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Abstract— For many biochemical phenomena in cells the
molecule count is low, leading to stochastic behavior that
causes deterministic macroscale reaction models to fail. The
main mathematical framework representing these phenom-
ena is based on continuous-time, discrete-state Markov pro-
cesses that model the underlying stochastic reaction network.
Conventional dynamical analysis tools do not readily gener-
alize to the stochastic setting due to non-differentiability and
absence of explicit state evolution equations. We developed
a reduced order methodology for dynamical analysis that
relies on the Karhunen-Loève decomposition and polynomial
chaos expansions. The methodology relies on adaptive data
partitioning to obtain an accurate representation of the
stochastic process, especially in the case of multimodal
behavior. As a result, a mixture model is obtained that
represents the reduced order dynamics of the system. The
Schlögl model is used as a prototype bistable process that
exhibits time-scale separation and leads to multimodality in
the reduced order model.

I. INTRODUCTION

The simplest description of chemical reaction pro-
cesses is based on rate equations, i.e. ordinary differ-
ential equations (ODEs) for species concentrations. This
macroscopic setting fails when the relevant volume or
the species numbers are small because of the increased
significance of stochastic noise due to random molecular
collisions [9], [22]. Stochastic reaction networks (SRNs)
account for intrinsic stochastic noise, and provide a
general framework for chemical reaction models at the
microscopic, molecular level. SRNs are generally gov-
erned by the Chemical Master Equation [7] (CME), which
is a differential equation governing the time evolution
of the Probability Density Function (PDF) of species
numbers. The chemical master equation is obtained by
modeling a SRN as a jump Markov process [23], [6], i.e.
discrete-state, continuous-time stochastic processes with
no memory. Since computing direct numerical solutions
for CMEs is still challenging (for recent efforts, see [15]
and references therein), simulation-based methods be-
come the main analytical tools. In particular, Gillespie’s
Stochastic Simulation Algorithm [4], [5] (SSA) provides
a simulation mechanism for the time-evolution of species
numbers at the microscopic scale, thereby effectively
sampling the CME solution. This allows determining
useful statistical properties of the system by averaging
without solving the CME itself.

In this work, we rely on Karhunen-Loève (KL) ex-
pansions [10], [14], [2] that represent the underlying
stochastic processes in terms of orthonormal random

variables, truncated to a reduced order model. This low-
order representation is constructed based on the observed
statistics of the stochastic process over a given period of
time. With a truncated KL expansion, each realization of
a stochastic process corresponds to a finite number of un-
correlated random variables, with non-standard distribu-
tions determined by the data. As a result, it is desirable to
represent these random variables with polynomial chaos
(PC) expansions [25] that enable computationally efficient
estimation of system properties.

However, a global PC representation with a finite
order and dimensionality does not accurately capture
random variables that exhibit strong multimodalities [18].
Adaptive multi-wavelet [11], [12], [13] or PC [24] bases,
both relying on stochastic domain decomposition, enable
efficient analysis of such processes in the continuous
deterministic setting. In this work, we extend the method-
ology proposed in [18] to obtain an adaptive, data-driven
partitioning that captures the structure and modalities of
intrinsic stochasticity. Our data partitioning algorithm,
which involves a combination of clustering and data
range bisection, leads to a mixture of PC expansions that
properly represents multimodal distributions by taking
advantage of the underlying data structure.

II. REDUCED ORDER MODELING VIA
KARHUNEN-LOÈVE DECOMPOSITION

As a reduced order model for a stochastic process
X(t, θ), consider the L-truncated Karhunen-Loève (KL)
expansion [10], [14]

X(t, θ) ≈ XKL(t, θ) = X̄(t, θ) +

L
∑

i=1

√

λifi(t)ξi, (1)

where X̄(t, θ) denotes the expectation with respect to the
sample space element θ. In the above KL expansion, the
λi are the eigenvalues of the covariance kernel with cor-
responding orthogonal eigenfunctions fi(t). The random
vector ξ = (ξ1, . . . , ξL) consists of L jointly distributed
and uncorrelated (but not independent) random variables.
Essentially, the dynamics of the full process X(t) is
captured by a single random vector ξ (we will drop the
argument θ for clarity, unless there is a need to put an
emphasis on the intrinsic randomness).

As a benchmark process that exhibits a bimodal behav-
ior, consider the Schlögl model [19], [6], [18], which is a
SRN involving two reversible reactions and three species
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Fig. 1. Hundred SSA realizations of the Schlögl model with the nominal
parameter set [17].
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Fig. 2. a) First ten KL eigenvalues, and b) the scatter plot for the
first two KL random variables for the Schlögl model with the nominal
parameter set [17].

