
DAY 2: INVARIANTS OF ALGEBRAIC VARIETIES

1. Hilbert function and polynomial for projective varieties

Let X ⊆ Pn be a projective algebraic set. The Hilbert function of X is the function HFX : N −→ N
defined by

HFX(k) = dimk S(X)k.

Theorem 1.1. There exists a univariate polynomial HPX(z) ∈ Q[z] with the property that

HFX(k) = HPX(k) for k � 0.

The polynomial HPX(z) is called the Hilbert polynomial of X.

The degree of the polynomial HPX(z) measures the dimension of X. If we write r = dim(X) then

HPX(z) = ar · zr + lower order terms

We define

e(X) = ar · r! to be the degree of the algebraic set X. (1.1)

A projective curve is a projective algebraic variety C ⊆ Pn (i.e. the ideal I(C) is a homogeneous prime

ideal) of dimension one (so that the Hilbert polynomial is of the form HPC(z) = e · z + c, where e = e(C)

is the degree of the curve).

Example 1.2 (The projective line). If C = P1 then the coordinate ring of C is

S(C) = k[X0, X1],

the Hilbert function is

HFC(k) = k + 1,

the Hilbert polynomial is

HPC(z) = z + 1

so the dimension is dim(C) = 1, and the degree is deg(C) = 1. Since I(C) = 0 is a prime ideal, C is a

curve.
1
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Example 1.3 (Degree d plane curves). Let S = k[X0, X1, X2], d > 0, and let F ∈ Sd be an irreducible

polynomial of degree d. Let C = V (F ) ⊂ P2 and note that

I(C) = F · S is a prime ideal, S(C) = S/F · S is the coordinate ring of C,

the Hilbert function of C is given by

HFC(k) =


(
k+2
2

)
if k < d;

d·(2k+3−d)
2 if k ≥ d.

The Hilbert polynomial of C is given by

HPC(z) = d · z − d(d− 3)

2
, (1.2)

so the dimension of C is dim(C) = 1 and the degree of C is deg(C) = d.

2. Function field, local rings

Let X ⊆ kn be an affine variety. The function field of X is the fraction field of its affine coordinate

ring:

K(X) = Kaff (X) = Frac(A(X)) =

{
f

g
: f, g ∈ A(X), g 6= 0

}
.

One can think of K(X) as functions on X which are partially defined (away from the locus when g = 0):

we call them rational functions, or meromorphic functions. Given a point P ∈ X we define the local

ring of X at P by

OP = OX,P =

{
f

g
∈ K(X) : g(P ) 6= 0

}
.

In other words, OP is the ring of meromorphic functions which are defined at the point P (we say that

they are regular at P )! It is then not surprising that

A(X) =
⋂
P∈X
OP (2.1)

where the intersection takes place in K(X).

Consider now a projective variety X ⊆ Pn. The function field of X is defined by

K(X) = Kproj(X) = {0} ∪
{
F

G
: 0 6= F,G ∈ S(X)k for some k ≥ 0

}
.

Note that F,G are not functions, but their ratio is (at least away from the locus when G = 0)! If P ∈ X

we define the local ring of X at P by

OP = OX,P = {0} ∪
{
F

G
∈ K(X) : G(P ) 6= 0

}
.
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We use the same terminology as in the affine case: elements of K(X) are called rational/meromorphic

functions, and the ones in OP are regular at P . In contrast with (2.1), when X is a projective variety we

have

k =
⋂
P∈X
OP (2.2)

which means that the only rational functions that are everywhere regular are the constants!

3. Order function, intersection multiplicity

Let R be a k-algebra satisfying

• R is a local ring with maximal ideal m and the inclusion of k ⊂ R induces an isomorphism

k ' R/m.

• R is a domain.

• R is one dimensional, i.e. for every non-zero a ∈ R we have that R/aR is a finite dimensional

vector space (equivalently, the only prime ideals in R are (0) and m).

The main example of rings satisfying the conditions above that will concern us are local rings R = OP

at points P on an affine or projective curves.

For every 0 6= a ∈ R we define the order of a with respect to R to be

ord(a) = ordR(a) = dimk(R/aR)

More generally, consider K = Frac(R) the fraction field of R, and let f ∈ K. We define the order of f

with respect to R to be the (possibly negative) integer

ord(f) = ordR(f) = ord(a)− ord(b) for any expression f =
a

b
with a, b ∈ R. (3.1)

It can be shown that the above definition is independent of the representation of f as a fraction a/b.

We will apply the above definition with R = OP the local ring of a curve C at a point P , in which case

mP ⊆ OP is the unique maximal ideal (see Exercise 2).

Suppose that C1, C2 ⊂ k2 are two (distinct) affine plane curves passing through the same point P , and

let Ci = V (fi) for some polynomials f1, f2. We define the intersection multiplicity of C1 and C2 at P to

be

iP (C1, C2) = dimk

(
Ok2,P /(f1, f2)

)
, (3.2)

and we have ∑
P∈C1∩C2

iP (C1, C2) = dimk (k[x, y]/(f1, f2))
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For example, take P = (0, 0), f1 = y2 − x3, f2 = x. Since P is the only intersection point of V (f1) and

V (f2) we get

iP (C1, C2) = dimk k[x, y]/(y2 − x3, x) = 2.

