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Abstract— The numerical solution of mathematical mod-
els for reaction systems in general, and reacting flows in
particular, is a challenging task because of the simultaneous
contribution of a wide range of time scales to the system
dynamics. However, the dynamics can develop very slow
and very fast time scales separated by a range of active
time scales. We propose a numerical technique consisting
of an algorithmic framework, named the G-Scheme, to
achieve multi-scale adaptive model reduction along-with the
integration of the differential equations (DEs). We assume
that the dynamics is decomposed into active, slow, fast, and
when applicable, invariant subspaces. Adjusting the active
DEs dynamically during the time integration is the most
significant feature of the G-Scheme, since the numerical
integration is accomplished by solving a number of DEs
typically much smaller than the dimension of the original
problem. To demonstrate the effectiveness of the G-Scheme,
we present results from an illustrative problem.

I. INTRODUCTION

Solutions of reaction systems in general are computa-
tionally very expensive because of the presence of a very
large range of scales. However, to within an arbitrary but
fixed accuracy, there are in general vary fast and very slow
time scales whose contributions to the active dynamics
is small. Recently, we proposed a new methodology [1]
that exploits this dynamic behavior to design a numerical
framework able to achieve adaptive reduction of the
dynamical system based on accuracy requirements. As
a result, the original problem not only becomes substan-
tially smaller, but more importantly non-stiff. The frozen
(slow) and near-equilibrium (fast) modes play crucial
roles in defining the active (dynamic) subspace, and thus
it is mandatory to account for their contributions. In this
work, we provide an overview of the G-Scheme and
present results of an illustrative low dimensional system
to demonstrate the effectiveness of the method.

II. BASIC CONCEPTS

The present work deals with model reduction concepts
that are used to develop a time accurate computational
tool that is able to exploit, adaptively, opportunities for
reduction from both fast/active and slow/active spectral
gaps. [1] The class of multi-scale problems which can
be efficiently addressed with the new framework is that
of stiff problems characterized by fast time scales of
dissipative nature. Operationally, the new framework is
designed to deal with the same class of problems as those
handled efficiently by BDF methods.

The proposed numerical technique consists of an algo-
rithmic framework, that for convenience will be referred
to as the G-Scheme, to achieve model reduction along-
with the numerical integration of a set of differential

equations (DEs). The method is directly applicable to
initial-value ordinary differential equations (ODEs), and
by using the method of lines to partial differential
equations (PDEs) as well. We describe the G-Scheme as
a “framework”, since the scheme consists of a modular
procedure, where several of its components can be re-
placed or improved, while the overall framework remains
unchanged, and can be used in different ways to achieve
different goals.

The rationale used in constructing the G-Scheme is
as follows [1]. The construction of reduced models for
a dynamical system whose asymptotic behavior might
involve fixed equilibrium points, or nontrivial limit sets,
such as limit cycles or chaotic attractors, is strictly related
to the occurrence of a gap in the spectrum of its character-
istic time scales (time-scale separation). A temporal gap
separates fast modes relaxing towards a SIM from the
slow modes that drive the system, whereas for systems
possessing nontrivial invariant limit sets, the temporal
dichotomy is between stable and unstable modes. In both
cases, the most relevant asymptotic behavior of the system
is confined to an invariant set which is attracting: the SIM
or the limit attractor.

The characterization of the local structure of these in-
variant subspaces can be of great importance in the devel-
opment of methods aimed at achieving a low-dimensional
description of dynamical systems. The basic idea is that
the invariant subspaces, ordered in a decreasing way
with respect to their characteristic time scales, provide
the most convenient and natural basis for describing
the unstable/slow and stable/fast components of the dy-
namics. Consequently, model reduction can be achieved
by filtering out the dynamically irrelevant degrees of
freedom associated with the most stable (fast) components
characterized by the most negative characteristic time
scales.

Ideally, one would like to decompose the tangent space
Tx at any point x ∈ C ⊂ RN in N invariant subspaces,
so that the dynamics within each invariant subspace is
fully decoupled from all other invariant subspaces, and
is associated with a single characteristic time scale. This
goal is not easy to achieve. However, decomposing the
tangent space in subspaces, not necessarily invariant,
characterized by time scales of comparable magnitude is
at the core of the G-Scheme [1]. We assume that the
tangent space Tx can be decomposed as the sum of four
subspaces,

Tx = E⊕H⊕ A⊕ T,

where the active subspace A contains all the current



intermediate dynamic time scales, all scales faster and
slower than the active ones are confined in the fast and
slow subspaces T and H, respectively, and, E is the linear
subspace spanned by directions associated with invariants,
if any exist.

