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Abstract— In previous work we proposed an approach for
the approximation of slow invariant manifolds by computing
trajectories as solutions of an optimization problem with
respect to their initial values. The objective functional of
the optimization problem is supposed to represent the extent
of relaxation of chemical forces. Following these ideas we
discuss this approach on the basis of results for three
example models of chemical reaction mechanisms.

I. INTRODUCTION

The need for reduced chemical kinetics is motivated by
the fact that the computational effort for a full simulation
of reactive flows, e.g. of fluid transport involving combus-
tion processes, is computationally extremely expensive.

For getting useful approximations of the full mech-
anism, we are convinced, that global information on
phase space dynamics should be used to determine the
reduced kinetics. As reaction kinetics are usually modeled
by ordinary differential equations (ODE), trajectories in
phase space that are solutions of these ODE bear global
information of the system dynamics. This information can
be exploited within a trajectory optimization framework
for identifying suitable reaction trajectories approximating
slow attracting manifolds, where – after a short initial time
– the system dynamics take place.

A suitable formulation of the computation of reduced
models as an optimization problem assures the existence
of a solution irrespective of assumptions on the time scale
structure and sophisticated optimization software can be
used for the numerical solution of these problems.

The optimization criterion for the identification of
suitable trajectories should represent the assumption that
chemical forces are maximally relaxed along these tra-
jectories. Various approaches for the formulation of opti-
mization criteria are conceiveable.

II. METHODOLOGY

A. General Problem Formulation

In our approach the general trajectory-based optimiza-
tion problem can be written as

min
c

∫ tf

0

Φ (c(t)) dt (1a)
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subject to

dc(t)
dt

= f (c(t)) (1b)

0 = g (c(0)) (1c)

ck(0) = c0k, k ∈ Ifixed. (1d)

Here the nonlinear function f describes the chemical
reaction kinetics for the chemical species vector c(t).
The element mass conservation is collected in g. Ifixed
is the index set of reaction progress variables chosen
for parameterization of the reduced model. These can in
principle be selected without restriction from the list of
all species and are fixed at t = 0 in (1d). All other species
concentrations at t = 0 are free variables and subject to
optimization. Thus the solution of the optimization prob-
lem is equivalent to species reconstruction. The computed
full composition should represent a point on the slow
invariant manifold. The final time tf is chosen as large
as necessary for approximately reaching the chemical
equilibrium point. The central issue to be addressed is
how to choose the objective function Φ in (1a). This will
be discussed in the following.

B. Entropy-Based Criteria

In previous work (including the first workshop on
model reduction in reacting flows, Rome 2007) the en-
tropy production rate was suggested as an optimization
criterion. Entropy production is related to the relaxation of
chemical forces and the development of partial equilibria
[1].

The formula for the entropy production rate with the
forward and backward reaction rates Rj,→ and Rj,←,
respectively, is

dSj
dt

= R (Rj,→ −Rj,←) log
(
Rj,→
Rj,←

)
(2)

for the j-th elementary reaction in the kinetic mechanism.
Here R is the gas constant. With (2) a relaxation criterion
for the objective function (1a) can be formulated

Φ(c(t)) =
m∑
j=1

dSj
dt

. (3)

This criterion was studied in [1] and [2]. The results
and the concept of the approach look promising but do not
provide a sufficiently accurate approximation of the slow
attracting manifold, in particular far from equilibrium. In
the following, alternative criteria have been investigated.



C. Geometric Criteria

As stated above, a suitable reduction criterion Φ(c(t))
should characterize the relaxation of “chemical forces”.
From a physical point of view, curvature (in the sense of
the rate of change in velocity) is closely related to the
geometric interpretation of force. The aim of [3], [4], [5],
[6] was to make an attempt to transfer that relation to
the field of reaction kinetics in a way suitable to model
reduction via problem formulations such as in (1).

