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Abstract— We discuss model reduction of multiscale net-
works of biochemical reactions used in systems biology
as models for cell physiology and pathology. For linear
kinetic models, which appear as ”pseudo-monomolecular”
subsystems of the nonlinear reaction networks, we obtain a
general reduction algorithm based on cycle averaging and
surgery. The same algorithm, when applied to stochastic
networks, allows to reduce simulation time by many orders
of magnitude.

I. INTRODUCTION

Systems biology uses networks of biochemical reac-
tions as paradigms for normal and pathologic cell func-
tioning. In such models, the cell has several compartments
(nucleus, cytosol, organelles, etc.) but each compartment
is considered to be well stirred. Transport between com-
partments is possible. The models are usually medium
size (tens to hundreds of reactions and species). There-
fore, their simulation by ODE solvers is not really a prob-
lem even for stiff systems. However, biological models
present specific difficulties. Thus, the reaction mechanism
is most of the time hypothetic and finding parameter
values is difficult. For such systems, we would like to
have simple rules allowing us to understand why a model
functions the way it does and which consequences have
on dynamics the various modifications of the mechanism.
Furthermore, one would like to known which aspects (for
instance parameter values) of the model are essential and
which are not. All these questions could be answered by
computing reduced mechanisms. Another specificity of
molecular systems in biology is their stochasticity. The
law of large numbers does not apply in biology as it does
in physics, where fluctuations existing at microscopic
scale are wiped-out in the thermodynamic limit (except
for critical and turbulent systems). Biological systems
behave similarly to critical or turbulent physical systems:
they have many fluctuating scales.Molecular species in
small number are responsible for stochastic phenomena
such as intermittence or bursting, occurring in protein
production, random action potential firing, calcium sig-
nalling, etc.. In systems biology, stochastic modelling by
Markov jump dynamics (Gillespie SSA algorithm [1])
represents a very time consuming industry. There are
two solutions to this problem. The first one is similar to
the one employed by stiff deterministic solvers: avoiding
adaptatively, but blindly the individual simulation of re-
actions that repeat very frequently. The second solution,
that we propose here is to pre-condition the system by

simplifying it to a less stiff model.
In this paper we present such a pre-conditioning algo-

rithm that works equally well for deterministic and for
stochastic models. This algorithm is based on nontrivial
generalizations of limitation (whose “naive” versions are
well-known for chains and acyclic networks) to hierar-
chies of cycles and on averaging.

II. ALGORITHMS

A. Linear submechanisms

There are two types of linear submechanisms:
monomolecular networks and first order networks. The
structure of monomolecular reaction networks can be
completely defined by a simple digraph, in which vertices
correspond to chemical species Ai, edges correspond to
reactions Ai → Aj with rate constants kji > 0. For each
vertex, Ai, a positive real variable ci (concentration) is
defined.

The deterministic kinetic equation is

dci
dt

=
∑
j

kijcj − (
∑
j

kji)ci, (1)

First order reaction networks include monomolecular
networks as a particular case, and are characterized by a
single substrate and by reaction rates that are proportional
to the concentration of the substrate. First order reaction
networks can contain reactions that are not monomolecu-
lar, such as A→ A+B, or A→ B+C. We shall restrict
ourselves to pseudo-conservative first order reactions, ie
reactions that do not change the total number of molecules
in a given submechanism (A → A + B reactions are
allowed, provided that B is external to the submechanism;
similarly A → B + C reactions are allowed, provided
that either B or C is external to the submechanism).
With such constraints, the total number of molecules in
the sub-mechanism is conserved and the kinetic equations
are the same as (1). Degradation reactions can be studied
in this framework by considering a special component
(sink), that collects degraded molecules. Further release
of the constraints is possible. For instance, the system
can be opened by allowing constant (or slowly variable)
production terms in Eq.(1). These terms will change the
steady state, but will not influence the relaxation times of
the system.

The algorithms described in the paper can be applied
to linear sub-mechanisms of a non-linear network, given



fixed (or slowly changing) values of external inputs
(boundaries). For instance, even in systems of binary re-
actions, one can define pseudo-monomolecular reactions
when one of the substrates of the binary reaction is not
changing (or changing slowly). This condition can be
fulfilled if the substrate is in excess, for instance.