At each state point x corresponding to time t, the
G-Scheme introduces a curvilinear frame of reference,
defined by a set of orthonormal basis vectors with corre-
sponding coordinates, attached to the decomposition of
the tangent space in the four subspaces. At any time
instant of the system evolution, the curvilinear coordinates
are suitable (linear) combinations of the perturbations ∆x
of the original state vector x about x itself, which are
assumed to be valid only within a time scale suitably de-
fined. Thus, they can be thought of as “lumped” variables
dynamically adjusting to the system’s evolution.

The evolution of the curvilinear coordinates associated
with the subspace A is described by NA = dim(A) ≤ N
ODEs, whereas the variation of the curvilinear coordinates
associated with the subspaces T and H are accounted for
by applying NT = dim(T) ≥ 0 and NH = dim(H) ≥ 0
algebraic corrections derived from asymptotics of the
original ODEs. Note that if we have NE = dim(E) ≥ 0
invariants, they can be formally eliminated so that the
dynamics is restricted to move in the subspace H⊕A⊕T
that satisfies the invariants exactly. Adjusting the active
ODEs dynamically during time integration is the most
significant feature of the G-Scheme, because the numer-
ical integration of the state vector x ∈ RN is obtained
by solving a number of ODEs typically much smaller
than N . The active ODEs evolve in A, which is freed
from fast scales, and thus they are non-stiff. They can
be solved by resorting to any explicit time integration
scheme (e.g., ERK). When compared to a standard BDF
implicit scheme for stiff problems, the G-Scheme offers
the advantage of requiring the solution of NA � N
explicit instead of N implicit ODEs, at the expense of
identifying the time scales and computing the set of ortho-
normal basis vectors that define the curvilinear frame of
reference.

A. Basis Vectors and Time Scales

Clearly, the success of the G-Scheme relies on the
ability to identify a decomposition of Tx which ensures
minimal (ideally no) coupling among slow, fast, and active
subspaces. The problem of finding a frame of reference
yielding the maximal degree of fast/slow decoupling can
be approached by resorting to the CSP refinements proce-
dure [2]. In this work, we identify the set of basis vectors
ai, defining the mapping of the change of frame of refer-
ence, with the right eigenvectors of the Jacobian matrix J
of the vector field related to the problem of interest, with
the dual vectors aj coinciding with the left eigenvectors of
J . This yields a leading order approximation of the CSP
vectors [3]. As estimate of the characteristic time scales,
we consider the reciprocal of the eigenvalues, λi, of J .
The ordering of the basis vectors is critical for proper
decomposition. Here, we order the modes according to

the magnitude of the complex eigenvalues, that is

0 = |λ1| = · · · = |λE | < |λE+1| < · · · < |λH−1| �
|λH | < · · · < |λT | � |λT+1| < · · · < |λN |,

where

0 = |λ1| = · · · = |λE | identify the time scales in E,
|λE+1| < · · · < |λH−1| identify the time scales in H,
|λH | < · · · < |λT | identify the time scales in A,
|λT+1| < · · · < |λN | identify the time scales in T,

with NE = E, NH = H − E − 1, NA = T − H + 1,
and NT = N − T . Note that, because of this ordering,
(possibly complex) eigenvalues with both negative and
positive real parts can be found in H and A, whereas we
expect the eigenvalues in T to have dominant negative
real parts. This is the distinguishing feature of the class
of problems for which the G-Scheme is expected to
perform efficiently. The ratios εT ≡ |λT /λT+1| < 1 and
εH ≡ |λH−1/λH | < 1 are measures of the spectral gaps
between active and fast subspaces, and slow and active
subspaces, respectively. Since the G-Scheme approximates
the contribution of the very slow and very fast time
scales with asymptotic corrections, it is expected that its
accuracy and efficiency will be higher for larger spectral
gaps, that is for smaller values of εT and/or εH . The
controlling (driving) time scale of the dynamics is given
by the fastest of the (active) time scales present in A, and
will be of the order of τT = 1/|λT |.

III. THE G-Scheme

Consider the Cauchy problem defined by a set of
autonomous ODEs:

dx(t)
dt

= f(x(t)),

with x ∈ RN , and f : E ⊂ RN → RN . We wish to find
the numerical solution for t ∈ (t0, tf ] with given initial
condition x(t0) = x0.