In chemical systems, dissipative forces are active. The
different time scales of dynamic modes result in an
anisotropic force relaxation in phase space. We consider
the tangent (reaction velocity) vectors ċ(t) = f(c(t)) of
reaction trajectories. The relaxation of chemical forces
results in a change of ċ(t) along a trajectory on its
way towards chemical equilibrium. This change along the
trajectory may be characterized by taking the directional
derivative of the tangent vector of the curve c(t) with
respect to its own direction v := ċ

‖ċ‖2 .
Mathematically that can be formulated as

Dv ċ(t) :=
d

dα
(ċ(t) + αv)

∣∣∣
α=0

= Jcf ·
f

‖f‖2
,

with Jcf being the Jacobian of the right hand side f
evaluated at c(t) and ‖ · ‖2 denoting the Euclidian norm.
Hence, we may choose the optimization criterion

Φ(c) =
‖Jcf · f‖2
‖f‖2

. (4)

The natural way for the evaluation of this criterion would
be a path integral along the trajectory towards equilibrium∫ l(ceq)

l(0)

Φ(c(l(t))) dl(t),

where l(t) is the length of the curve c(t) at time t given
by

l(t) =
∫ t

0

‖ċ(τ)‖2dτ.

This results in the reparametrization

dl(t) = ‖ċ(t)‖2dt. (5)

The objective used in (1a) would be

min
c

∫ tf

0

‖Jcf · f‖2 dt. (6)

However, an alternative norm for the evaluation of
‖Jcf · f‖ might be taken into account, which has already
been used in [7] and is motivated from thermodynamics.
In this norm the criterion adapted from (4) can be written
as

‖Jcf · f‖W
‖f‖W

=
(fT · (Jcf)Tdiag(1/ci)Jcf · f)1/2

‖f‖W
(7)

with W = diag(1/ci) being the diagonal matrix with
diagonal elements 1/ci. This criterion brings thermody-
namic considerations into play and represents the Rieman-
nian metric induced by the second differential of Gibbs

free enthalpy G

G =
n∑
i=1

ci[ln(ci/c
eq
i )− 1], W = Hess(G).

The corresponding metric has been discussed in the
context of an entropic scalar product [8]. The correspond-
ing optimization problem is

min
c

∫ tf

0

‖Jcf · f‖W dt. (8)

In the following results for both criteria (6) and (8) are
presented.

D. Numerical Methods

Problem (1) together with a suitable choice of Φ(c(t))
can be numerically solved with an appropriate solver
for nonlinear programming problems (NLP) coupled to
a numerical integrator. For our results MUSCOD-II [9],
[10] is used. This software package is based on a
multiple shooting discretization of trajectories and se-
quential quadratic programming (SQP) for the resulting
finite-dimensional NLP. For numerical integration on the
multiple shooting intervals DAESOL [11], [12] is used,
which is an integrator based on backward differentiation
formulae.

The computation of optimal trajectories for neighboring
fixed initial values for the reaction progress variables in
order to span higher-dimensional manifolds by families
of trajectories can be significantly accelerated by the
use of continuation methods embedding the problem into
a parametric family of optimization problems. Diehl et
al. describe an efficient numerical implementation of an
initial value embedding strategy in [13]; this stategy is
used for the computations presented below.

III. RESULTS

Here we present the application of the method de-
scribed above for three example problems. First a
temperature-independent six species hydrogen combus-
tion process is analyzed, then we study the benchmark
Skodje-Davis system and finally we discuss a temperature
dependent ozone mechanism involving oxygen as only
chemical element.

A. Example Mechanism: Hydrogen Combustion

In this section we consider a small test mechanism
taken from [8], that we already used for previous work:
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Fig. 1. Solution of (1) with (4) as relaxation criterion for the hydrogen
combustion mechanism (9).

with the rate constants
k1 = 2.0, k−1 = 216.0
k2 = 1.0, k−2 = 337.5
k3 = 1.0, k−3 = 1400.0
k4 = 1000.0, k−4 = 10800.0
k5 = 1000.0, k−5 = 33750.0
k6 = 100.0, k−6 = 0.7714.

Together with the conservation relations

2 cH2 + 2 cH2O + cH + cOH = C1

2 cO2 + cH2O + cO + cOH = C2

this mechanism yields a system with four degrees of
freedom. For the computations with this mechanism mass
relations with C1 = 2.0 and C2 = 1.0 were chosen.

