
DAY 1: AFFINE AND PROJECTIVE VARIETIES

Throughout these notes k will denote an algebraically closed field (you may take k = C if you feel

more comfortable).

1. Affine varieties

We let A = k[x1, · · · , xn] denote a polynomial ring, and consider an ideal I ⊆ A. The algebraic set

defined by I is

V (I) = {P ∈ kn : f(P ) = 0 for all f ∈ I}. (1.1)

If X ⊆ kn, we consider the ideal of functions vanishing on X

I(X) = {f ∈ A : f(P ) = 0 for all P ∈ X}. (1.2)

We often write An for kn, and call it the affine n-space. You can check that I(An) = 〈0〉!
An algebraic variety is an algebraic set X ⊆ kn with the property that X is not expressible as

X = X1 ∪X2, where X1, X2 ( X are strictly smaller algebraic sets.

Equivalently, an algebraic set X is a variety if the ideal I(X) is a prime ideal, which is in turn equivalent

to the fact that the affine coordinate ring

A(X) = A/I(X)

is an integral domain (i.e. it contains no zero divisors). Note that

A(An) = A/〈0〉 = A.

We will be interested in the case when X is one-dimensional, in which case we will call X an affine

curve. The dimension of X is the same as that of its coordinate ring A(X), and can be defined in terms

of the length of ascending chains of prime ideals. For us the following criterion will be sufficient: if X is
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a variety then

dim(X) = 0⇐⇒ A(X) = k⇐⇒ X is a single point

dim(X) = 1⇐⇒k ( A(X) and for any (some) non-zero element f ∈ A(X) \ k we have that

A(X)/f ·A(X) is a finite dimensional vector space.

dim(X) ≥ 2⇐⇒k ( A(X) and for any (some) non-zero element f ∈ A(X) \ k we have that

A(X)/f ·A(X) is an infinite dimensional vector space.

Based on this, one can check that dim(A1) = 1, so A1 is a curve, called the affine line.

The zero-dimensional varieties in An are therefore just the points of An, and we have that for every

P = (a1, · · · , an) ∈ An the ideal I(P ) of functions vanishing at P is a maximal ideal in A

I(P ) = (x1 − a1, · · · , xn − an).

Moreover, every maximal ideal in A has this form by the following.

Theorem 1.1 (Hilbert’s Nullstelensatz). Every maximal ideal in A = k[x1, · · · , xn] has the form (under

the assumption that k is algebraically closed!)

I(P ) = (x1 − a1, · · · , xn − an) for some P = (a1, · · · , an) ∈ An.

Furthermore, if X is any variety then the prime ideal I(X) is given by

I(X) =
⋂
P∈X

I(P ).

Example 1.2. The ring k[x, y]/(y2−x3) is the coordinate ring of the affine curve C = V (y2−x3) ⊂ A2.

To see that C is one-dimensional we consider the quotient

A(C)/xA(C) = k[x, y]/(x, y2 − x3) = k[y]/(y2) = k⊕ k · y

which is a 2-dimensional vector space. Our criterion then guarantees that dim(C) = 1, so C is an affine

curve. If instead we consider X = V (y2 − x3) ⊂ A3 then

A(X)/xA(X) = k[x, y, z]/(x, y2 − x3) = k[y, z]/(y2)

which is infinite dimensional, hence X has dimension at least two (in fact exactly two).
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2. Projective space and projective varieties

We define projective n-space over the field k to be the set of equivalence classes

Pn =
kn+1 \ (0, · · · , 0)

∼
(2.1)

where the equivalence relation ∼ is defined via

(a0, · · · , an) ∼ (λ · a0, · · · , λ · an) for all 0 6= λ ∈ k and (a0, · · · , an) ∈ kn+1 \ 0.

We write [a0 : a1 : · · · : an] for the equivalence class of (a0, · · · , an), and we think of the points in Pn as

parametrizing the lines through the origin in kn+1.

We let S = k[X0, · · · , Xn] and consider the grading on S defined by

Sd = {homogeneous polynomials of degree d} =
⊕

i0+···+in=d

k ·Xi0
0 · · ·X

in
n .

