DAY 2: INVARIANTS OF ALGEBRAIC VARIETIES

1. HILBERT FUNCTION AND POLYNOMIAL FOR PROJECTIVE VARIETIES

Let X C P" be a projective algebraic set. The Hilbert function of X is the function HF x : N — N
defined by

HF x (k) = dimy S(X)k.
Theorem 1.1. There exists a univariate polynomial HP x (z) € Q[z] with the property that
HFx (k) = HPx (k) for k> 0.
The polynomial HP x (2) is called the Hilbert polynomial of X.
The degree of the polynomial HP x (z) measures the dimension of X. If we write 7 = dim(X) then

HPx(z) = a, - 2" + lower order terms

We define
e(X) = a, - ! to be the degree of the algebraic set X. (1.1)

A projective curve is a projective algebraic variety C' C P" (i.e. the ideal I(C) is a homogeneous prime
ideal) of dimension one (so that the Hilbert polynomial is of the form HPx(z) = ez 4 ¢, where e = ¢(C)

is the degree of the curve).

Example 1.2 (The projective line). If C' = P! then the coordinate ring of C' is
5(C) = k[Xo, X1],
the Hilbert function is
HFc(k) =k +1,
the Hilbert polynomial is
HPo(z)=2z+1

so the dimension is dim(C') = 1, and the degree is deg(C') = 1. Since I(C) = 0 is a prime ideal, C' is a

curve.
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Example 1.3 (Degree d plane curves). Let S = k[Xg, X1, X3], d > 0, and let F' € Sy be an irreducible
polynomial of degree d. Let C' = V(F) C P? and note that
I(C) = F- S is a prime ideal, S(C) = S/F - S is the coordinate ring of C,
the Hilbert function of C is given by
k42 .
if k < d;

HF o (k) = (2

GRS if k> 4.

The Hilbert polynomial of C'is given by

d(d—3)
5

so the dimension of C' is dim(C') = 1 and the degree of C' is deg(C) = d.

HPe(z)=d -z —

2. FUNCTION FIELD, LOCAL RINGS

Let X C k™ be an affine variety. The function field of X is the fraction field of its affine coordinate
ring:

ng,geA<X>,g¢0}.

One can think of K (X) as functions on X which are partially defined (away from the locus when g = 0):

K(X)=KY/(X) = Frac(A(X)) = {

we call them rational functions, or meromorphic functions. Given a point P € X we define the local
ring of X at P by

Op=0xp= {i; € K(X):g(P) 750}

In other words, Op is the ring of meromorphic functions which are defined at the point P (we say that

they are regular at P)! It is then not surprising that

AX)= () 0p (2.1)
pPeX

where the intersection takes place in K (X).

Consider now a projective variety X C P". The function field of X is defined by
; F
K(X) =K' (X)={0}uU {G :0# F,G € S(X), for some k > O} )

Note that F, G are not functions, but their ratio is (at least away from the locus when G =0)! If P € X
we define the local ring of X at P by

OPZOXJD:{O}U{gEK(X):G(P)#O}.



DAY 2: INVARIANTS OF ALGEBRAIC VARIETIES 3

We use the same terminology as in the affine case: elements of K(X) are called rational/meromorphic
functions, and the ones in Op are regular at P. In contrast with (2.1]), when X is a projective variety we

have

k= () Op (2.2)

PeX
which means that the only rational functions that are everywhere regular are the constants!

3. ORDER FUNCTION, INTERSECTION MULTIPLICITY

Let R be a k-algebra satisfying

e R is a local ring with maximal ideal m and the inclusion of k C R induces an isomorphism
k ~ R/m.

e R is a domain.
e R is one dimensional, i.e. for every non-zero a € R we have that R/aR is a finite dimensional

vector space (equivalently, the only prime ideals in R are (0) and m).

The main example of rings satisfying the conditions above that will concern us are local rings R = Op
at points P on an affine or projective curves.

For every 0 # a € R we define the order of a with respect to R to be
ord(a) = ordg(a) = dimk(R/aR)

More generally, consider K = Frac(R) the fraction field of R, and let f € K. We define the order of f
with respect to R to be the (possibly negative) integer

ord(f) = ordg(f) = ord(a) — ord(b) for any expression f = % with a,b € R. (3.1)

It can be shown that the above definition is independent of the representation of f as a fraction a/b.
We will apply the above definition with R = Op the local ring of a curve C at a point P, in which case
mp C Op is the unique maximal ideal (see Exercise [2]).

