
1. Divisors and linear equivalence

Throughout the rest of the lectures we will assume that C is a projective curve. A divisor on C is a

formal linear combination

D =
∑
P∈C

aP · P

where only finitely many coefficients aP are non-zero. Divisors on C form a group, denoted Div(C),

which is a free abelian group on the set of points of C. We say that a divisor D is effective, and write

D ≥ 0, if aP ≥ 0 for all P ∈ C. More generally, we write D ≥ E if D − E is effective. We define the

degree of a divisor D to be

deg(D) =
∑
P∈C

aP .

Let C ⊆ Pn be a curve and F ∈ κ[x0, · · · , xn] a homogeneous polynomial of degree d such that

C 6⊆ V (F ). There is natural generalization of Bézout’s theorem which can be formulated as follows.

Given a point P ∈ C with F (P ) = 0 we consider any linear form L with L(P ) 6= 0 and write

f =
F

Ld
∈ OC,P , and iP (C,F ) = dimκ

(
OC,P
(f)

)
.

With the definition of the degree e(C) of the curve C from the previous lecture, we have∑
P∈C∩V (F )

iP (C,F ) = e(C) · d. (1.1)

We can then associate a natural divisor on C to F via

Div(F ) =
∑

P∈C∩V (F )

iP (C,F ) · P, (1.2)

which is effective, and satisfies

deg(Div(F )) = e(C) · deg(F ).

In the special case when C is a plane curve of degree d and F is a linear form, it follows that Div(F ) is

an effective divisor of degree d.

If f ∈ K(C) is a non-zero rational function on C, and if OP is the local ring of C at a point P , we

define ordP (f) to be the order of f with respect to the local ring OP . We will assume throughout this

section that C is a non-singular curve, i.e. that the maximal ideal mP in each local ring OP is a principal

ideal, generated by some uniformizer πP . Recall that in this case for every rational function f ∈ K(C)

and every point P ∈ C we can write

f = u · πordP (f)
P , where u ∈ OP is a unit.
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If ordP (f) > 0 then we say that P is a zero of f , while if ordP (f) < 0 then P is a pole of f .

The principal divisor associated to a rational function f is (not to be confused with (1.2)!!!)

Div(f) =
∑
P∈C

ordP (f) · P, (1.3)

which in turn can be written as a difference Div(f) = Div0(f)−Div∞(f) of effective divisors, where

Div0(f) =
∑

ordP (f)>0

ordP (f) · P is the divisor of zeroes of f, and

Div∞(f) =
∑

ordP (f)<0

(− ordP (f)) · P is the divisor of poles of f.

Alternatively, if f = F/G where F,G are homogeneous of the same degree then

Div(f) = Div(F )−Div(G),

where the left hand side is as defined in (1.3), while the right hand side is defined by (1.2).

Theorem 1.1. Every principal divisor has degree 0. In other words, every rational function on a curve

has the same number of zeroes and poles, if they are counted appropriately! Moreover, if f is a non-

constant rational function then f has at least one zero and at least one pole.

We write Div(C) for the group of divisors on C, and PDiv(C) ⊂ Div(C) for the subgroup of principal

divisors. We let

Cl(C) =
Div(C)

PDiv(C)
the class group of C,

which is the same as the group of equivalence classes of divisors for the equivalence relation defined

by D ≡ D′ if and only if D′ − D is a principal divisor. If D ≡ D′ then we say that D and D′ are

linearly equivalent. The function that measures the degree of a divisor gives rise to a surjective group

homomorphism deg : Div(C) −→ Z. Theorem 1.1 implies that linearly equivalent divisors have the same

degree, hence this function factors through the class group:

deg : Cl(C) −→ Z.

We let

Cl0(C) = {D ∈ Cl(C) : deg(D) = 0}.

In Exercise 1 you will verify that Cl0(P1) = 0, while in the case of plane cubic curves E (which have a

group structure as explained in Evan’s lecture) we have Cl0(E) ' E via the isomorphism described in

the following theorem, whose proof will be given as a consequence of the Riemann-Roch formula.
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Theorem 1.2. Suppose that E ⊆ P2 is a non-singular cubic curve and fix a point O ∈ E. We have a

bijection

φ : E −→ Cl0(E), φ(P ) = P −O.

Since Cl0(E) is naturally a group, we can use φ−1 to transport the group structure on E: this agrees with

the geometric construction in Evan’s lecture.

To a divisor D on the curve C we associate the vector space

L(D) = {f ∈ K(C) : Div(f) +D ≥ 0}, (1.4)

and write l(D) = dimκ(L(D)). If D =
∑
aP · P then the condition that f ∈ L(D) is equivalent to

ordP (f) ≥ aP for all P ∈ C.

