DAY 1: AFFINE AND PROJECTIVE VARIETIES

Throughout these notes \mathbf{k} will denote an algebraically closed field (you may take $\mathbf{k}=\mathbb{C}$ if you feel more comfortable).

1. Affine varieties

We let $A=\mathbf{k}\left[x_{1}, \cdots, x_{n}\right]$ denote a polynomial ring, and consider an ideal $I \subseteq A$. The algebraic set defined by I is

$$
\begin{equation*}
V(I)=\left\{P \in \mathbf{k}^{n}: f(P)=0 \text { for all } f \in I\right\} . \tag{1.1}
\end{equation*}
$$

If $X \subseteq \mathbf{k}^{n}$, we consider the ideal of functions vanishing on X

$$
\begin{equation*}
I(X)=\{f \in A: f(P)=0 \text { for all } P \in X\} . \tag{1.2}
\end{equation*}
$$

We often write \mathbb{A}^{n} for \mathbf{k}^{n}, and call it the affine n-space. You can check that $I\left(\mathbb{A}^{n}\right)=\langle 0\rangle$!
An algebraic variety is an algebraic set $X \subseteq \mathbf{k}^{n}$ with the property that X is not expressible as

$$
X=X_{1} \cup X_{2} \text {, where } X_{1}, X_{2} \subsetneq X \text { are strictly smaller algebraic sets. }
$$

Equivalently, an algebraic set X is a variety if the ideal $I(X)$ is a prime ideal, which is in turn equivalent to the fact that the affine coordinate ring

$$
A(X)=A / I(X)
$$

is an integral domain (i.e. it contains no zero divisors). Note that

$$
A\left(\mathbb{A}^{n}\right)=A /\langle 0\rangle=A .
$$

We will be interested in the case when X is one-dimensional, in which case we will call X an affine curve. The dimension of X is the same as that of its coordinate ring $A(X)$, and can be defined in terms of the length of ascending chains of prime ideals. For us the following criterion will be sufficient: if X is
a variety then

$$
\begin{aligned}
\operatorname{dim}(X)=0 \Longleftrightarrow & A(X)=\mathbf{k} \Longleftrightarrow X \text { is a single point } \\
\operatorname{dim}(X)=1 \Longleftrightarrow & \mathbf{k} \subsetneq A(X) \text { and for any (some) non-zero element } f \in A(X) \backslash \mathbf{k} \text { we have that } \\
& A(X) / f \cdot A(X) \text { is a finite dimensional vector space. } \\
\operatorname{dim}(X) \geq 2 \Longleftrightarrow & \mathbf{k} \subsetneq A(X) \text { and for any (some) non-zero element } f \in A(X) \backslash \mathbf{k} \text { we have that } \\
& A(X) / f \cdot A(X) \text { is an infinite dimensional vector space. }
\end{aligned}
$$

Based on this, one can check that $\operatorname{dim}\left(\mathbb{A}^{1}\right)=1$, so \mathbb{A}^{1} is a curve, called the affine line.
The zero-dimensional varieties in \mathbb{A}^{n} are therefore just the points of \mathbb{A}^{n}, and we have that for every $P=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$ the ideal $I(P)$ of functions vanishing at P is a maximal ideal in A

$$
I(P)=\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right)
$$

Moreover, every maximal ideal in A has this form by the following.

Theorem 1.1 (Hilbert's Nullstelensatz). Every maximal ideal in $A=\mathbf{k}\left[x_{1}, \cdots, x_{n}\right]$ has the form (under the assumption that \mathbf{k} is algebraically closed!)

$$
I(P)=\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right) \text { for some } P=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n} .
$$