B. Dominant pathways by cycle surgery in deterministic
networks

The idea of dominant subsystems in asymptotic anal-
ysis of dynamical systems is due to Newton and de-
veloped by Kruskal [6]. Complex regulatory networks
in metabolism and signalling activate only a limited
number of pathways in order to fulfill a given physiologic
task. The set of active pathways can change for unusual
stresses (such as exposure to a toxin) or in pathologic
situations. The concept of dominant pathways could serve
to explain such dynamic transitions. In [3] we have based
the construction of dominant subsystems on a general-
ized limitation approach. This approach selects dominant
pathways and produces simplified reaction mechanisms.

We consider total separation of the constants namely
either kI << k′I or k′I << kI for all I = ij, I ′ = i′j′. In
this case the dominant subsystem can be worked-out by
cycle surgery [3]. The algorithm, justified by estimates for
the eigenvalues and eigenvectors (inspired, but not fully
covered by Gershgorin theorem) of the kinetic matrix [3],
consists of three stages:

I. Constructing the auxiliary reaction network.
For each Ai, let us define κi as the maximal kinetic

constant for reactions Ai → Aj : κi = maxj{kji}.
For correspondent j we use the notation φ(i): φ(i) =
arg maxj{kji}.

An auxiliary reaction networkW is the set of reactions
Ai → Aφ(i) with kinetic constants κi. The correspondent
kinetic equation is

ċi = −κici +
∑
φ(j)=i

κjcj , (2)

II Glueing cycles
In general, the auxiliary network V has several cycles

C1, C2, ... with periods τ1, τ2, ... > 1.
These cycles will be “glued” into points and all nodes

in the cycle Ci, will be replaced by a single vertex Ai.
Reactions A → B exiting from cycles (A ∈ Ci, B ∈

Cj , j 6= i or B ∈ Ci) are changed into Ai → B with
the rate constant renormalization: let the cycle Ci be the
following sequence of reactions A1 → A2 → ...Aτi →
A1, and the reaction rate constant for Ai → Ai+1 is ki
(kτi

for Aτi
→ A1). For the limiting reaction of the cycle

Ci we use notation klim i. If A = Aj and k is the rate
reaction for A → B, then the new reaction Ai → B has
the rate constant kklim i/kj . This rate is obtained using
quasi-stationary distribution for the cycle.

The new auxiliary network V1 is computed for the net-
work of glued cycles. Then we decompose it into cycles,
glue them, iterate until a acyclic network is obtained Vn.

III Restoration of cycles

The dynamics of species inside glued cycles is lost
after the previous step. A full multi-scale approximation
(including relaxation inside cycles) can be obtained by
cycle restoration. This is done starting from the acyclic
auxiliary network Vn back to V1 through the hierarchy of
cycles. Each cycle is restored according to the following
procedure:

For each glued cycle node Ami , node of Vm,
• Recall its nodes Am−1

i1 → Am−1
i2 → ...Am−1

iτi
→

Am−1
i1 ; they form a cycle of length τi.

• Let us assume that the limiting step in Ami is
Am−1
iτi

→ Am−1
i1

• Remove Ami from Vm
• Add τi vertices Am−1

i1 , Am−1
i2 , ...Am−1

iτi
to Vm

• Add to Vm reactions Am−1
i1 → Am−1

i2 → ...Am−1
iτi

(that are the cycle reactions without the limiting step)
with correspondent constants from Vm−1

• If there exists an outgoing reaction Ami → B in Vm
then we substitute it by the reaction Am−1

iτi
→ B with

the same constant, i.e. outgoing reactions Ami → ...
are reattached to the heads of the limiting steps

• If there exists an incoming reaction in the form B →
Ami , find its prototype in Vm−1 and restore it in Vm

• If in the initial Vm there existed a “between-cycles”
reaction Ami → Amj then we find the prototype
in Vm−1, A → B, and substitute the reaction by
Am−1
iτi

→ B with the same constant, as for Ami →
Amj (again, the beginning of the arrow is reattached
to the head of the limiting step in Ami )

C. Cycle averaging in stochastic linear chemical net-
works

The Markovian stochastic dynamics of a single
molecule in a linear reaction network is given by the
probability p(j, t) that the molecule is in Aj at the time
t. We can easily show that the master equation for p(j, t)
is the same as the deterministic kinetic equation (1).
Considering only one molecule does not restrict generality
because when several molecules are present in a linear
network, these behave independently. Thus, the simplifi-
cation method proposed for deterministic networks [3],
[2] can be also applied to stochastic networks.