X, A and B, but with A and B assumed to be present in
large and fixed numbers. We are interested in the number
of species X(t). With X(0) = 250 and the nominal set of
rate constants, the system exhibits bistable behavior over
a time window t ∈ [0, 20], see Fig. 1. Furthermore, Fig. 2
illustrates the corresponding eigenvalue spectrum and the
scatter plot of the projected samples of ξ1 and ξ2. The
huge gap between the first two eigenvalues and bimodality
along the ξ1-dimension are direct results of the bimodality
of the time-dependent process itself. Although the random
vector ξ has uncorrelated components, it may have a
complicated structure that is not known beforehand. We
then turn to spectral expansions in order to properly
represent the random vector ξ.

III. POLYNOMIAL CHAOS EXPANSION OF THE
REDUCED ORDER MODEL

We seek to approximate ξ with a random variable
represented by a d-th order, L-dimensional PC expansion

ξ =

P
∑

k=0

ckΨk(ζ1, . . . , ζL) ≡ g (ζ; C) , (2)

with the number of terms P +1 = (d+L)!
d!L! and multivariate

orthogonal polynomials Ψk(ζ). The components of the
random vector ζ are standard i.i.d. random variables. In
this work, we have used Hermite polynomials that are
orthogonal with respect to the PDF of a standard normal

random variable. Namely,

〈Ψj(ζ)Ψk(ζ)〉 ≡
∫

Ψj(ζ)Ψk(ζ)
e−

ζT ζ
2

√
2π

dζ

= 〈Ψ2
k(ζ)〉δjk . (3)

The above orthogonality relation leads to the projection
formulas

ck =
〈ξΨk(ζ)〉
〈Ψ2

k(ζ)〉 . (4)

However, in order to compute the stochastic projection
integral 〈ξΨk(ζ)〉, one needs an one-to-one correspon-
dence between samples of ξ and ζ. To resolve this,
we employ the Rosenblatt transformation [16], [17] that
enables the projection (4) in the same, ζ-space. Finally,
the full representation can be written as

X(t, θ) ≈ XKLPC(t, θ) = (5)

= X̄(t, θ) +

L
∑

i=1

(

P
∑

k=0

cikΨk(ζ)

)

√

λifi(t),

i.e. the process X(t, θ) is described in terms of deter-
ministic matrix elements cik and a random vector ζ =
(ζ1, . . . , ζL) of standard normal i.i.d. random variables.
However, as shown in [18], the global PC representation
is challenged if the random vector ξ has a multimodal
character, which is certainly the case for the Schlögl
model, see Fig. 2b.

IV. ADAPTIVE DATA PARTITIONING ALGORITHM

In order to tackle multimodalities, we analyzed various
approaches of partitioning the data set of samples of
ξ, and introduced a novel, hybrid and adaptive strategy
that involves approximate k-center clustering [8] to detect
the bimodalities, followed by data-range bisection. The
algorithm adaptively partitions the data set into subsets
that are simpler to represent with low-order PC, until this
representation is satisfactory in terms of the Kullback-
Leibler (K-L) divergence or relative entropy [3], [1]
between the PDFs of the data samples and the samples
of the corresponding representation (i.e., P (·) and Q(·),
respectively)

d(P ||Q) =

∫

P (x) log
P (x)

Q(x)
dx. (6)

Exact computation of the K-L divergence requires an
integration that is extremely costly in multiple dimen-
sions. Nevertheless, it can be estimated by Monte-Carlo
integration in terms of the data samples that are available.
Namely,

d(P ||Q) ≈ 1

N

N
∑

n=1

log
P (ξ(n))

Q(ξ(n))
(7)

=
1

N

(

N
∑

n=1

log P (ξ(n)) −
N
∑

n=1

log Q(ξ(n))

)

,

where ξ(n) for n = 1, 2, . . . , N are the samples drawn
from the distribution P (·), i.e. exactly the data samples



that are to be PC-represented. This approximation of the
K-L divergence allows simple intuitive interpretation: the
second sum is the log-probability of having the particular
data set {ξ(n)}N

n=1 given a model that leads to the PDF
Q(·) (in other terms, the likelihood of the model), while
the first sum is the likelihood if the model had the exact
same PDF as the original data set (in a sense, a target
likelihood). The PDFs in (7) are computed by standard
KDE techniques [21], [20].

We have analyzed various data partitioning schemes
and found that the domain-based bisection approaches
(specifically, data range bisection, data median bisection
and data size bisection, see [17]) blindly split the data
without detecting the modalities. Therefore, we enhanced
the methodology with an initial clustering step (namely,
an approximate version of the k-center clustering is im-
plemented) that detects the modalities present in the data
structure. After this initial step, it is shown that the data
range bisection works better than the other approaches. It
consists of finding and bisecting the data range in each
direction simultaneously.