Proposition 1.3. Let D,D′ be divisors on a nonsingular curve C. We have

(1) If D ≤ D′ then L(D) ⊆ L(D′) and

dimκ
L(D′)

L(D)
≤ deg(D′ −D).

(2) L(0) = κ and L(D) = 0 if deg(D) < 0.

(3) L(D) is finite dimensional and l(D) ≤ deg(D) + 1.

(4) If D ≡ D′ then l(D) = l(D′).

Proof. If D ≤ D′ then it is clear that L(D) ⊆ L(D′). To prove the upper bound on the dimension of

L(D′)/L(D) it is sufficient to verify the case when D′ = D + P for some point P ∈ C. Let a be the

coefficient of P in D, so that ordP (f) ≥ −(a+ 1) for all f ∈ L(D′). Let π be a uniformizer at the point

P and consider the κ-linear map

φ : L(D′) −→ κ, φ(f) = (f · πa+1)(P ),

which is well-defined since ordP (f ·πa+1) ≥ 0 for all f ∈ L(D′). The kernel of φ is L(D), while the image

is at most one dimensional. This shows

dimκ
L(D′)

L(D)
≤ 1 = deg(D′ −D),

proving (1). To prove (2), note that every constant function is in L(0). Moreover, if f ∈ L(0) then

Div(f) ≥ 0 so f has no poles, which by Theorem 1.1 means that f has to be constant. If deg(D) < 0

and f ∈ L(D) then deg(div(f) + D) ≥ 0, but since deg(Div(f)) = 0 this implies deg(D) ≥ 0 which is a

contradiction.
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Conclusion (4) follows from an explicit isomorphism between L(D) and L(D′) for D′ − D = Div(h),

namely:

ψ : L(D) −→ L(D′), ψ(f) = f · h.

Finally, to prove (3) it suffices to replace D by a linearly equivalent divisor (since both sides of the

inequality are unchanged in view of (4) and Theorem 1.1). If l(D) = 0 then the inequality is trivial.

Otherwise, let 0 6= f ∈ L(D) and define D′ = D + Div(f) ≥ 0. Using (1) and (2) yields

l(D′)− 1 = dimκ
L(D′)

L(D)
≤ deg(D′ − 0) = deg(D′),

and since D′ ≡ D the conclusion follows. �

Proposition 1.4. Let P1, · · · , Pm ∈ C and let a1, · · · , am ∈ Z. There exists a rational function f ∈ K(C)

with

ordPi(f) = ai for all i = 1, · · · ,m.

Proof. It is enough to consider the case when ai = 1 and aj = 0 for j 6= i. Indeed, if we can find fi with

ordPi(fi) = 1 and ordPj (fj) = 0 for j 6= i then for arbitrary a1, · · · , am ∈ Z we can take f = fa11 · · · famm .

Up to a change of coordinates, we may assume that all the points Pi lie in the affine space κn = U0 =

(x0 6= 0) and restrict our attention to the affine curve C0 = C ∩ U0. We let R = A(C0) denote the affine

coordinate ring of C0, and let Ii = I(Pi) = {f ∈ R : ordPi(f) ≥ 1} denote the maximal ideals of R

corresponding to the points Pi.

Note that every element f ∈ R ⊂ K(C) satisfies ordP (f) ≥ 0 for all P ∈ C0 and consider the ideal

I2Pi = {f ∈ R : ordPi(f) ≥ 2}.

It follows that the elements f in R with the property that ordPi(f) = 1 and ordPj (f) = 0 for j 6= i are

precisely the elements in

IPi \ (I1 ∪ · · · ∪ Ii−1 ∪ I2Pi ∪ Ii+1 ∪ · · · ∪ Ir)

If no such element exists then by Exercise 5 and the fact that Ii 6⊂ Ij for j 6= i, we must have Ii ⊆ I2Pi ,

but this is not the case: choose πi an uniformizer at Pi and write it as πi = fi/gi with fi, gi ∈ R and

gi(Pi) 6= 0. It follows that ordPi(gi) = 0 and

ordPi(fi) = ordPi(πi) = 1.

This means fi ∈ IPi \ I2Pi , so the inclusion IPi ⊆ I2Pi cannot be true. �
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It will be useful to define the following variation of the vector space L(D) in (1.4). Let S ⊆ C be any

subset and for D =
∑
aP · P define

LS(D) = {f ∈ K(C) : ordP (f) ≥ −aP for all P ∈ S}, (1.5)

and let lS(D) = dimκ L
S(D), and degS(D) =

∑
P∈S aP . Note that when S = C we recover the previous

definition: LC(D) = L(D) and lC(D) = l(D). In Exercise 6 you will prove the following version of

Proposition 1.3(1).

Lemma 1.5. If D ≤ D′ and S ⊆ C is any subset then LS(D) ⊆ LS(D′). If S is finite then

dimκ
LS(D′)

LS(D)
= degS(D′ −D). (1.6)

The next result will be essential in the proof of Riemann’s theorem next time.

