential Equations (ODES). Tl

a Wavelet Adaptive Multilevel Representation (WAMR) — gchemeexploits the circumstance that systems arising

technique to define the spatial discretization of the model f | Kineti hani tai |
with the time integration carried out with the G-Scheme. rom large kineétic mechanisms contain a very large range

This approach allows to obtain time accurate solutions of ~Of scales with the fastest scales having a dissipative
prescribed accuracy with a much lower number of space- hature. This property ensures that the actual dimension of

time degrees of freedom. the system becomes much smaller than the original size
after a short initial transient period. This lower dimen-
I. INTRODUCTION sional subspace, named Slow Invariant Manifold (SIM),

o , ) . is present if there exists a spectral gap of characteristic
The next frontier in numerical simulation involves {ime scales that separates slow and fast components of the
multi-physics, multi-scale, multi-disciplinary problem gisgipative kinetic systems. In this case, the most relevan
Disciplines eager of computing power range from ge-,qymntotic behavior of the system is confined in the
netics, earth climate, biology, energy and combustiongn or the limit attractor (for a system having nontrivial
micro/nano_science and technology, among the mMoSteymptotic kinetics), which is invariant and exponengiall
prominent. This demand cannot be simply accommodategacting. Consequently, model reduction can be achieved
by progress achieved in computer power alone, but resy fiitering out the dynamically irrelevant degrees of
quires breakthroughs in physical-mathematical modelingreeqom (irrelevancy is based on an accuracy requirement)

and numerical/algorithmic developments. Indeed, soluzggqciated with the fastest components characterized by

tions of reaction systems in general are computationg,e most negative characteristic time scales

ally very expensive because of the presence of a very |geajly. one would like to decompose the tangent space
large range of scales. However, to within an arbitrary; 4 any pointx € C ¢ RY in N invariant subspaces

. . x H
but fixed accuracy, there are in general vary fast and, that the dynamics within each invariant subspace is

very slow time scales whose contributions to the actyly decoupled from all other invariant subspaces, and
tive dynamics is negligible. Recently, we presented g

) o W s associated with a single characteristic time scale. This
new methodology [1] that exploits this circumstance togoal is not easy to achieve. However, decomposing the

design a numerical framework able to achieve adaptiv?angent space in subspaces, not necessarily invariant,

reduction of the dynamical system based on accuraCynaracterized by time scales of comparable magnitude
requirements. As a result, the original problem not onlyis ot the core of theG-Scheme We assume that the

becomes substantially smaller, but more importantly NONgangent spacd, can be decomposed as the sum of four
stiff. The frozen (slow) and near-equilibrium (fast) mOdeSsubspaces ¢

play crucial roles in defining the active (dynamic) sub- I.-EoHaA®T

space, and thus it is mandatory to account for their ’

contributions. To demonstrate the effectiveness of thevhere the active subspack contains all the current
method, we will present results relevant to three differentntermediate dynamic time scales, all scales faster and
reactive systems, namely a Continuously Stirred Tanlslower than the active ones are confined in the fast and
Reactor (CSTR) with a CO/Hmixture, the auto-ignition slow subspace® andH, respectively, andg is the linear

of hydrocarbon/air mixtures in homogeneous systems, anslibspace spanned by directions associated with invariants
a reaction/diffusion system featuring limit cycle behavio if any exist.

The reaction/diffusion system is solved by combining At each pointx of the Chemical Composition Space
a Wavelet Adaptive Multilevel Representation (WAMR) (CCS), theG-Schemeintroduces a curvilinear frame of
technique [2][3][4] to define the spatial discretization of reference, defined by a set of ortho-normal basis vectors,
the model with the time integration carried out with thewith corresponding curvilinear coordinates, which is tied
G-Scheme. to the decomposition of the tangent space in the four



