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Abstract— The theory relevant to the G-Scheme frame-
work is presented in a companion paper. Here, we will
present results relevant to hydrocarbon kinetics, to a CSTR
model involving CO/H2 mixtures, and reactive systems
described by PDEs to demonstrate the effectiveness of the
method. We also present results obtained by combining
a Wavelet Adaptive Multilevel Representation (WAMR)
technique to define the spatial discretization of the model
with the time integration carried out with the G-Scheme.
This approach allows to obtain time accurate solutions of
prescribed accuracy with a much lower number of space-
time degrees of freedom.

I. I NTRODUCTION

The next frontier in numerical simulation involves
multi-physics, multi-scale, multi-disciplinary problems.
Disciplines eager of computing power range from ge-
netics, earth climate, biology, energy and combustion,
micro/nano science and technology, among the most
prominent. This demand cannot be simply accommodated
by progress achieved in computer power alone, but re-
quires breakthroughs in physical-mathematical modeling
and numerical/algorithmic developments. Indeed, solu-
tions of reaction systems in general are computation-
ally very expensive because of the presence of a very
large range of scales. However, to within an arbitrary
but fixed accuracy, there are in general vary fast and
very slow time scales whose contributions to the ac-
tive dynamics is negligible. Recently, we presented a
new methodology [1] that exploits this circumstance to
design a numerical framework able to achieve adaptive
reduction of the dynamical system based on accuracy
requirements. As a result, the original problem not only
becomes substantially smaller, but more importantly non-
stiff. The frozen (slow) and near-equilibrium (fast) modes
play crucial roles in defining the active (dynamic) sub-
space, and thus it is mandatory to account for their
contributions. To demonstrate the effectiveness of the
method, we will present results relevant to three different
reactive systems, namely a Continuously Stirred Tank
Reactor (CSTR) with a CO/H2 mixture, the auto-ignition
of hydrocarbon/air mixtures in homogeneous systems, and
a reaction/diffusion system featuring limit cycle behavior.
The reaction/diffusion system is solved by combining
a Wavelet Adaptive Multilevel Representation (WAMR)
technique [2][3][4] to define the spatial discretization of
the model with the time integration carried out with the
G-Scheme.

II. BASIC CONCEPTS

The numerical technique proposed in [1], referred to
as theG-Scheme, embodies both the model reduction
and the subsequent numerical integration of the reduced
set of Ordinary Differential Equations (ODEs). TheG-
Schemeexploits the circumstance that systems arising
from large kinetic mechanisms contain a very large range
of scales with the fastest scales having a dissipative
nature. This property ensures that the actual dimension of
the system becomes much smaller than the original size
after a short initial transient period. This lower dimen-
sional subspace, named Slow Invariant Manifold (SIM),
is present if there exists a spectral gap of characteristic
time scales that separates slow and fast components of the
dissipative kinetic systems. In this case, the most relevant
asymptotic behavior of the system is confined in the
SIM or the limit attractor (for a system having nontrivial
asymptotic kinetics), which is invariant and exponentially
attracting. Consequently, model reduction can be achieved
by filtering out the dynamically irrelevant degrees of
freedom (irrelevancy is based on an accuracy requirement)
associated with the fastest components characterized by
the most negative characteristic time scales.

Ideally, one would like to decompose the tangent space
Tx at any pointx ∈ C ⊂ R

N in N invariant subspaces,
so that the dynamics within each invariant subspace is
fully decoupled from all other invariant subspaces, and
is associated with a single characteristic time scale. This
goal is not easy to achieve. However, decomposing the
tangent space in subspaces, not necessarily invariant,
characterized by time scales of comparable magnitude
is at the core of theG-Scheme. We assume that the
tangent spaceTx can be decomposed as the sum of four
subspaces,

Tx = E ⊕ H ⊕ A ⊕ T,

where the active subspaceA contains all the current
intermediate dynamic time scales, all scales faster and
slower than the active ones are confined in the fast and
slow subspacesT andH, respectively, and,E is the linear
subspace spanned by directions associated with invariants,
if any exist.