Proposition 1.6. Let f ∈ K(C) \ κ be a non-constant rational function, and let n = [K(C) : κ(f)]

denote the degree of the finite field extension κ(f) ⊆ K(C). We have

(1) Div0(f) is an effective divisor of degree n.

(2) There exists a constant τ such that

l(r ·Div0(f)) ≥ r · n− τ for all r.

Proof of part (1). Let Z = Div0(f) =
∑
aP · P and let m = deg(f): we first show that m ≤ n. Consider

S = {P : aP > 0}

and choose f1, · · · , fm ∈ LS(0) with the property that their residues fi in the quotient

LS(0)

LS(−Z)

form a basis. To prove m ≤ n we need to check that f1, · · · , fm are linearly independent over κ(f): if

not then there exist polynomials gi(T ) ∈ κ[T ] with the property that∑
i

gi(f) · fi = 0

and we may assume that some gi has a non-zero constant term. If we write gi(T ) = ci + T · hi(T ), where

ci ∈ κ then we get ∑
i

ci · fi = −f ·
∑
i

hi(f) · fi ∈ LS(−Z)
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Working in the quotient LS(0)
LS(−Z) the above relation implies that fi are linearly dependent, which is a

contradiction. Note that the inequality m ≥ n follows from (2):

r ·m+ 1 = r · deg(Div0(f)) + 1
Proposition 1.3

≥ l(r ·Div0(f)) ≥ r · n− τ

so by taking r � 0 we get m ≥ n. �

Part (2) is more technical, but you can see some examples in the exercises.
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1.1. Exercises.

(1) Let C = P1 with projective coordinates [X : Y ], and consider the rational function

t = Y/X ∈ K(P1).

(a) Show that K(P1) = κ(t), and compute the principal divisor Div(t).

(b) Show that if E =
∑

P aP · P is an effective divisor on P1 of degree d, then there exists a

homogeneous polynomial F of degree d with Div(F ) = E.

(c) Explain how to compute the divisor of an arbitrary rational function on P1.

(d) Show that Cl(P1) = Z and Cl0(P1) = 0.

(e) For the rational function t = Y/X, determine l(r ·Div0(t)) for all r ≥ 0.

(f) Verify that Proposition 1.6 holds for C = P1.

(2) Fix a constant λ ∈ κ with λ 6= 0, 1 and consider the cubic E ⊂ P2 defined by the equation

Y 2Z = X · (X − Z) · (X − λZ).

Consider the rational functions x = X/Z and y = Y/Z.

(a) Show that K(C) = κ(x, y) (where x, y satisfy the relation y2 = x(x− 1)(x− λ)).

(b) Determine Div(x) and Div(y).

(c) Show that if you let z = x−1 then L(Div0(z)) ⊂ κ[x, y] and prove that

l(r ·Div0(z)) = 2r for all r > 0.

(3) We say (see the notes) that D and D′ are linearly equivalent if D′ −D = Div(h) is a principal

divisor, and write D ≡ D′. Show the following:

• l(D) > 0 ⇐⇒ D is linearly equivalent to an effective divisor.

• deg(D) = 0 and l(D) > 0 ⇐⇒ D ≡ 0 ⇐⇒ D is a principal divisor.

(4) In this exercise you will prove (you can also look at the notes to see the details) that if D ≤ D′

are divisors on a curve C then

l(D′) ≤ l(D) + deg(D′ −D).

• Explain why you can reduce to the case when D′ −D = P consists of a single point.

• Let a be the coefficient of P in D (so that (a + 1) is the coefficient of P in D′), and let π

denote the uniformizer at P (so that mP = 〈π〉). Explain why the map

φ : L(D′) −→ κ, φ(f) = (f · πa+1)(P ),

defined by multiplication by πa+1 followed by evaluation at P , is κ-linear and is well-defined.
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• Show that L(D) is contained in ker(φ) and deduce that l(D′) ≤ l(D) + 1.

(5) (Prime avoidance) Suppose that J,Q0, Q1, · · · , Qr are ideals in a ring R, and assume further that

Q1, · · · , Qr are prime ideals (Q0 may not be prime). Show that if we have

J ⊆ Q0 ∪Q1 ∪ · · · ∪Qr

then J ⊆ Qi for some i. You can follow the strategy below:

(a) Verify the assertion in the case r = 0, 1.

(b) Do induction on r. If J ⊂
⋃
j 6=iQj then conclude by induction that J ⊂ Qj for some j.

Otherwise, for each i = 0, · · · , n choose an element zi ∈ J \
⋃
j 6=iQj . Show that the element

z = z0z1 · · · zr−1 + zr belongs to J but not to any of Qi.

(6) Prove Lemma 1.5 using Proposition 1.4.
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