In order to find out whether an initial clustering is
needed and what the optimal number of clusters is, we
employ the explained variance criterion. The explained
variance for a specific clustering is a variance of a data
set that is obtained from the initial data set by replacing
each sample with the mean of its cluster. The fraction of
the explained variance over the total variance vanishes if
there is only one cluster (the set itself) and is equal to
one, if the number of clusters is the same as the number
of data samples. We run several trial clustering cases for
various fixed number of clusters and check the graph of
the explained variance fraction versus the cluster number.
This graph is generally increasing and concave down. If
there is a well-seen ‘elbow’ in the graph, then its location
corresponds to the optimal number of clusters. Otherwise,
there is no need to proceed with the clustering, and the
data is considered sufficiently unimodal [17].

The adaptive PC representation algorithm then pro-
ceeds as follows:

0. Obtain N SSA realizations X(t).
1. Perform KL decomposition up to the eigenmode

(dimension) L.
1a. As a result, obtain a set of N data samples of

the random vector ξ = (ξ1, . . . , ξL) and call it
the current data set S = {ξ(1), ξ(2), . . . , ξ(N)}.

1b. If the explained variance criterion [17] detects
modalities, cluster the data into the optimal
number of clusters and proceed considering each
cluster as a new data set. Otherwise proceed to
Step 2.

2. Use the Rosenblatt transformation and quadrature
evaluation of the projection integrals (4) to find a
finite order PC representation for the current data
samples: ξi =

∑P

k=0 cikΨk(ζ), for i = 1, 2, . . . , L.
2a. Compute the K-L divergence between the data

and the PC model using (7).

3. If the number of samples in the current data set
exceeds the threshold Nthr and the K-L divergence
is larger than the threshold dthr, partition the current
data set according to data range bisection, and recur-
sively return to Step 2 for each new data set. Else
keep the current PC representation and move to the
next untreated data set.

Fig. 3. The data partitions for the first two KL variables obtained from
a KL projection of N = 10

5 realizations of the Schlögl process.

Fig. 4. The scatter plot of the original data set and the samples obtained
from the mixture PC representation.

The final representation then corresponds to a PDF that
is a mixture of PDFs of PC representations of each of the
K subsets. Namely,

PDFξ
P C

(y) =

K
∑

j=1

pjPDF
g

“

ζ;C(j)
”(y), (8)

where pj is the fraction of data samples in the j-th
partition.

Fig. 3 shows the final partitions for a two-dimensional
data set for a random vector ξ = (ξ1, ξ2) that is obtained
by a KL projection of N = 105 realizations of the
Schlögl process. The data set itself and the samples
of its third order mixture PC model representation are
shown in Fig. 4. The K-L convergence analysis of our
hybrid methodology and other data partitioning strategies
is illustrated in Fig. 5. Although for this particular data set
- it is bimodal along the first dimension only - the plain
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Fig. 5. Convergence of the mixture PC representation as the partition-
ing refinement level increases. Various data partitioning strategies are
compared [17]. The zeroth refinement levels correspond to the global
representation, while the first level is simply the clustering for the hybrid
partitioning. The third refinement levels correspond to the illustration
from Fig. 3.

data range bisection is as efficient as the hybrid approach,
it is shown [17] that the hybrid methodology is more
robust for general data sets with no a priori knowledge
of the data structure available.
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Fig. 6. a) The 5-mode KL truncated sum for the Schlögl process.
b) The final representation obtained from mixture PC expansions of
the underlying five-dimensional KL random vector. Both expansions
are obtained with N = 10

5 realizations with only every hundredth
realization shown for illustration purposes.

Finally, Fig. 6 illustrates the 5-mode KL-truncated sum

XKL(t) = X̄(t) +

5
∑

i=1

ξi

√

λifi(t) (9)

of the underlying Schlögl process as well as the process,
recovered from the third order mixture PC representation
of the KL-projected variables, i.e.

XKLPC(t) = X̄(t) +

5
∑

i=1

(ξPC)i

√

λifi(t). (10)

Clearly, the stochastic process X(t), first reduced to
XKL(t) (described by a random vector ξ) by the KL
projection, is further reduced to XKLPC(t) (described
by a set of deterministic matrices {C(j)}K

j=1, one for
each partition of the data samples of ξ) by our mixture
PC representation while preserving the skeleton of the
dynamics of the original process for further analysis of
the system, or as a reduced order model.
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