Furthermore, if X is any variety then the prime ideal $I(X)$ is given by

$$
I(X)=\bigcap_{P \in X} I(P) .
$$

Example 1.2. The ring $\mathbf{k}[x, y] /\left(y^{2}-x^{3}\right)$ is the coordinate ring of the affine curve $C=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$. To see that C is one-dimensional we consider the quotient

$$
A(C) / x A(C)=\mathbf{k}[x, y] /\left(x, y^{2}-x^{3}\right)=\mathbf{k}[y] /\left(y^{2}\right)=\mathbf{k} \oplus \mathbf{k} \cdot y
$$

which is a 2 -dimensional vector space. Our criterion then guarantees that $\operatorname{dim}(C)=1$, so C is an affine curve. If instead we consider $X=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{3}$ then

$$
A(X) / x A(X)=\mathbf{k}[x, y, z] /\left(x, y^{2}-x^{3}\right)=\mathbf{k}[y, z] /\left(y^{2}\right)
$$

which is infinite dimensional, hence X has dimension at least two (in fact exactly two).

2. Projective space and projective varieties

We define projective n-space over the field \mathbf{k} to be the set of equivalence classes

$$
\begin{equation*}
\mathbb{P}^{n}=\frac{\mathbf{k}^{n+1} \backslash(0, \cdots, 0)}{\sim} \tag{2.1}
\end{equation*}
$$

where the equivalence relation \sim is defined via

$$
\left(a_{0}, \cdots, a_{n}\right) \sim\left(\lambda \cdot a_{0}, \cdots, \lambda \cdot a_{n}\right) \text { for all } 0 \neq \lambda \in \mathbf{k} \text { and }\left(a_{0}, \cdots, a_{n}\right) \in \mathbf{k}^{n+1} \backslash 0 .
$$

We write $\left[a_{0}: a_{1}: \cdots: a_{n}\right]$ for the equivalence class of $\left(a_{0}, \cdots, a_{n}\right)$, and we think of the points in \mathbb{P}^{n} as parametrizing the lines through the origin in \mathbf{k}^{n+1}.

We let $S=\mathbf{k}\left[X_{0}, \cdots, X_{n}\right]$ and consider the grading on S defined by

$$
S_{d}=\{\text { homogeneous polynomials of degree } d\}=\bigoplus_{i_{0}+\cdots+i_{n}=d} \mathbf{k} \cdot X_{0}^{i_{0}} \cdots X_{n}^{i_{n}} .
$$

Note that if $F \in S_{d}$ then

$$
F\left(\lambda \cdot a_{0}, \cdots, \lambda \cdot a_{n}\right)=\lambda^{d} \cdot F\left(a_{0}, \cdots, a_{n}\right),
$$

so despite the fact that it doesn't make sense to evaluate F at a point $P \in \mathbb{P}^{n}$, one can make sense of whether F vanishes at P or not. We can thus define

$$
\begin{equation*}
V(I)=\left\{P \in \mathbb{P}^{n}: F(P)=0 \text { for all homogeneous polynomials } F \in I\right\} \tag{2.2}
\end{equation*}
$$

the projective algebraic set defined by an ideal I. Even though the above definition makes sense for arbitrary ideals, we will only use it in the case when I is a homogeneous ideal, i.e. I is generated by homogeneous polynomials. Moreover, given a subset $X \subseteq \mathbb{P}^{n}$ we let

$$
\begin{equation*}
I(X)=\text { the ideal generated by }\{F \in S \text { homogeneous : } F(P)=0 \text { for all } P \in X\} \tag{2.3}
\end{equation*}
$$

We consider the homogeneous coordinate ring of a projective algebraic set $X \subseteq \mathbb{P}^{n}$ to be

$$
\begin{equation*}
S(X)=S / I(X) \tag{2.4}
\end{equation*}
$$

X is a projective variety if $I(X)$ is a prime ideal, or equivalently $S(X)$ is a domain.

2.1. Exercises.

(1) - Show that the set

$$
C=\left\{\left(t^{2}, t^{3}\right): t \in \mathbf{k}\right\}
$$

is the same as the affine algebraic set

$$
V\left(y^{2}-x^{3}\right)
$$

- Show then that

$$
I(C)=\left\langle y^{2}-x^{3}\right\rangle \subset \mathbf{k}[x, y]
$$

and conclude that C is an affine algebraic variety.