At each pointx of the Chemical Composition Space
(CCS), theG-Schemeintroduces a curvilinear frame of
reference, defined by a set of ortho-normal basis vectors,
with corresponding curvilinear coordinates, which is tied
to the decomposition of the tangent space in the four



subspaces. The evolution of the curvilinear coordinates
associated with the subspaceA is described byNA =
dim(A) ≤ N ODEs, whereas the variation of the curvi-
linear coordinates associated with the subspacesT and
H are accounted for by applyingNT = dim(T) ≥ 0
and NH = dim(H) ≥ 0 algebraic corrections derived
from asymptotics of the original ODEs. Note that if we
haveNE = dim(E) ≥ 0 invariants, they can be formally
eliminated so that the dynamics is restricted to move
in the subspaceH ⊕ A ⊕ T that satisfies the invariants
exactly. Adjusting the active ODEs dynamically during
time integration is the most significant feature of theG-
Scheme, because the numerical integration of the state
vectorx ∈ R

N is obtained by solving a number of ODEs
typically much smaller thanN . The active ODEs evolve
in A, which is freed from fast scales, and thus they are
non-stiff. They can be solved by resorting to any explicit
time integration scheme (e.g., ERK). When compared to
a standard BDF implicit scheme for stiff problems, theG-
Schemeoffers the advantage of requiring the solution of
NA explicit instead ofN implicit ODEs, at the expense of
identifying the time scales and computing the set of ortho-
normal basis vectors that define the curvilinear frame of
reference.

A. Basis Vectors and Time Scales

Clearly, the success of theG-Schemerelies on the
ability to identify a decomposition ofTx which ensures
minimal (ideally no) coupling among slow, fast, and active
time scales. The problem of finding a frame of reference
yielding the maximal degree of fast/slow decoupling
can be approached by resorting to the CSP refinements
procedure [5]. In this work, we identify the set of basis
vectorsai, defining the mapping of the change of frame
of reference, with the right eigenvectors of the Jacobian
matrix J of the vector field related to the kinetic problem
of interest, with the dual vectorsaj coinciding with
the left eigenvectors ofJ . This yields a leading order
approximation of the CSP vectors [6]. As estimate of the
characteristic time scales, we consider the magnitude of
the reciprocal of the eigenvalues,λi of J . The ordering
of the basis vectors is critical for proper decomposition.
Here, we order the modes according to the magnitude of
the complex eigenvalues, that is

0 = |λ1| = · · · = |λE | < |λE+1| ≤ · · · ≤ |λH−1| ≪

≪ |λH | ≤ · · · ≤ |λT | ≪ |λT+1| ≤ · · · ≤ |λN |,

where

0 = |λ1| = · · · = |λE | identify the time scales inE,

|λE+1| ≤ · · · ≤ |λH−1| identify the time scales inH,

|λH | ≤ · · · ≤ |λT | identify the time scales inA,

|λT+1| ≤ · · · ≤ |λN | identify the time scales inT.

with NE = E, NH = H − E − 1, NA = T − H + 1,
and NT = N − T . Note that, because of this ordering,
(possibly complex) eigenvalues with both negative and
positive real parts can be found inH and A, whereas
we expect the eigenvalues inT to have negative real

parts, since this is the distinguishing feature of the class
of problems for which theG-Scheme is expected to
perform efficiently. The ratiosǫT ≡ |λT /λT+1| < 1 and
ǫH ≡ |λH−1/λH | < 1 are measures of the spectral gaps
between active and fast subspaces, and slow and active
subspaces, respectively. Since theG-Scheme approximates
the contribution of the very slow and very fast time
scales with asymptotic corrections, it is expected that its
accuracy and efficiency will be higher for larger spectral
gaps, that is for smaller values ofǫT and/or ǫH . The
controlling (driving) time scale of the dynamics is given
by the fastest of the (active) time scales present inA, and
will be of the order ofτT = 1/|λT |.