subspaces. The evolution of the curvilinear coordinateparts, since this is the distinguishing feature of the class
associated with the subspadeis described byN, =  of problems for which theG-Scheme is expected to
dim(A) < N ODEs, whereas the variation of the curvi- perform efficiently. The ratiosr = |A\r/Ar41| < 1 and
linear coordinates associated with the subspatemnd ey = |A\g_1/Au| < 1 are measures of the spectral gaps
H are accounted for by applying/r = dim(T) > 0  between active and fast subspaces, and slow and active
and Ny = dim(H) > 0 algebraic corrections derived subspaces, respectively. Since Gx&cheme approximates
from asymptotics of the original ODEs. Note that if we the contribution of the very slow and very fast time
have Ny = dim(E) > 0 invariants, they can be formally scales with asymptotic corrections, it is expected that its
eliminated so that the dynamics is restricted to moveaccuracy and efficiency will be higher for larger spectral
in the subspacél @ A @ T that satisfies the invariants gaps, that is for smaller values ef and/orey. The
exactly. Adjusting the active ODEs dynamically during controlling (driving) time scale of the dynamics is given
time integration is the most significant feature of e by the fastest of the (active) time scales presemt,imnd
Scheme because the numerical integration of the statewill be of the order ofrr = 1/|Ar|.

vectorx € RY is obtained by solving a number of ODEs  For the problems discussed below, the reference solu-
typically much smaller thaV. The active ODEs evolve tions are obtained wittDVODE [7] set with a precision

in A, which is freed from fast scales, and thus they argor rtol) of 10~%, and accuracy (oatol) of 10~'4. The
non-stiff. They can be solved by resorting to any explicitcalculations carried out with th&-Schemeuse the ex-
time integration schemee@., ERK). When compared to plicit four-stage Runge-Kutta scheme (ERK4) to integrate
a standard BDF implicit scheme for stiff problems, the  the active dynamics, and, except where noted otherwise,
Schemeoffers the advantage of requiring the solution of rtol = 10~* andatol = 10~ are user-defined parame-
N4 explicit instead ofV implicit ODEs, at the expense of ters defining the relative and absolute values, respegtivel
identifying the time scales and computing the set of orthoef the total variation of the state variable over the time
normal basis vectors that define the curvilinear frame ofnterval. They are used to form a threshold veettiAt)
reference. defined as

A. Basis \ectors and Time Scales el (At) = rtol |27 (t,41)| + atol,

Clearly, the success of the-Schemerelies on the which is used to identify the integer indicésand T that

at_>|l|_ty 0 _|dent|fy a decor_nposmon of. which ENSUTES o hter in the definition of the dimensions of the subspaces
minimal (ideally no) coupling among slow, fast, and act|veA H. andT

time scales. The problem of finding a frame of reference
yielding the maximal degree of fast/slow decoupling 1. CSTR MODEL
can be approached by resorting to the CSP refinements

procedure [5]. In this work, we identify the set of basis S @ test model featuring complicated nonlinear be-
vectorsa;, defining the mapping of the change of frame havior we consider the isobaric CSTR system at very

of reference, with the right eigenvectors of the JacobiarlOW Pressure involving CO/ikinetics proposed by Brad

matrix J of the vector field related to the kinetic problem et al. [8]. Th_e kinetic mechanism invqlve$1 species
of interest, with the dual vectora’ coinciding with ~and 33 reactions. The set of ODEs involvesl rate

the left eigenvectors off. This yields a leading order equations and the energy conservation equation for the

approximation of the CSP vectors [6]. As estimate of thenolar concentrations and temperature representing the

characteristic time scales, we consider the magnitude ¢iiat€ of the CSTR. The equations, the constants, as well

the reciprocal of the eigenvalues; of J. The ordering S all other constitutive relations are the same as in [8].

of the basis vectors is critical for proper decomposition,] "€ CSTR is an open system which possesses three

Here, we order the modes according to the magnitude dJpvariants, one for each atomic species, with characterist
the c,omplex eigenvalues, that is time scales equal to the residence time= 1.
' The dynamics of this system features different types of

