DAY 2: INVARIANTS OF ALGEBRAIC VARIETIES

1. Hilbert function and polynomial for projective varieties

Let $X \subseteq \mathbb{P}^{n}$ be a projective algebraic set. The Hilbert function of X is the function $\mathrm{HF}_{X}: \mathbb{N} \longrightarrow \mathbb{N}$ defined by

$$
\operatorname{HF}_{X}(k)=\operatorname{dim}_{\mathbf{k}} S(X)_{k}
$$

Theorem 1.1. There exists a univariate polynomial $\mathrm{HP}_{X}(z) \in \mathbb{Q}[z]$ with the property that

$$
\operatorname{HF}_{X}(k)=\mathrm{HP}_{X}(k) \text { for } k \gg 0 .
$$

The polynomial $\mathrm{HP}_{X}(z)$ is called the Hilbert polynomial of X.
The degree of the polynomial $\operatorname{HP}_{X}(z)$ measures the dimension of X. If we write $r=\operatorname{dim}(X)$ then

$$
\operatorname{HP}_{X}(z)=a_{r} \cdot z^{r}+\text { lower order terms }
$$

We define

$$
\begin{equation*}
e(X)=a_{r} \cdot r!\text { to be the degree of the algebraic set } X \text {. } \tag{1.1}
\end{equation*}
$$

A projective curve is a projective algebraic variety $C \subseteq \mathbb{P}^{n}$ (i.e. the ideal $I(C)$ is a homogeneous prime ideal) of dimension one (so that the Hilbert polynomial is of the form $\operatorname{HP}_{C}(z)=e \cdot z+c$, where $e=e(C)$ is the degree of the curve).

Example 1.2 (The projective line). If $C=\mathbb{P}^{1}$ then the coordinate ring of C is

$$
S(C)=\mathbf{k}\left[X_{0}, X_{1}\right],
$$

the Hilbert function is

$$
\mathrm{HF}_{C}(k)=k+1,
$$

the Hilbert polynomial is

$$
\operatorname{HP}_{C}(z)=z+1
$$

so the dimension is $\operatorname{dim}(C)=1$, and the degree is $\operatorname{deg}(C)=1$. Since $I(C)=0$ is a prime ideal, C is a curve.

Example 1.3 (Degree d plane curves). Let $S=\mathbf{k}\left[X_{0}, X_{1}, X_{2}\right], d>0$, and let $F \in S_{d}$ be an irreducible polynomial of degree d. Let $C=V(F) \subset \mathbb{P}^{2}$ and note that

$$
I(C)=F \cdot S \text { is a prime ideal, } S(C)=S / F \cdot S \text { is the coordinate ring of } C,
$$

the Hilbert function of C is given by

$$
\operatorname{HF}_{C}(k)= \begin{cases}\binom{k+2}{2} & \text { if } k<d ; \\ \frac{d \cdot(2 k+3-d)}{2} & \text { if } k \geq d\end{cases}
$$

The Hilbert polynomial of C is given by

$$
\begin{equation*}
\operatorname{HP}_{C}(z)=d \cdot z-\frac{d(d-3)}{2} \tag{1.2}
\end{equation*}
$$

so the dimension of C is $\operatorname{dim}(C)=1$ and the degree of C is $\operatorname{deg}(C)=d$.

2. Function field, local Rings

Let $X \subseteq \mathbf{k}^{n}$ be an affine variety. The function field of X is the fraction field of its affine coordinate ring:

$$
K(X)=K^{a f f}(X)=\operatorname{Frac}(A(X))=\left\{\frac{f}{g}: f, g \in A(X), g \neq 0\right\}
$$

One can think of $K(X)$ as functions on X which are partially defined (away from the locus when $g=0$): we call them rational functions, or meromorphic functions. Given a point $P \in X$ we define the local ring of X at P by

$$
\mathcal{O}_{P}=\mathcal{O}_{X, P}=\left\{\frac{f}{g} \in K(X): g(P) \neq 0\right\}
$$

In other words, \mathcal{O}_{P} is the ring of meromorphic functions which are defined at the point P (we say that they are regular at P)! It is then not surprising that

$$
\begin{equation*}
A(X)=\bigcap_{P \in X} \mathcal{O}_{P} \tag{2.1}
\end{equation*}
$$

where the intersection takes place in $K(X)$.
Consider now a projective variety $X \subseteq \mathbb{P}^{n}$. The function field of X is defined by

$$
K(X)=K^{\text {proj }}(X)=\{0\} \cup\left\{\frac{F}{G}: 0 \neq F, G \in S(X)_{k} \text { for some } k \geq 0\right\}
$$

Note that F, G are not functions, but their ratio is (at least away from the locus when $G=0$)! If $P \in X$ we define the local ring of X at P by

$$
\mathcal{O}_{P}=\mathcal{O}_{X, P}=\{0\} \cup\left\{\frac{F}{G} \in K(X): G(P) \neq 0\right\}
$$

We use the same terminology as in the affine case: elements of $K(X)$ are called rational/meromorphic functions, and the ones in \mathcal{O}_{P} are regular at P. In contrast with (2.1), when X is a projective variety we have

$$
\begin{equation*}
\mathbf{k}=\bigcap_{P \in X} \mathcal{O}_{P} \tag{2.2}
\end{equation*}
$$

which means that the only rational functions that are everywhere regular are the constants!