For the problems discussed below, the reference solu-
tions are obtained withDVODE [7] set with a precision
(or rtol) of 10−8, and accuracy (oratol) of 10−14. The
calculations carried out with theG-Schemeuse the ex-
plicit four-stage Runge-Kutta scheme (ERK4) to integrate
the active dynamics, and, except where noted otherwise,
rtol = 10−4 andatol = 10−14 are user-defined parame-
ters defining the relative and absolute values, respectively,
of the total variation of the state variable over the time
interval. They are used to form a threshold vectorεj(∆t)
defined as

εj (∆t) ≡ rtolj
∣

∣xj (tn+1)
∣

∣ + atolj ,

which is used to identify the integer indicesH andT that
enter in the definition of the dimensions of the subspaces
A, H, andT.

III. CSTR MODEL

As a test model featuring complicated nonlinear be-
havior we consider the isobaric CSTR system at very
low pressure involving CO/H2 kinetics proposed by Brad
et al. [8]. The kinetic mechanism involves11 species
and 33 reactions. The set of ODEs involves11 rate
equations and the energy conservation equation for the
molar concentrations and temperature representing the
state of the CSTR. The equations, the constants, as well
as all other constitutive relations are the same as in [8].
The CSTR is an open system which possesses three
invariants, one for each atomic species, with characteristic
time scales equal to the residence timetR = 1.

The dynamics of this system features different types of
asymptotic behavior (fixed point, limit cycle, and chaotic
attractor). Here we report results of theG-Schemeunder
the conditions involving limit cycle behavior, correspond-
ing to the initial condition{p0, T 0} = {14 torr, 680 K}.
The temperature evolutions along the periodic orbit is
shown in Fig. 1. Although we do not present additional
details on the solution, over each cycle one can note a
very fast ignition phase, where bothT and HO2 peak,
followed by a relaxation phase, during which HO2 is
consumed, and lastly a new re-generation phase, during
which HO2 is produced, with the latter two phases
occurring at nearly isothermal conditions. The relative
error in T is below1% (not shown), the maximum value
being attained during the explosive stage, whereas the
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Fig. 1. Evolutions ofT from NDSolve (line) andG-Scheme(points).
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Fig. 2. Evolutions of number of active modesNA (top), andH (red
points) andT (blue points) indices (bottom).

error drops by several orders of magnitude during the
relaxation and re-generation phases. The periodicity
of the solution in Figs. 1 and of the number of active
modes,NA, shown in Fig. 2 demonstrates that theG-
Schemeis able to provide repeatable sequences of the
tangent space decomposition. The embedding dimension
of the asymptotic dynamics of the CSTR model along the
limit cycle, estimated as themax(NA) over a period is 6,
whereas the average number of active equations weighed
with respect to time, is approximately 5. Figure 3 (top)
shows the time evolution of the integration time step, from
which it is apparent that small time steps (≈ 10−5) are
required for accuracy reasons in the ignition regime, and
that large time steps (≈ 10−1.5) can be taken during the
relaxation and re-generation phases. Figures 2 (bottom)
and 3 (bottom) show that during the explosive regime both
theT andH indices increase in such a way that their dif-
ference decreases. Thus, although the driving time scale
τT becomes small during the explosion stages because of
the larger value ofT , the degree of reduction increases,
(NA attains the value of unity). Instead, in-between two
successive explosions,H and T attain constant values
(4 and 8, respectively), so thatNA remains uniformly
equal to 5. The analysis of the evolution of the time
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Fig. 3. Evolutions of integration time step (top), and theτH time-scale
(red points), theτT time-scale (blue points), and all other time-scales
(lines) (bottom).

rate of change ofJ demonstrates that the system has a
nearly linear behavior (also confirmed in Fig. 3 (bottom)
by the small changes in the time scales), whereas the
nonlinearities are confined within the explosions.