The state vector x(t) at time t = tn + τ , with
τ ∈ Ω ≡ (0,∆t] ⊂ R, where ∆t = (tn+1 − tn),
can always be expressed as the sum of the state vector
x(tn), for n = 0, 1, 2, . . ., and a perturbation vector
∆x(τ). We note that tn is some fixed arbitrary time.
The component-wise representation of the perturbation
vector ∆x(τ) can be expressed in terms of curvilinear
coordinates ∆x = ∆ξiai = ∆ξjaj related to the sets
of orthonormal covariant and contravariant basis vectors
ai and aj , respectively, here taken to correspond to the
eigenbases of

J (x(t)) ≡
[
∂f
∂x

]
x(t)

.

We take a curvilinear frame of reference that varies
with time. If the system is autonomous, then the frame
of reference depends only on the state of the system.
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Fig. 1. The G-Scheme step-by-step starting from a given state x(tn)
on a subspace of dimension evaluated at tn: orange stars denote inter-
mediate new states before the application of head or tail corrections, the
blue circle denotes the new state after head and tail corrections onto the
subspace evaluated at tn and where the basis vectors are subsequently
updated to tn+1, orange circle denotes the new state x(tn+1) and the
location where the subspace dimension possibly changes. Note that in
reality the orange circles are not exactly on the SIM; we’re actually
calculating the ASIM. We do not show both the SIM and ASIM so as
not to make the figure unduly complex.

Subsequently, we can write

x (t) = xn + ∆x,

= xn +Ae ∆ξe +Ah ∆ξh +Aa ∆ξa +At ∆ξt,

= xn + ∆xe + ∆xh + ∆xa + ∆xt,

where

A(τ) ≡ [a1(τ) · · · ai(τ) · · · aN (τ)] ,

B(τ) ≡


a1(τ)
· · ·

aj(τ)
· · ·

aN (τ)

 , ∆ξ(τ) ≡


∆ξ1(τ)
· · ·

∆ξj(τ)
· · ·

∆ξN (τ)

 ,
where

A(τ)B(τ) = B(τ)A(τ) = I,

I being the identity matrix, Note that by construction, the
contribution ∆xe of the invariant subspace is identically
zero.

A. The Framework Step-by-Step

The G-Scheme is fully described in [1]. Here the
algorithmic steps of the framework are summarized with
reference to Fig. 1. We use indices i = 1, . . . , N , a =
H, . . . , T , h = E+ 1, . . . ,H−1, and t = T + 1, . . . , N .

We initialize the calculation by prescribing that
T (x(t0)) = N , and compute J(x(t0)), λi(t0) =
λi(x(t0)), A(t0) = A(x(t0)) and B(t0) = B(x(t0)).
Next, for each time interval tn (τ = 0), and for the state
vector x(tn), with n = 0, 1, 2, . . ., we proceed as follows:

1) Define the time step as:

∆t = γ/|λT (x(tn))|, γ ≤ 1; (1)

2) Update time:

tn+1 = tn + ∆t; (2)

3) Find H(x(tn)) since, as discussed in [1], it depends
on ∆t;

4) Solve the set of non-stiff ODE’s for τ ∈ Ω =
(0,∆t]:

d∆ξa

dτ
= Ba(tn) f (x(tn) +Aa(tn) ∆ξa(τ)) ,

∆ξa(0) = 0a; (3)

5) Update the state vector:

xa(tn+1) = x(tn) +Aa(tn) ∆ξa (∆t) ; (4)

6) Apply the head correction:

xh(tn+1) = xa(tn+1) +Ah(tn) ∆ξh
FF(∆t); (5)

where the head correction is estimated as:

∆ξh
FF(∆t) = ∆t Bh(tn) ·[
I +

1
2

Λh
h (x(tn), tn) ∆t

]
f (x(tn)) ;(6)

7) Apply the tail correction to project the solution onto
the subspace obtained using the basis vectors found
at tn:

xt(tn+1) = xh(tn+1) +At(tn) ∆ξt
SIM(tn)(∆t),

(7)
where the tail correction is estimated as:

∆ξt
SIM(tn)(∆t) =

−
(
Bt(tn)J(x(tn))At(tn)

)−1 ·
Bt (tn) f(xh(tn)); (8)

8) Update J(xt(tn+1)), λi(tn+1) = λi(xt(tn+1)),
and the set of new basis vectors A(tn+1) =
A(xt(tn+1)) and B(tn+1) = B(xt(tn+1));

9) Apply a bases rotation correction if necessary (i.e.,
if the fast subspace changes) to find the state
x(tn+1) by projecting xt(tn+1) located on the man-
ifold evaluated at tn onto the manifold evaluated at
tn+1:

x(tn+1) = xt(tn+1) +A(tn+1) ∆ξSIM(tn+1)(∆t);
(9)

where the basis rotation correction is estimated as:

∆ξSIM(tn+1)(∆t) =

−
(
Bt(tn+1)J(xt(tn+1))At(tn+1)

)−1 ·
Bt (tn+1) f(xt(tn+1)); (10)

10) Find T (x(tn+1)) as discussed in [1];
11) Update the counter: n = n+ 1;
12) If [tn+1 < tf ] go back to step (1).