In Fig. 1 the results with the Euclidian norm criterion
(6) as objective functional are depicted. We analyze the
approximation accuracy of the slow manifold via check-
ing consistency (invariance) by restarting the solution of
the optimization problem from a later time point on the
earlier computed trajectory. If the slow invariant manifold
has been identified correctly, the solution of the second
optimization problem should be exactly on the trajectory
computed before, a property that we denote consistency.
The results are not too bad but can be improved.

The weighted norm proposed in (8) is used as a
criterion for the results presented in Fig. 2. The results
demonstrate that this criterion can be regarded to be nearly
consistent. These results encourage to test the criterion (7)
for the Davis-Skodje problem in the next section.

B. Davis-Skodje Problem
The well-known Davis-Skodje mechanism is our sec-

ond test case.
dy1
dt

= −y1
dy2
dt

= −γy2 +
(γ − 1)y1 + γy2

1

(1 + y1)2
,

where γ > 1 is a measure for the spectral gap or
stiffness respectively of the system. Results are shown
in Fig. 3. For large values of γ, representing a large gap
in time scales between fast and slow modes, the results
are acceptable. For small values of γ the approximation
is getting worse.
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Fig. 2. Solution of (1) with (7) as relaxation criterion for the hydrogen
combustion mechanism (9). The results look promising.
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Fig. 3. Results for the Davis-Skodje problem with (8) as relaxation
criterion. Results for different values of γ are shown. The red curve is the
analytically computed SIM (slow invariant manifold). The black dashed
curve represents the analytic Maas-Pope-ILDM. The blue curves are
trajectories integrated from solution points of our optimization problem.

C. Example Mechanism: Ozone

The last test case is a three component ozone mech-
anism shown in Table I taken from [14]. It is chosen
to demonstrate the performance of our method taking
temperature dependence into account. Many approaches
based on time scale separation fail when the spectral gap
becomes too small. Together with the element conserva-
tion

cO + 2 cO2 + 3 cO3 = C

this mechanism yields a system with two degrees of
freedom. We use without loss of generality C = 1.

TABLE I
OZONE DECOMPOSITION MECHANISM FROM [14]. RATE

COEFFICIENT k = AT b exp(−Ea/RT ). COLLISION EFFICIENCIES

IN REACTIONS INCLUDING M: fO = 1.14, fO2 = 0.40, fO3 = 0.92.

Reaction A (cm,mol, s) b Ea

“
kJ

mol

”
O + O + M → O2 + M 2.90× 1017 −1.0 0.0
O2 + M → O + O + M 6.81× 1018 −1.0 496.0
O3 + M → O + O2 + M 9.50× 1014 0.0 95.0
O + O2 + M → O3 + M 3.32× 1013 0.0 −4.9
O + O3 → O2 + O2 5.20× 1012 0.0 17.4
O2 + O2 → O + O3 4.27× 1012 0.0 413.9



The results for the Euclidian criterion (4) shown in
Fig. 4 appear to become worse in particular for low
temperatures. In contrast the weighted criterion (7) gives
much better results as illustrated in Fig. 5.
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Fig. 4. Solution of (1) with (6) as objective function for the ozone
mechanism as in Table I. Here red dots denote the solution for different
values of the progress variable cO2 . The blue trajectory can be regarded
as relaxed to the one-dimensional SIM after a short integration time.

IV. CONCLUSION

Here we present an extension of the model reduction
approach discussed at the first workshop in Rome and
in [5]. Various geometric criteria are investigated. In
many cases the results demonstrate a good quality of the
approximation of the slow attracting manifold. The SIM
can even be approximated with sufficient accuracy for the
ozone mechanism in the case of low temperatures.

To summarize, this approach looks promising for ap-
plication to realistic and large-scale detailed combustion
mechanisms. Even though a detailed and systematic inves-
tigation of the different criteria with a focus on theoretical
analysis, approximation accuracy and (numerical) appli-
cability remains a challenging task for our future work.
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Fig. 5. Solution of (1) with (7) as relaxation criterion for the ozone
mechanism as in Fig. 4. The results look much better even for low
temperature.
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