IV. H YDROCARBON K INETICS

The G-Scheme’s performance is compared to that of
the DVODE package, with reference to the auto-ignition
process of stoichiometric mixtures of Methane/Air,
Propane/Air, and n-Heptane/Air. The kinetic mechanisms
considered are those of GRI 3.0 [9] (53 species; 325 re-
actions), Petersenet al. [10] (119 species; 665 reactions),
and Curranet al. [11] (560 species; 2538 reactions),
respectively. The initial temperatureT0 is 750 K andp0 =
1 atm for all cases; they are chosen so as to yield a long
ignition time which makes the auto-ignition very stiff1.
The ratio of the reaction timeτrea to the ignition time
τign for the tests considered is reported in Table I. Indeed,
theG-Schemeis designed so as to be cost effective when
the problem is stiff. The typical accuracy level produced
by theG-Schemecan be appreciated by examining Fig. 4.
The figure displays a trajectory of the constant volume,
adiabatic, auto-ignition of a stoichiometric Propane/Air
mixture, in a two-dimensional cross-section of the 119-
dimensional CCS, and an enlargement of the temperature
evolution near the ignition time. The figure indicates that
the state values (points) found by theG-Schemefollow
the reference trajectory quite accurately, and that a small
time shift error (≈ 0.01) develops in the prediction of
the ignition time. The ratio of the average number of
degrees of freedom,〈NA〉 (average number of active
ODEs per iteration step), integrated by theG-Scheme to

1Here we assume a measure of stiffness to be given by the ratio
between the driving time scale during the ignition and the ignition time
itself.



TABLE I

T0 = 750 K, p0 = 1 ATM , ALL CASES.

Mech τign [s] τrea [s] τrea/τign N 〈NA〉 〈NA〉/N
Methane 366.5 0.2 5.46 × 10−4 53 3.78 0.07
Propane 16.38 0.05 3.05 × 10−3 119 3.83 0.03
n-Heptane 2.93 × 10−1 3.50 × 10−3 1.19 × 10−2 560 41.11 0.07
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Fig. 4. Trajectory in CCS (left) and T evolution obtained for
Propane/Air (right) with DVODE (solid line) and G-Scheme (red
symbols).

the problem dimension,N (number of ODEs per iteration
step), given in Table I, is a measure of the degree of
(adaptive) reduction realized by theG-Scheme. Note that
the degree of reduction is highly problem-dependent: for
the cases studied, it is always below 10%. Figure 5
shows the time evolution of the active (NA), slow (NH),
and fast (NT ) subspace dimensions. Note thatNA is
initially equal to N = 119 (no reduction) and quickly
drops below 5; later, it stays between 20 and 30 during the
long nearly isothermal induction stage. It is noteworthy
to observe that even during the explosion stage, when the
temperature experiences the largest growth,NA remains
small because in this period most of the modes slower
than the driving ones are essentially frozen, soH stays
very close toT , and thus a small number of active modes
are obtained. Finally,NA attains a unit value while the
kinetics approaches the equilibrium state at the slowest
pace (τT = τE+1). Figure 6 shows the time evolution of
the time scales corresponding to modesH − 1, H , T ,
T + 1, andN . The regions betweenτH−1 and τH , and
τT and τT+1 represent the slow/fast gaps, respectively.
During the induction stage and the equilibrium stage ,
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Fig. 5. Active NA (black), slow NH (green), and fastNT (blue)
subspace dimensions; induction stage (left); explosion stage (right).

the fast gapǫT is well developed and clearly identifiable,
whereas the slow gapǫH is always rather narrow and
mostly identified by the enforced error control. Note that
during the explosion stage, the driving time scale attains
its lowest value although the value ofT keeps decreasing.
This happens because the large growth in temperature
induces a corresponding growth of the eigenvalues at all
scales. Thus all active scales become smaller, albeit still
confined in the rangeH−T ≈ 10-40. The region between
τT+1 and τN represents the fast subspace. The ratio
τH/τT is a measure of the stiffness of the reduced prob-
lem, which can be compared with the stiffness ratio of the
original problemτE+1/τN , from which one can conclude
that the reduced problem is significantly less stiff then the
original. Finally, the time evolution of the integration time
steps found by theG-SchemeandDVODE are shown in
Fig. 7. Note that both histories follow a similar pattern
with smaller steps during the initial transient and the
explosion stage, and larger steps during the induction
period and the approach to equilibrium.