The choice of the safety factor γ has an impact on
the local error of the solution, given that ∆t = γ O(τp

T )
where p is the formal order of accuracy of the quadrature
scheme adopted to integrate (3).



IV. RESULTS USING A PLANAR ODE MODEL

The reference solutions presented in this section are
obtained with the module NDSolve in Mathematica c©

6.0, the Automatic method of integration (by default
an LSODA approach is used, switching between a non-
stiff Adams method and a stiff Gear BDF method), a
precision (or rtol) of 10−10, and accuracy (or atol) of
10−14. The calculations carried out with the G-Scheme
use the explicit Runge-Kutta four-stage scheme (ERK4)
to integrate the active dynamics, and, unless otherwise
stated, we use rtol = 10−4 and atol = 10−13 in the
threshold vector ε defined in [1]. We note that the present
meanings of rtol and atol as used by NDSolve and the
G-Scheme are somewhat different.

As a test featuring stiff explosive/dissipative nonlinear
behavior, we use the Semenov model, which represents
the dynamics of the first-order exothermal batch reaction
A→ B in a well-stirred jacketed reactor:

dy

dt
= ε−1f(y, z) and

dz

dt
= g(y, z),

where

f(y, z) = g(y, z)− δy ; g(y, z) = z exp(y/(1+βy)),

with parameter values β = 0.21, δ = 1.0, and ε =
10−3, and initial condition {y(0), z(0)} = {5, 2}. The
bifurcation properties of this model have been studied
in [4]. This model problem is aimed at illustrating the
operating characteristics of the G-Scheme.

For this set of parameters the solution proceeds from
the initial condition to a fixed point (equilibrium), but
with a fairly complex dynamics as can be seen from the
phase trajectory or from the time evolution of y shown in
Fig. 2. The relative error and the size of the time step are
shown as functions of time in Fig. 3. The total number
of time steps necessary to obtain the solution using the
G-Scheme is 63. In Figs. 4 we show the number of active
modes NA, and the values of the head (H) and tail (T )
indices as functions of time. It is clear from the figure that
most of the time it is only necessary to integrate one ODE;
integration of both ODEs is only necessary the first time
step, and near the sharp corners shown in Fig. 2. We also
see from Fig. 4 that from right after the initial condition
until after the first turn H = T = 2. This indicates that the
dynamics is effectively one-dimensional and is controlled
by the fast time-scale (explosive stage). Afterwards, with
the exception of the period spent in negotiating the second
turn, the dynamics is again effectively one-dimensional,
but this time it is controlled by the slow time scale
(dissipative stage) since H = T = 1.

To illustrate the internal mechanics of the G-Scheme,
Fig. 5 shows the contributions of the slow (head) and
fast (tail) corrections to the phase trajectory. Note that
in this two-dimensional Semenov model, as long as we
have one active mode, then at any time only a head or
tail correction to active dynamics can be applied. We see
from the figure that in the first turn only head corrections
are necessary. However, from the figure we see that small
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head corrections are applied before the second turn, while
tail corrections are necessary after the turn. In the figure,
the blue arrows identify the state vector change due to
the active time scales, the red/green arrows are parallel to
the slow/fast direction and identify the state vector change
due to the application of the head/tail correction, whereas
the black arrows refer to the reference solution evaluated
at the same time instants as the G-Scheme solution. The
distance between the points of the red and black arrows
or the green and black arrows is the error associated with
the particular values of γ and rtol used in this calculation.

V. CONCLUSION

We conclude by stressing that the main goal of this
work is the presentation of the G-Scheme framework and
the verification of its ability in achieving an adaptive
model reduction. Regarding this aspect, the validation
carried out by considering a range of test cases involv-
ing both linear and nonlinear behavior, both ODEs and
PDEs, containing both simple and non trivial asymptotic
dynamics, has successfully demonstrated the potential of
the G-Scheme [1]. We already have successfully tested
the G-Scheme in problems related to the kinetics of large
hydrocarbons. In addition to addressing issues related to
computational efficiency and error analysis, much work is
still needed to translate this framework into a useful com-
putational tool. We plan to make the package available
to users and voluntary developers under the open-source
paradigm in the near-future.
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