Simplified stochastic models will represent pre-
conditioned models used in order to reduce simulation
time. Instead of searching for a multiscale approximation,
our purpose here is to find a reduced model that is
computationally effective and which captures dynamics
on time scales or order τ or slower. τ could be for instance
the experimental time resolution.

In order to present the simplification algorithm let us
use two simple examples.

First, let us consider a chain of molecular reactions
A1 → A2 → ...Am. The reaction rate constant for
Ai → Ai+1 is ki. All rate constants are considered well
separated, i.e. either ki << kj or ki >> kj for any i 6= j.
The smallest rate constant in the chain is denoted by klim.
If klim >> 1/τ (rapid chain), then within the timescale τ
all molecules A1 are transformed into molecules Am. We



can thus ignore the chain reactions and consider that the
entire initial mass of the chain is in Am. This is equivalent
to considering the chain at quasi-stationarity because the
steady state probability distribution of a chain is a Dirac
delta measure localized at the end of the chain. However,
if we do not simplify chains, then simulating them by
Gillespie’s SSA [1] will not be computationally expensive
because the mass of the chain is transferred to the end of
the chain Am in a number of steps that is relatively small.

As a second example, let us consider the cycle C
be the following sequence of mono-molecular reactions
A1 → A2 → ...Am → A1. Let all rate constants be well
separated and the smallest one be klim like before. We
add to the cycle one branching reaction; this transforms
Aj a component of the cycle into B a component exterior
to the cycle. We consider the following distinct situations:
(I) the branching reaction is Aj → B of rate constant k
and k << kj , (II) the branching reaction is Aj → B and
k >> kj , (III) the branching reaction is Aj → Aj + B,
or (IV) the branching reaction is Aj → Aj+1 + B of
rate constant kj . In the situation (I) the exit reaction is
faster and dominates the cycling reaction Aj → Aj+1.
According to the rule for auxiliary networks in this case
(that we call “broken” cycle) the cycle can be opened
(by eliminating the cycling reaction Aj → Aj+1) and
the resulting multiscale dynamics is the one of a chain;
we recover the previous example and in this case we
can safely decide to do nothing. In the situation (II) the
exit reaction is much slower than the cycling reaction.
In this case the molecules inside the cycle have rapid
transformations and the mass distribution inside the cycle
can be considered to reach quasi-stationary distribution.
As discussed in [4], [3], [2], the relaxation time of a
cycle with separated constants is the inverse of the second
slowest rate constant k(2) >> k(1) = klim. To under-
stand this, one should consider the two possible paths
to equilibrate a cycle, one passing through the slowest
step and the quicker one passing through the second
slowest step: the quicker short-cuts the first one. Thus,
a cycle can be considered quasi-stationary if k(2) >>
1/τ . A non-averaged fast cycle could be computationally
expensive in SSA, because a molecule can perform a huge
number of steps along the cycle on the timescale τ . The
corresponding condition involves the quasi-stationary flux
(not the relaxation time) and reads k(1) >> 1/τ .

From a quasi-stationary cycle, the mass is lost stochas-
tically, but slowly by the branching reaction. The inten-
sity of the loss process can be calculated by replacing
Xj by its average with respect to the quasi-stationary
distribution of the cycle. The average of Xj is X̄j =
N(t)klim/kj , where N(t) is the total mass inside the
cycle N =

∑m
j=1Nj . We obtain the average intensity λ̄ =

kX̄j = N(t)kklim/kj . In the situations (III) or (IV) the
average intensities of the branching reactions are kX̄j =
N(t)kklim/kj and kjX̄j = N(t)klim, respectively.

The result of the cycle averaging can be represented as
a simplification of the mechanism (cycle glueing), applied
only to non-broken cycles:

• “glue” the cycle into a single node C having the total
mass N

• replace the exit reaction of the type i) Aj → B of
rate constant k by a reaction C → B of effective
constant k′ = kklim/kj .

• replace the reaction of the type ii) Aj → Aj +B or
rate constant k by a reaction C → C+B of effective
constant k′ = kklim/kj .

• replace the reaction of the type iii) Aj → Aj+1 +B
of rate constant kj by a reaction C → C + B of
effective constant k′ = klim.