- Show that $\operatorname{dim}(C)=1$ (C is called the cuspidal cubic curve).
(2) If X, Y are affine algebraic sets in \mathbf{k}^{n} and I, J are ideals in A, show that
- If $X \subseteq Y$ then $I(X) \supseteq I(Y)$.
- If $I \subseteq J$ then $V(I) \supseteq V(J)$.
- If we let $\sqrt{I}=\left\{a \in A: a^{r} \in I\right.$ for some $\left.r>0\right\}$ denote the radical of the ideal I then

$$
V(I)=V(\sqrt{I})
$$

- Using the fact that

$$
\sqrt{I}=\bigcap_{\substack{\mathfrak{P} \supseteq I \\ \mathfrak{P} \text { prime ideal }}} \mathfrak{P}
$$

and Theorem 1.1 show that for every ideal $I \subset A$ we have

$$
I(V(I))=\sqrt{I}
$$

(3) Show that for any two ideals $I, J \subseteq A$ we have

$$
V(I \cdot J)=V(I \cap J)=V(I) \cup V(J)
$$

Prove that if X is an algebraic set then we have an equivalence

$$
X \text { is irreducible } \Longleftrightarrow I(X) \text { is a prime ideal. }
$$

(4) State and prove the analogous statements in Exercises 2 and 3 for homogeneous ideals and projective algebraic sets/varieties.
(5) Verify that if $X=\left\{\left[a_{0}: \cdots: a_{n}\right]\right\}$ consists of a single point in \mathbb{P}^{n} then the homogeneous ideal of X is

$$
I(X)=\left\langle a_{i} x_{j}-a_{j} x_{i}: 0 \leq i<j \leq n\right\rangle \subset S=\mathbf{k}\left[x_{0}, \cdots, x_{n}\right],
$$

and that the homogeneous coordinate ring of X is isomorphic to a polynomial ring in one variable.
By looking at specific points in $\mathbb{P}^{n}, n=1,2,3, \cdots$, convince yourself that in general $I(X)$ can be generated by only n linear homogeneous polynomials (so the $\binom{n+1}{2}$ polynomials that I wrote down give in general a reduntant set of generators for $I(X)$).
(6) Verify that you can decompose

$$
\mathbb{P}^{n}=\mathbb{A}^{n} \sqcup \mathbb{P}^{n-1},
$$

where $\mathbb{A}^{n} \cong\left\{\left[1: a_{1}: \cdots: a_{n}\right]\right\}$ and $\mathbb{P}^{n-1} \cong\left\{\left[0: a_{1}: \cdots: a_{n}\right]\right\}$. We call \mathbb{P}^{n-1} the hyperplane at infinity, parametrizing the directions of the lines through the origin in \mathbb{A}^{n}.

In fact, if we let

$$
U_{i}=\left\{\left[a_{0}: \cdots: a_{i-1}: 1: a_{i+1}: \cdots: a_{n}\right]\right\} \subset \mathbb{P}^{n}, \quad i=0, \cdots, n
$$

then we can naturally identify U_{i} with \mathbb{A}^{n}, and its complement $H_{i}=\mathbb{P}^{n} \backslash U_{i}$ with \mathbb{P}^{n-1}.
(7) Consider the subset

$$
X=\left\{\left[s^{3}: s t^{2}: t^{3}\right]: s, t \in \mathbf{k}, \text { not both } s, t \text { are } 0\right\} \subset \mathbb{P}^{2}=\{[w: x: y]\} .
$$

Show that

$$
I(X)=\left\langle y^{2} w-x^{3}\right\rangle \subset \mathbf{k}[w, x, y],
$$

and conclude that X is a projective variety. Using the notation in Exercise 6, show that $X \cap U_{0}$ is naturally identified with the cuspidal curve C in $\mathbb{A}^{2}=U_{0}$, and that

$$
X=C \cup\{[0: 0: 1]\},
$$

where you can think of $[0: 0: 1]$ as the point at infinity on the cuspidal curve. Note also that $y^{2} w-x^{3}$ is the homogenization of the equation $y^{2}-x^{3}$ of C, with respect to the variable w.