V. REACTION-DIFFUSION MODEL

As a typical reaction-diffusion model exhibiting a rich
dynamic structure, we consider the model proposed by
Elezgaray and Arneodo [12] (EA model). The EA model
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Fig. 7. Integration time step evolutions obtained withDVODE (blue)
andG-Scheme(purple).

is a system of two coupled nonlinear PDEs:

∂u

∂t
= D

∂2u

∂x2
+ ǫ−1

(

v −
(

u2 + u3
))

,

∂v

∂t
= D

∂2v

∂x2
− u + α,

in (u(x, t), v(x, t)), (x, t) ∈ ([0, 1], [0,∞)), represent-
ing the concentrations of two chemical species with
an isothermal explosive kinetics displaying intermittent
bursting for some values of the parameters. HereD, α,
andǫ are positive parameters. The system is solved with
initial conditionsu(x, 0) = v(x, 0) = 0 for x ∈ [0, 1],
and boundary conditionsu(0, t) = u(1, t) = −2 and
v(0, t) = v(1, t) = −4 for t > 0. For small and large
values of diffusionD, the system stabilizes onto ignited
and extinguished steady states, respectively. Intermediate
values ofD correspond to operating conditions that allow
competition between the tendency to ignition due to
the nonlinear kinetics, and the extinguishing behavior at
the boundaries. This induces complex oscillations and
intermittent bursting in the center of the spatial domain.
In this case, no invariants are present, henceE = 0. The
calculations refer toD = 0.032, α = 0.01, andǫ = 0.01
so as to obtain a limit cycle behavior.

A Wavelet Adaptive Multilevel Representation
(WAMR) technique [2][3][4] is used to provide the
spatial discretization of the model. We analyzed this
same model problem in [1], where a uniform mesh
discretization was used. The time integration is obtained
by both the G-Scheme and DVODE, and the two
solutions are compared. To demonstrate the accuracy
of the G-Scheme, we plot in Fig. 8 the evolutions ofu
at the mid-pointx = 0.5 and the corresponding phase
trajectory’s approach to the limit cycle as computed by
DVODE and theG-Scheme with two different relative
tolerances (rtol = 10−3 and 10−4). The convergence
of the G-Scheme solutions to the reference orbit is
apparent, whereas a small time shift develops after 20
time units. In Fig. 9, we report the time evolution of
the number of wavelet collocation points,N , and of the
active modesNA found by theG-Scheme when using
the two tolerances. The number of collocation points at
one time instant defines the minimum number of spatial
degrees of freedom required to achieve the prescribed
spatial accuracy. Similarly the number of active modes
NA defines the minimum number of temporal degrees
of freedom required to achieve the prescribed temporal
accuracy. The number of collocation pointsN during
one cycle undergoes a slow growth up to about 260,
followed by a rapid decrease down to about 120. In
contrast, the number of active modesNA remains rather
constant during the slow growth ofN , and develops
two peaks a little earlier than the drop inN . The
largestNA is approximately150, and the smallest is10.
The integration time step,∆t, used by theG-Scheme,
oscillates between10−4 and 10−1 as can be seen from
Fig. 9.

In the present calculations, the coarsest spatial scale
consists of16 uniformly spaced collocation points, and
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Fig. 8. Time evolution ofu at x = 0.5 (left), and trajectories in the
(u-v)-plane, as computed by DVODE andG-Scheme with two different
relative tolerances (rtol = 10−3 and10−4).

the spatial resolution is adaptively increased up to a
resolution equivalent to a uniform mesh of16 × 210 =
16, 384 collocation points. Withrtol = 10−4, the number
of integration steps required to reach 20 time units is
3,390, which is equivalent to a total number of space-
time degreesof freedom (dof) of111, 083, 520. It should
be noted that in this problem we have two unknowns,u
and v, for each spatial point. Instead, the dof required
by the adaptive spatial discretization is914, 492, which
implies a saving factor of121.5. The actual number of
equations solved by theG-Scheme with is 262, 977, which
involves a reduction by a factor of3.5 with respect to
using DVODE and of422.4 with respect to using a
uniform mesh of equivalent spatial accuracy. Withrtol =
10−3, the equivalent reduction factor is approximately
540. Thus, combining the adaptive wavelet technique with
the G-Scheme allows to obtain a time accurate solution
of prescribed accuracy with a much smaller number of
space-time degrees of freedom.
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