As a possible design rule, notice that, unless kj is the
limiting step in the cycle, one has klim/kj << 1. Then,
the average intensity of the exit reaction of the type i) or
ii) is weak and could represent a source of intermittence
in the system. This situation should be avoided for less
noise in the system, or created when noise is wanted.

III. APPLICATIONS

A. NFκB oscillations

The transcription factor NF-κB is involved in a wide
diversity of domains such as the immune and inflamma-
tory responses, cell survival and apoptosis, cellular stress
and neuro-degenerative diseases, cancer and development.
NF-κB is sequestered in the cytoplasm by inactivating
proteins named IκB. Upon signalling, IκB molecules are
phosphorylated by a kinase complex, then ubiquitinylated,
and finally degraded by the proteasomal complex. NF-
κB released from IκB molecules is then transported to
the nucleus to activate its target genes, among which
its inhibitor IκB. The produced IκB enters the nucleus,
binds to, back-translocates and re-sequester NF-κB in the
cytosol. This delayed negative feed-back is responsible
for oscillations of NF-κB activity.

The biochemical models for NFκB signalling discussed
in [2] contain linear sub-networks that were simplified
using the algorithm described in sub-section IIA. After
simplification, a mapping has been constructed between
parameters of the initial model and the parameters of
the simpler model. This mapping allowed us to find the
critical parameters and to asses their influence on the
capacity of the system to undergo sustained oscillations.
Thus, many reactions are dominated and not critical. The
precise values of their constants are not important for
the dynamics, although their relative order matters. The
details of this analysis can be found in [2].

B. Stochastic bursting of repressed operon

To illustrate reduction of stochastic models, we present
here a new application.

Under strong repression, protein production from a
bacterium operon undergoes stochastic bursting. The phe-
nomenon has been modelled by [5], see Fig.1. In this
model the bacterium is considered to be in exponential
growth phase, increasing size and dividing normally. Cell
growth is simulated by a linear increase of the volume
in time. During replication the nuclear material doubles
(variables D,D.R,DRNAP). At fission the nuclear material



Fig. 1. Repressed operon models. The averaged cycles are in red.

is halved and all other components are divided among
daughter cells according to a binomial distribution.

The cycle averaging procedure can be applied three
times:
1.1 The cycle D,D.R is not-broken. It is glued to the
node D∗ whose total mass is equal to the mass of D and
D.R.
1.2 The limiting step of the cycle is klim = km1 << k1.
1.3 The branching reaction D → D.RNAP is replaced
by D∗ → D.RNAP of effective constant k′2 = km1

k1
k2.

2.1 The cycle D∗, D.RNAP is not-broken. It is glued to
the node D∗∗ whose total mass is equal to the mass of
D and D.R and D.RNAP .
2.2 We have k′2 << km2 hence the limiting step of the
cycle is k′2.
2.3 The branching reaction D.RNAP → TrRNAP is
replaced by D∗∗ → TrRNAP of effective constant k′3 =
km1
km2

k2
k1k3.

3.1 The cycle RBS,Rib.RBS is not-broken. It is glued
to the node RBS∗ whose total mass is the one of RBS
and of Rib.RBS.
3.2 The limiting step is km6 << k6.
3.3 The branching reaction Rib.RBS → ElRib + RBS
is replaced by the reaction RBS∗ → ElRib+RBS∗ of
effective constant k7∗ ≈ k7.

Notice that a loss of accuracy should be expected
from the application of the third averaging step. The
separation of the branching and cycling reactions is not
that good. Indeed, k7/km6 ≈ 0.22 while in theory we
need k7/km6 << 1. The trajectories obtained by SSA
(Fig.2) show the bursting phenomenon that can be now
understood by the resulting low intensity of the reaction
TrRNAP → RBS. The reduced models reproduce the
same behavior (with good accuracy for model 2, only
qualitatively for model 3).

In order to compare the performance of the models (in
terms of time complexity) we have represented the total
jump intensities for three models (exact SSA, second and
third averaged steps models) as functions of time on a
trajectory. The model that demands the least computer
time is the one with the smallest jump intensity. In Fig.3,
we notice a decrease of several orders of magnitudes of

Fig. 2. Trajectories obtained by SSA

Fig. 3. Jump intensities for the 3 models.

the total intensity from exact SSA to the second and third
averaging steps.
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