3. Order function, intersection multiplicity

Let R be a k-algebra satisfying

- R is a local ring with maximal ideal \mathfrak{m} and the inclusion of $\mathbf{k} \subset R$ induces an isomorphism

$$
\mathbf{k} \simeq R / \mathfrak{m}
$$

- R is a domain.
- R is one dimensional, i.e. for every non-zero $a \in R$ we have that $R / a R$ is a finite dimensional vector space (equivalently, the only prime ideals in R are (0) and \mathfrak{m}).
The main example of rings satisfying the conditions above that will concern us are local rings $R=\mathcal{O}_{P}$ at points P on an affine or projective curves.

For every $0 \neq a \in R$ we define the order of a with respect to R to be

$$
\operatorname{ord}(a)=\operatorname{ord}_{R}(a)=\operatorname{dim}_{\mathbf{k}}(R / a R)
$$

More generally, consider $K=\operatorname{Frac}(R)$ the fraction field of R, and let $f \in K$. We define the order of f with respect to R to be the (possibly negative) integer

$$
\begin{equation*}
\operatorname{ord}(f)=\operatorname{ord}_{R}(f)=\operatorname{ord}(a)-\operatorname{ord}(b) \text { for any expression } f=\frac{a}{b} \text { with } a, b \in R . \tag{3.1}
\end{equation*}
$$

It can be shown that the above definition is independent of the representation of f as a fraction a / b. We will apply the above definition with $R=\mathcal{O}_{P}$ the local ring of a curve C at a point P, in which case $\mathfrak{m}_{P} \subseteq \mathcal{O}_{P}$ is the unique maximal ideal (see Exercise 2).

Suppose that $C_{1}, C_{2} \subset \mathbf{k}^{2}$ are two (distinct) affine plane curves passing through the same point P, and let $C_{i}=V\left(f_{i}\right)$ for some polynomials f_{1}, f_{2}. We define the intersection multiplicity of C_{1} and C_{2} at P to be

$$
\begin{equation*}
i_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbf{k}}\left(\mathcal{O}_{\mathbf{k}^{2}, P} /\left(f_{1}, f_{2}\right)\right) \tag{3.2}
\end{equation*}
$$

and we have

$$
\sum_{P \in C_{1} \cap C_{2}} i_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbf{k}}\left(\mathbf{k}[x, y] /\left(f_{1}, f_{2}\right)\right)
$$

For example, take $P=(0,0), f_{1}=y^{2}-x^{3}, f_{2}=x$. Since P is the only intersection point of $V\left(f_{1}\right)$ and $V\left(f_{2}\right)$ we get

$$
i_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbf{k}} \mathbf{k}[x, y] /\left(y^{2}-x^{3}, x\right)=2 .
$$

If instead we take $f_{2}=y$ then we get

$$
i_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbf{k}} \mathbf{k}[x, y] /\left(y^{2}-x^{3}, y\right)=3 .
$$

Suppose now that $C_{1}, C_{2} \subset \mathbb{P}^{2}$ are projective plane curves passing through the same point P, and let $C_{i}=V\left(F_{i}\right)$ for some homogeneous polynomials F_{1}, F_{2} of degrees d_{1}, d_{2} respectively. We define the intersection multiplicity of C_{1} and C_{2} at P as follows. If $P=[1: 0: 0]$ and if we dehomogenize F_{1}, F_{2} by setting $f_{1}=F_{1}\left(1, x_{1}, x_{2}\right), f_{2}=F_{2}\left(1, x_{1}, x_{2}\right)$, then the intersection multiplicity can be computed via (3.2). If $P \neq[1: 0: 0]$ then we first make a linear change of coordinates to move P to $[1: 0: 0]$ and then use the above formula. An equivalent formulation of the above definition which avoids the change of coordinates goes as follows: let $L \in \mathbf{k}\left[X_{0}, X_{1}, X_{2}\right]_{1}$ denote a linear form which does not pass through $P($ i.e. $L(P) \neq 0)$, consider the local ring $\mathcal{O}_{\mathbb{P}^{2}, P}$ and the elements

$$
f_{i}=\frac{F_{i}}{L^{d_{i}}} \in \mathcal{O}_{\mathbb{P}^{2}, P}
$$

The intersection multiplicity is then computed via

$$
i_{P}\left(C_{1}, C_{2}\right)=\operatorname{dim}_{\mathbf{k}}\left(\frac{\mathcal{O}_{\mathbb{P}^{2}, P}}{\left(f_{1}, f_{2}\right)}\right) .
$$

The following theorem asserts that two projective plane curves of degrees d_{1} and d_{2} intersect in $d_{1} \cdot d_{2}$ points, if the intersection points are counted with appropriate multiplicities (in particular there are no parallel lines!).