Note that if F ∈ Sd then

F (λ · a0, · · · , λ · an) = λd · F (a0, · · · , an),

so despite the fact that it doesn’t make sense to evaluate F at a point P ∈ Pn, one can make sense of

whether F vanishes at P or not. We can thus define

V (I) = {P ∈ Pn : F (P ) = 0 for all homogeneous polynomials F ∈ I} (2.2)

the projective algebraic set defined by an ideal I. Even though the above definition makes sense for

arbitrary ideals, we will only use it in the case when I is a homogeneous ideal, i.e. I is generated by

homogeneous polynomials. Moreover, given a subset X ⊆ Pn we let

I(X) = the ideal generated by {F ∈ S homogeneous : F (P ) = 0 for all P ∈ X}. (2.3)

We consider the homogeneous coordinate ring of a projective algebraic set X ⊆ Pn to be

S(X) = S/I(X) (2.4)

X is a projective variety if I(X) is a prime ideal, or equivalently S(X) is a domain.



4 DAY 1: AFFINE AND PROJECTIVE VARIETIES

2.1. Exercises.

(1) • Show that the set

C = {(t2, t3) : t ∈ k}

is the same as the affine algebraic set

V (y2 − x3).

• Show then that

I(C) = 〈y2 − x3〉 ⊂ k[x, y],

and conclude that C is an affine algebraic variety.

• Show that dim(C) = 1 (C is called the cuspidal cubic curve).

(2) If X,Y are affine algebraic sets in kn and I, J are ideals in A, show that

• If X ⊆ Y then I(X) ⊇ I(Y ).

• If I ⊆ J then V (I) ⊇ V (J).

• If we let
√
I = {a ∈ A : ar ∈ I for some r > 0} denote the radical of the ideal I then

V (I) = V (
√
I).

• Using the fact that
√
I =

⋂
P⊇I

P prime ideal

P

and Theorem 1.1 show that for every ideal I ⊂ A we have

I(V (I)) =
√
I.

(3) Show that for any two ideals I, J ⊆ A we have

V (I · J) = V (I ∩ J) = V (I) ∪ V (J).

Prove that if X is an algebraic set then we have an equivalence

X is irreducible ⇐⇒ I(X) is a prime ideal.

(4) State and prove the analogous statements in Exercises 2 and 3 for homogeneous ideals and pro-

jective algebraic sets/varieties.
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(5) Verify that if X = {[a0 : · · · : an]} consists of a single point in Pn then the homogeneous ideal of

X is

I(X) = 〈aixj − ajxi : 0 ≤ i < j ≤ n〉 ⊂ S = k[x0, · · · , xn],

and that the homogeneous coordinate ring of X is isomorphic to a polynomial ring in one variable.

By looking at specific points in Pn, n = 1, 2, 3, · · · , convince yourself that in general I(X) can

be generated by only n linear homogeneous polynomials (so the
(
n+1
2

)
polynomials that I wrote

down give in general a reduntant set of generators for I(X)).

(6) Verify that you can decompose

Pn = An t Pn−1,

where An ∼= {[1 : a1 : · · · : an]} and Pn−1 ∼= {[0 : a1 : · · · : an]}. We call Pn−1 the hyperplane at

infinity, parametrizing the directions of the lines through the origin in An.

In fact, if we let

Ui = {[a0 : · · · : ai−1 : 1 : ai+1 : · · · : an]} ⊂ Pn, i = 0, · · · , n,

then we can naturally identify Ui with An, and its complement Hi = Pn \ Ui with Pn−1.

(7) Consider the subset

X = {[s3 : st2 : t3] : s, t ∈ k, not both s, t are 0} ⊂ P2 = {[w : x : y]}.

Show that

I(X) = 〈y2w − x3〉 ⊂ k[w, x, y],

and conclude that X is a projective variety. Using the notation in Exercise 6, show that X ∩ U0

is naturally identified with the cuspidal curve C in A2 = U0, and that

X = C ∪ {[0 : 0 : 1]},

where you can think of [0 : 0 : 1] as the point at infinity on the cuspidal curve. Note also that

y2w − x3 is the homogenization of the equation y2 − x3 of C, with respect to the variable w.
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