0=[M\|="=Ap| <Apu1| < < Ag| < asymptotic behavior (fixed point, limit cycle, and chaotic
LN Agl < <A € A ] < <A, attractor). Here we report results of tl@&Schemeunder
where f[he conditi_or_1$ involviljg limit cycle behavior, correspend
ing to the initial condition{p®, T°} = {14 torr, 680 K}.
0=|A\|="---=]|Ag| identify the time scales ik, The temperature evolutions along the periodic orbit is
[Ag+1] <--- < |Ag_1| identify the time scales ifl, shown in Fig. 1. Although we do not present additional
il <--- < |\p| identify the time scales in, details on the solution, over each cycle one can note a

very fast ignition phase, where boffi and HGQ peak,
followed by a relaxation phase, during which H@s

with Ng = E, Ny =H-FE—-1, Ny =T —-H+1, consumed, and lastly a new re-generation phase, during
and Ny = N — T . Note that, because of this ordering, which HO, is produced, with the latter two phases
(possibly complex) eigenvalues with both negative andccurring at nearly isothermal conditions. The relative
positive real parts can be found i and A, whereas errorinT is below1% (not shown), the maximum value
we expect the eigenvalues ifi to have negative real being attained during the explosive stage, whereas the

[Ar1] <--- <|An]| identify the time scales iff.
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Fig. 1. Evolutions off" from NDSolve (line) and G-Schemg(points).
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oL ‘ ‘ ‘ ‘ Fig. 3. Evolutions of integration time step (top), and the time-scale
0 10 2 30 40 (red points), thery time-scale (blue points), and all other time-scales
(lines) (bottom).

rate of change of/f demonstrates that the system has a
HT [ = oo nearly linear behavior (also confirmed in Fig. 3 (bottom)

e e e e e by the small changes in the time scales), whereas the
nonlinearities are confined within the explosions.

IV. HYDROCARBONKINETICS

(‘) 1‘0 2‘() 3‘() 4‘()
t The G-Schem& performance is compared to that of
) ‘ _ the DVODE package, with reference to the auto-ignition
Fig. 2. E&/;Iug?ns Of.”“m.b%r. of actve modéé, (top), andH (red  process of stoichiometric mixtures of Methane/Air
t t ttom). . . L L]
points) andT’ (blue points) indices (battom) Propane/Air, and n-Heptane/Air. The kinetic mechanisms

considered are those of GRI 3.0 [9] (53 species; 325 re-
error drops by several orders of magnitude during théctions), Peterseet al. [10] (119 species; 665 reactions),
relaxation and re-generation phases.  The periodicitpnd Curranet al. [11] (560 species; 2538 reactions),
of the solution in Figs. 1 and of the number of active "eSPectively. The initial temperatuig is 750 K andpy =
modes, N4, shown in Fig. 2 demonstrates that tig& 1 atm for all cases; they are chosen so as to yield a long
Schemeis able to provide repeatable sequences of thdgnition time which makes the auto-ignition very stiff
tangent space decomposition. The embedding dimensioH€ ratio of the reaction time,., to the ignition time
of the asymptotic dynamics of the CSTR model along theign for the tes_ts con5|dered is reported in Table I Indeed,
limit cycle, estimated as theax(N4) over a period is 6, the G-Schem_es d_e5|gned SO as to be cost effective when
whereas the average number of active equations weighd@€ problem is stiff. The typical accuracy level produced
with respect to time, is approximately 5. Figure 3 (top)PY the G-Schemean be appreciated by examining Fig. 4.
shows the time evolution of the integration time step, fromT e figure displays a trajectory of the constant volume,
which it is apparent that small time steps (0~°) are adiabatic, auto-ignition of a stoichiometric Propane/Air
required for accuracy reasons in the ignition regime, amgmxture_, in a two-dimensional cross-section of the 119-
that large time stepsy{ 10~1-5) can be taken during the dimensional CCS, and an enlargement of the temperature
relaxation and re-generation phases. Figures 2 (botto,ﬁ%volution near the ig_nition time. The figure indicates that
and 3 (bottom) show that during the explosive regime botine state values (points) found by ti&Schemefollow
the T and H indices increase in such a way that their dif- the reference trajectory quite accurately, and that a small
ference decreases. Thus, although the driving time scaéme shift error & 0.01) develops in the prediction of
7 becomes small during the explosion stages because }€ ignition time. The ratio of the average number of
the larger value off', the degree of reduction increases,degrees of freedom{N4) (average number of active
(N4 attains the value of unity). Instead, in-between twoODES per iteration step), integrated by tGeScheme to
successive explosiong/ and 7' attain constant values . . .