Theorem 3.1 (Bézout). Let $S=\mathbf{k}\left[x_{0}, x_{1}, x_{2}\right]$, let $d_{1}, d_{2}>0$, let $F_{i} \in S_{d_{i}}$ be irreducible homogeneous polynomials, and consider the corresponding plane curves $C_{i}=V\left(F_{i}\right)$. We have

$$
\sum_{P \in C_{1} \cap C_{2}} i_{P}\left(C_{1}, C_{2}\right)=d_{1} \cdot d_{2} .
$$

3.1. Exercises.

(1) Let $S=\mathbf{k}\left[x_{0}, x_{1}, x_{2}\right]$ and consider irreducible homogeneous polynomials $F_{1} \in S_{d_{1}}, F_{2} \in S_{d_{2}}$, which are not scalar multiples of each other. Consider the corresponding curves $C_{i}=V\left(F_{i}\right)$, and the ideal $I=\left\langle F_{1}, F_{2}\right\rangle$. The goal of this exercise is to compute the Hilbert function of S / I, defined by

$$
H F_{S / I}(m)=\operatorname{dim}_{\mathbf{k}}(S / I)_{m}, \quad m \geq 0 .
$$

- Consider first the homogeneous coordinate ring $S\left(C_{1}\right)=S /\left\langle F_{1}\right\rangle$, and verify the calculation in Example 1.3 .

$$
H F_{C_{1}}(m)=\operatorname{dim}\left(S\left(C_{1}\right)_{m}\right)=\left\{\begin{array}{ll}
\binom{m+2}{2} & \text { if } m<d_{1} \\
\frac{d_{1} \cdot\left(2 m+3-d_{1}\right)}{2} & \text { if } m \geq d_{1}
\end{array} .\right.
$$

- Explain why multiplication by F_{2} is injective on $S\left(C_{1}\right)$, more precisely, why it gives injective k-linear maps

$$
S\left(C_{1}\right)_{m-d_{2}} \xrightarrow{\cdot F_{2}} S\left(C_{1}\right)_{m} \text { for all } m .
$$

- Use the identification $S / I \cong S\left(C_{1}\right) /\left\langle F_{2}\right\rangle$ to conclude that

$$
H F_{S / I}(m)=H F_{C_{1}}(m)-H F_{C_{1}}\left(m-d_{2}\right) \text { for all } m,
$$

and write down an explicit formula for each m (observe the symmetry between d_{1} and d_{2}).

- Verify that $H F_{S / I}(m)=d_{1} d_{2}$ for $m \gg 0$, which is another formulation of Bézout's theorem. (2) (a) If X is an affine variety and $P \in X$, check that $\mathcal{O}_{P} \subset K^{a f f}(X)$ has a unique maximal ideal, namely

$$
\mathfrak{m}_{P}=\{f / g: f(P)=0, g(P) \neq 0\} .
$$

(b) If $X \subseteq \mathbb{P}^{n}$ is a projective variety, check that the set $K^{\text {proj }}(X)$ defined in Section 2 is indeed a field. Prove that the subring $\mathcal{O}_{P} \subset K(X)$ has a unique maximal ideal, namely

$$
\mathfrak{m}_{P}=\{F / G: F(P)=0, G(P) \neq 0\} .
$$

(c) Using Hilbert's Nullstellensatz, check that for both affine and projective varieties, if $P \in X$ and \mathcal{O}_{P} is the corresponding local ring with maximal ideal \mathfrak{m}_{P}, then the natural inclusion $\mathbf{k} \subset \mathcal{O}_{P}$ induces an isomorphism $\mathbf{k} \simeq \mathcal{O}_{P} / \mathfrak{m}_{P}$.
(d) Prove 2.1.
(3) Consider the cuspidal cubic $C=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$.

- Show that $P=(1,1)$ belongs to C, and that the maximal ideal \mathfrak{m}_{P} of \mathcal{O}_{P} is principal, that is, it can be generated by a single element. More precisely, show that $\mathfrak{m}_{P}=\langle x-1\rangle$ and also $\mathfrak{m}_{P}=\langle y-1\rangle$.
- By contrast, convince yourself that for $P=(0,0)$, the ideal \mathfrak{m}_{P} is NOT principal.
(4) Consider the projective plane curves $C_{1}, C_{2} \subset \mathbb{P}^{2}$,

$$
C_{1}=V\left(X^{2}+Y^{2}-Z^{2}\right) \text { and } C_{2}=V\left(X^{3}-X^{2} Z-X Z^{2}+Z^{3}-Y^{2} Z\right)
$$

Determine the set $C_{1} \cap C_{2}$ and find the intersection multiplicity at each of these points. Verify that Bézout's theorem holds in this example.
(5) For a homogeneous polynomial F of degree d prove the Euler identity

$$
\sum_{i=0}^{n} X_{i} \cdot \frac{\partial F}{\partial X_{i}}=d \cdot F
$$