If instead we take f2 = y then we get

iP (C1, C2) = dimk k[x, y]/(y2 − x3, y) = 3.

Suppose now that C1, C2 ⊂ P2 are projective plane curves passing through the same point P , and let

Ci = V (Fi) for some homogeneous polynomials F1, F2 of degrees d1, d2 respectively. We define the

intersection multiplicity of C1 and C2 at P as follows. If P = [1 : 0 : 0] and if we dehomogenize F1, F2

by setting f1 = F1(1, x1, x2), f2 = F2(1, x1, x2), then the intersection multiplicity can be computed via

(3.2). If P 6= [1 : 0 : 0] then we first make a linear change of coordinates to move P to [1 : 0 : 0] and

then use the above formula. An equivalent formulation of the above definition which avoids the change

of coordinates goes as follows: let L ∈ k[X0, X1, X2]1 denote a linear form which does not pass through

P (i.e. L(P ) 6= 0), consider the local ring OP2,P and the elements

fi =
Fi

Ldi
∈ OP2,P .

The intersection multiplicity is then computed via

iP (C1, C2) = dimk

( OP2,P

(f1, f2)

)
.

The following theorem asserts that two projective plane curves of degrees d1 and d2 intersect in d1 · d2
points, if the intersection points are counted with appropriate multiplicities (in particular there are no

parallel lines!).

Theorem 3.1 (Bézout). Let S = k[x0, x1, x2], let d1, d2 > 0, let Fi ∈ Sdi be irreducible homogeneous

polynomials, and consider the corresponding plane curves Ci = V (Fi). We have∑
P∈C1∩C2

iP (C1, C2) = d1 · d2.
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3.1. Exercises.

(1) Let S = k[x0, x1, x2] and consider irreducible homogeneous polynomials F1 ∈ Sd1 , F2 ∈ Sd2 , which

are not scalar multiples of each other. Consider the corresponding curves Ci = V (Fi), and the

ideal I = 〈F1, F2〉. The goal of this exercise is to compute the Hilbert function of S/I, defined by

HFS/I(m) = dimk(S/I)m, m ≥ 0.

• Consider first the homogeneous coordinate ring S(C1) = S/〈F1〉, and verify the calculation

in Example 1.3:

HFC1(m) = dim(S(C1)m) =


(
m+2
2

)
if m < d1;

d1·(2m+3−d1)
2 if m ≥ d1.

.

• Explain why multiplication by F2 is injective on S(C1), more precisely, why it gives injective

k-linear maps

S(C1)m−d2
·F2−→ S(C1)m for all m.

• Use the identification S/I ∼= S(C1)/〈F2〉 to conclude that

HFS/I(m) = HFC1(m)−HFC1(m− d2) for all m,

and write down an explicit formula for each m (observe the symmetry between d1 and d2).

• Verify that HFS/I(m) = d1d2 for m� 0, which is another formulation of Bézout’s theorem.

(2) (a) If X is an affine variety and P ∈ X, check that OP ⊂ Kaff (X) has a unique maximal ideal,

namely

mP = {f/g : f(P ) = 0, g(P ) 6= 0}.

(b) If X ⊆ Pn is a projective variety, check that the set Kproj(X) defined in Section 2 is indeed

a field. Prove that the subring OP ⊂ K(X) has a unique maximal ideal, namely

mP = {F/G : F (P ) = 0, G(P ) 6= 0}.

(c) Using Hilbert’s Nullstellensatz, check that for both affine and projective varieties, if P ∈ X

and OP is the corresponding local ring with maximal ideal mP , then the natural inclusion k ⊂ OP

induces an isomorphism k ' OP /mP .

(d) Prove (2.1).

(3) Consider the cuspidal cubic C = V (y2 − x3) ⊂ A2.
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• Show that P = (1, 1) belongs to C, and that the maximal ideal mP of OP is principal, that

is, it can be generated by a single element. More precisely, show that mP = 〈x− 1〉 and also

mP = 〈y − 1〉.
• By contrast, convince yourself that for P = (0, 0), the ideal mP is NOT principal.

(4) Consider the projective plane curves C1, C2 ⊂ P2,

C1 = V (X2 + Y 2 − Z2) and C2 = V (X3 −X2Z −XZ2 + Z3 − Y 2Z).

Determine the set C1 ∩ C2 and find the intersection multiplicity at each of these points. Verify

that Bézout’s theorem holds in this example.

(5) For a homogeneous polynomial F of degree d prove the Euler identity

n∑
i=0

Xi ·
∂F

∂Xi
= d · F.


	1. Hilbert function and polynomial for projective varieties
	2. Function field, local rings
	3. Order function, intersection multiplicity
	3.1. Exercises.