Here we assume a measure of stiffness to be given by the ratio

(4 and 8, reSpeaively)' ) so tha¥, rema@ns uniformly between the driving time scale during the ignition and thetign time
equal to 5. The analysis of the evolution of the timeitself.



TABLE |
To = 750 K, po = 1 ATM, ALL CASES.

Mech Tign [S] Trea [S] 7—'rea,/Tign N <NA> <NA>/N
Methane 366.5 0.2 5.46 x 10*'4 53 3.78 0.07
Propane 16.38 0.05 3.05x 1073 119 3.83 0.03

n-Heptane 2.93 x 1071  3.50x 1073 1.19x 1072 560 41.11 0.07
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Fig. 4.  Trajectory in CCS (left) and T evolution obtained for the fast gap is well developed and clearly identifiable,
Propane/Air (right) with DVODE (solid line) and G-Scheme (red whereas the slow gapy is always rather narrow and
symbols). . e
mostly identified by the enforced error control. Note that
during the explosion stage, the driving time scale attains
its lowest value although the value 6fkeeps decreasing.
the problem dimensiony (number of ODEs per iteration This happens because the large growth in temperature
step), given in Table I, is a measure of the degree ofnduces a corresponding growth of the eigenvalues at all
(adaptive) reduction realized by ti{&-SchemeNote that  scales. Thus all active scales become smaller, albeit still
the degree of reduction is highly problem-dependent: fotonfined in the rangé —T" ~ 10-40. The region between
the cases studied, it is always below 10%. Figure 5, , and 7y represents the fast subspace. The ratio
shows the time evolution of the activeVy), slow (Nu), 75 /7 is a measure of the stiffness of the reduced prob-
and fast (Vr) subspace dimensions. Note thaty is  |em, which can be compared with the stiffness ratio of the
initially equal to N = 119 (no reduction) and quickly original problemrz_, /7, from which one can conclude
drops below 5; later, it stays between 20 and 30 during thénat the reduced problem is significantly less stiff then the
long nearly isothermal induction stage. It is noteworthyoriginal. Finally, the time evolution of the integratiomé
to observe that even during the explosion stage, when thgteps found by th&-Schemeand DVODE are shown in
temperature experiences the largest grouNhi, remains  Fig. 7. Note that both histories follow a similar pattern
small because in this period most of the modes slowefith smaller steps during the initial transient and the
than the driving ones are essentially frozen,/$ostays  explosion stage, and larger steps during the induction
very close tol', and thus a small number of active modesperiod and the approach to equilibrium.
are obtained. FinallyN, attains a unit value while the
kinetics approaches the equilibrium state at the slowest

pace ¢r = Tg1). Figure 6 shows the time evolution of V. REACTION-DIFFUSION MODEL
the time scales corresponding to modés— 1, H, T,
T + 1, and N. The regions betweeny_; and y, and As a typical reaction-diffusion model exhibiting a rich

7r and 741 represent the slow/fast gaps, respectivelydynamic structure, we consider the model proposed by
During the induction stage and the equilibrium stage Elezgaray and Arneodo [12] (EA model). The EA model
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Fig. 7. Integration time step evolutions obtained WiiYODE (blue)
and G-Scheme(purple).

is a system of two coupled nonlinear PDEs:

2
%:D%—i—e*l (v— (u2+u3)),
v 0%v

o Vo e

in (u(z,t),v(z,t)), (z,t) € ([0,1],[0,00)), represent-
ing the concentrations of two chemical species with
an isothermal explosive kinetics displaying intermittent
bursting for some values of the parameters. HBrex,
ande are positive parameters. The system is solved with
initial conditionsu(z,0) = v(z,0) = 0 for z € [0, 1],
and boundary conditions(0,¢) = u(l,t) = —2 and
v(0,t) = v(1,t) = —4 for t > 0. For small and large
values of diffusionD, the system stabilizes onto ignited
and extinguished steady states, respectively. Interrteedia
values ofD correspond to operating conditions that allow
competition between the tendency to ignition due to
the nonlinear kinetics, and the extinguishing behavior at
the boundaries. This induces complex oscillations and
intermittent bursting in the center of the spatial domain.
In this case, no invariants are present, hefte 0. The
calculations refer taD = 0.032, « = 0.01, ande = 0.01

SO as to obtain a limit cycle behavior.

A  Wavelet Adaptive Multilevel Representation
(WAMR) technique [2][3][4] is used to provide the
spatial discretization of the model. We analyzed this
same model problem in [1], where a uniform mesh
discretization was used. The time integration is obtained
by both the G-Scheme and DVODE, and the two
solutions are compared. To demonstrate the accuracy
of the G-Scheme, we plot in Fig. 8 the evolutions of;
at the mid-pointx = 0.5 and the corresponding phase
trajectory’s approach to the limit cycle as computed by
DVODE and theG-Scheme with two different relative
tolerances iftol = 102 and 10~*). The convergence
of the G-Scheme solutions to the reference orbit is
apparent, whereas a small time shift develops after 20
time units. In Fig. 9, we report the time evolution of
the number of wavelet collocation pointd], and of the
active modesN, found by the G-Scheme when using
the two tolerances. The number of collocation points at
one time instant defines the minimum number of spatial
degrees of freedom required to achieve the prescribed
spatial accuracy. Similarly the number of active modes
N4 defines the minimum number of temporal degrees
of freedom required to achieve the prescribed temporal
accuracy. The number of collocation poin®d during
one cycle undergoes a slow growth up to about 260,
followed by a rapid decrease down to about 120. In
contrast, the number of active mod&s, remains rather
constant during the slow growth a¥, and develops
two peaks a little earlier than the drop itV. The
largestN 4 is approximatelyl50, and the smallest i$0.
The integration time stepAt, used by theG-Scheme,
oscillates between0~* and 10~! as can be seen from
Fig. 9.

In the present calculations, the coarsest spatial scale
consists of16 uniformly spaced collocation points, and
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the spatial resolution is adaptively increased up to

resolution equivalent to a uniform mesh of x 210 =
16, 384 collocation points. Withrtol = 10~4, the number

Fig. 9.

At : G-Scheme rtol=10"
At : G-Scheme rtol=10"*
N,: G-Scheme rtol=10>
r — e N,:G-Scheme rtol=10"*
N : G-Scheme rtol=10"
N : G-Scheme rtol=10"*

400

Time evolution of the number of wavelet collocatioaints,

N, and of the active modesy 4, for two different relative tolerances
(rtol = 103 and 10~%); At is the integration time step used by the
G-Scheme.
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(1]
(2]

al3l

of integration steps required to reach 20 time units is[4]
3,390, which is equivalent to a total number of space-

time degreesof freedom (dof) ofl11, 083, 520. It should

be noted that in this problem we have two unknowns,
and v, for each spatial point. Instead, the dof required |

by the adaptive spatial discretization 9$4, 492, which

implies a saving factor oi21.5. The actual number of

equations solved by th8-Scheme with is 262, 977, which
involves a reduction by a factor ¢f.5 with respect to

using DVODE and of422.4 with respect to using a

uniform mesh of equivalent spatial accuracy. Withl =

1073, the equivalent reduction factor is approximately

(5]

[7]

(8]

540. Thus, combining the adaptive wavelet technique with []

the G-Scheme allows to obtain a time accurate solution

of prescribed accuracy with a much smaller number of

space-time degrees of freedom.
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