Suppose that C1, Cy C k? are two (distinct) affine plane curves passing through the same point P, and
let C; = V(f;) for some polynomials fi, fo. We define the intersection multiplicity of C; and C5 at P to
be

ip(cl, 02) = dlmk (OkQ,P/(fl’ fg)) 5 (32)

and we have

3" ip(C1,Cy) = dimy (K[x,y]/(f1, f2))

PeCinCsq



4 DAY 2: INVARIANTS OF ALGEBRAIC VARIETIES

For example, take P = (0,0), fi = y*> — 23, fo = x. Since P is the only intersection point of V(/f1) and
V(f2) we get
iP(Cl, 02) = dlmk k[.’IJ,y]/(y2 - ‘T:S?x) =2

If instead we take fo = y then we get
ip(C1,Cy) = dimy k[, y]/(y* — 2, 9) = 3.

Suppose now that C7,Cy C P? are projective plane curves passing through the same point P, and let
C; = V(F;) for some homogeneous polynomials Fy, F» of degrees di,ds respectively. We define the
intersection multiplicity of C; and C at P as follows. If P = [1: 0 : 0] and if we dehomogenize F}, F
by setting f1 = Fi(1,2z1,22), fo = Fa(1,21,x2), then the intersection multiplicity can be computed via
(3-2). If P # [1:0:0] then we first make a linear change of coordinates to move P to [1: 0 : 0] and
then use the above formula. An equivalent formulation of the above definition which avoids the change
of coordinates goes as follows: let L € k[X(, X1, X2]1 denote a linear form which does not pass through
P (i.e. L(P) #0), consider the local ring Op2 p and the elements
fi= % € Opz p.
The intersection multiplicity is then computed via

Op2
ip(C1, Cy) = dimye ((ff: };) '

The following theorem asserts that two projective plane curves of degrees d; and do intersect in dj - da

points, if the intersection points are counted with appropriate multiplicities (in particular there are no

parallel lines!).

Theorem 3.1 (Bézout). Let S = kxg, 1,22, let di,dy > 0, let F; € Sq, be irreducible homogeneous

polynomials, and consider the corresponding plane curves C; = V(F;). We have

> ip(Ch,Co) = dy - da.
PeCiNCy
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3.1. Exercises.

(1) Let S = kxo, x1, z2] and consider irreducible homogeneous polynomials F; € Sy, , F» € Sg,, which
are not scalar multiples of each other. Consider the corresponding curves C; = V(F;), and the
ideal I = (F}, F3). The goal of this exercise is to compute the Hilbert function of S/I, defined by

HFg/1(m) = dimg(S/1)m, m > 0.

e Consider first the homogeneous coordinate ring S(C7) = S/(F1), and verify the calculation
in Example

(")

d1-(2 3—d . :
% if m>d.

. it m < dy;
HFc,(m) =dim(S(C1)m) =

e Explain why multiplication by F; is injective on S(C1), more precisely, why it gives injective

k-linear maps
S(C)m—dy —2 S(C1)ym for all m.

e Use the identification S/I = S(Cy)/(F») to conclude that
HFg/1(m) = HFg,(m) — HFg, (m — d) for all m,

and write down an explicit formula for each m (observe the symmetry between d; and ds).
e Verify that HFg,;(m) = didy for m > 0, which is another formulation of Bézout’s theorem.
(2) (a) If X is an affine variety and P € X, check that Op C K%/(X) has a unique maximal ideal,

namely
mp = {f/g: f(P)=0,9(P) # 0}.

(b) If X C P" is a projective variety, check that the set K7 %/ (X) defined in Section [2]is indeed
a field. Prove that the subring Op C K(X) has a unique maximal ideal, namely

mp = {F/G : F(P) = 0,G(P) # 0}.

(c) Using Hilbert’s Nullstellensatz, check that for both affine and projective varieties, if P € X
and Op is the corresponding local ring with maximal ideal mp, then the natural inclusion k C Op
induces an isomorphism k ~ Op/mp.

(d) Prove (2.1).
(3) Consider the cuspidal cubic C = V(y? — 23) C A2
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e Show that P = (1,1) belongs to C, and that the maximal ideal mp of Op is principal, that

is, it can be generated by a single element. More precisely, show that mp = (x — 1) and also

mp = <y — 1>.
e By contrast, convince yourself that for P = (0,0), the ideal mp is NOT principal.
(4) Consider the projective plane curves Cy,Cy C P2,

Ci=V(X?4+Y?-Z% and Co = V(X3 - X?Z - XZ?+ 2% -Y?2).

Determine the set C'y N Cs and find the intersection multiplicity at each of these points. Verify
that Bézout’s theorem holds in this example.

(5) For a homogeneous polynomial F' of degree d prove the Euler identity

" OF
g)(i-aXi:d-F.
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