1. Divisors and linear equivalence

Throughout the rest of the lectures we will assume that C is a projective curve. A **divisor** on C is a formal linear combination

$$D = \sum_{P \in C} a_P \cdot P$$

where only finitely many coefficients a_P are non-zero. Divisors on C form a group, denoted Div(C), which is a free abelian group on the set of points of C. We say that a divisor D is **effective**, and write $D \ge 0$, if $a_P \ge 0$ for all $P \in C$. More generally, we write $D \ge E$ if D - E is effective. We define the **degree** of a divisor D to be

$$\deg(D) = \sum_{P \in C} a_P$$

Let $C \subseteq \mathbb{P}^n$ be a curve and $F \in \kappa[x_0, \dots, x_n]$ a homogeneous polynomial of degree d such that $C \not\subseteq V(F)$. There is natural generalization of Bézout's theorem which can be formulated as follows. Given a point $P \in C$ with F(P) = 0 we consider any linear form L with $L(P) \neq 0$ and write

$$f = \frac{F}{L^d} \in \mathcal{O}_{C,P}, \quad \text{and} \quad i_P(C,F) = \dim_{\kappa} \left(\frac{\mathcal{O}_{C,P}}{(f)} \right).$$

With the definition of the degree e(C) of the curve C from the previous lecture, we have

$$\sum_{P \in C \cap V(F)} i_P(C, F) = e(C) \cdot d.$$
(1.1)

We can then associate a natural divisor on C to F via

$$\operatorname{Div}(F) = \sum_{P \in C \cap V(F)} i_P(C, F) \cdot P, \qquad (1.2)$$

which is effective, and satisfies

$$\deg(\operatorname{Div}(F)) = e(C) \cdot \deg(F)$$

In the special case when C is a plane curve of degree d and F is a linear form, it follows that Div(F) is an effective divisor of degree d.

If $f \in K(C)$ is a non-zero rational function on C, and if \mathcal{O}_P is the local ring of C at a point P, we define $\operatorname{ord}_P(f)$ to be the order of f with respect to the local ring \mathcal{O}_P . We will assume throughout this section that C is a **non-singular** curve, i.e. that the maximal ideal \mathfrak{m}_P in each local ring \mathcal{O}_P is a principal ideal, generated by some uniformizer π_P . Recall that in this case for every rational function $f \in K(C)$ and every point $P \in C$ we can write

$$f = u \cdot \pi_P^{\operatorname{ord}_P(f)}$$
, where $u \in \mathcal{O}_P$ is a unit.

If $\operatorname{ord}_P(f) > 0$ then we say that P is a **zero of** f, while if $\operatorname{ord}_P(f) < 0$ then P is a **pole of** f.

The principal divisor associated to a rational function f is (not to be confused with (1.2)!!!)

$$\operatorname{Div}(f) = \sum_{P \in C} \operatorname{ord}_P(f) \cdot P, \tag{1.3}$$

which in turn can be written as a difference $\text{Div}(f) = \text{Div}_0(f) - \text{Div}_\infty(f)$ of effective divisors, where

$$\operatorname{Div}_0(f) = \sum_{\operatorname{ord}_P(f)>0} \operatorname{ord}_P(f) \cdot P$$
 is the **divisor of zeroes** of f , and

$$\operatorname{Div}_{\infty}(f) = \sum_{\operatorname{ord}_{P}(f) < 0} (-\operatorname{ord}_{P}(f)) \cdot P$$
 is the **divisor of poles** of f .

Alternatively, if f = F/G where F, G are homogeneous of the same degree then

$$\operatorname{Div}(f) = \operatorname{Div}(F) - \operatorname{Div}(G)$$

where the left hand side is as defined in (1.3), while the right hand side is defined by (1.2).

Theorem 1.1. Every principal divisor has degree 0. In other words, every rational function on a curve has the same number of zeroes and poles, if they are counted appropriately! Moreover, if f is a non-constant rational function then f has at least one zero and at least one pole.

We write Div(C) for the group of divisors on C, and $\text{PDiv}(C) \subset \text{Div}(C)$ for the subgroup of principal divisors. We let

$$\operatorname{Cl}(C) = \frac{\operatorname{Div}(C)}{\operatorname{PDiv}(C)}$$
 the class group of C ,

which is the same as the group of equivalence classes of divisors for the equivalence relation defined by $D \equiv D'$ if and only if D' - D is a principal divisor. If $D \equiv D'$ then we say that D and D' are **linearly equivalent**. The function that measures the degree of a divisor gives rise to a surjective group homomorphism deg : $\text{Div}(C) \longrightarrow \mathbb{Z}$. Theorem 1.1 implies that linearly equivalent divisors have the same degree, hence this function factors through the class group:

$$\deg: \operatorname{Cl}(C) \longrightarrow \mathbb{Z}.$$

We let

$$\operatorname{Cl}^{0}(C) = \{ D \in \operatorname{Cl}(C) : \deg(D) = 0 \}.$$

In Exercise 1 you will verify that $\operatorname{Cl}^0(\mathbb{P}^1) = 0$, while in the case of plane cubic curves E (which have a group structure as explained in Evan's lecture) we have $\operatorname{Cl}^0(E) \simeq E$ via the isomorphism described in the following theorem, whose proof will be given as a consequence of the Riemann-Roch formula.

$$\phi: E \longrightarrow \operatorname{Cl}^0(E), \quad \phi(P) = P - O.$$

Since $\operatorname{Cl}^0(E)$ is naturally a group, we can use ϕ^{-1} to transport the group structure on E: this agrees with the geometric construction in Evan's lecture.

To a divisor D on the curve C we associate the vector space

$$L(D) = \{ f \in K(C) : \text{Div}(f) + D \ge 0 \},$$
(1.4)

and write $l(D) = \dim_{\kappa}(L(D))$. If $D = \sum a_P \cdot P$ then the condition that $f \in L(D)$ is equivalent to

 $\operatorname{ord}_P(f) \ge a_P$ for all $P \in C$.

Proposition 1.3. Let D, D' be divisors on a nonsingular curve C. We have

(1) If $D \leq D'$ then $L(D) \subseteq L(D')$ and

$$\dim_{\kappa} \frac{L(D')}{L(D)} \le \deg(D' - D).$$

- (2) $L(0) = \kappa$ and L(D) = 0 if deg(D) < 0.
- (3) L(D) is finite dimensional and $l(D) \leq \deg(D) + 1$.
- (4) If $D \equiv D'$ then l(D) = l(D').

Proof. If $D \leq D'$ then it is clear that $L(D) \subseteq L(D')$. To prove the upper bound on the dimension of L(D')/L(D) it is sufficient to verify the case when D' = D + P for some point $P \in C$. Let a be the coefficient of P in D, so that $\operatorname{ord}_P(f) \geq -(a+1)$ for all $f \in L(D')$. Let π be a uniformizer at the point P and consider the κ -linear map

$$\phi: L(D') \longrightarrow \kappa, \quad \phi(f) = (f \cdot \pi^{a+1})(P),$$

which is well-defined since $\operatorname{ord}_P(f \cdot \pi^{a+1}) \ge 0$ for all $f \in L(D')$. The kernel of ϕ is L(D), while the image is at most one dimensional. This shows

$$\dim_{\kappa} \frac{L(D')}{L(D)} \le 1 = \deg(D' - D),$$

proving (1). To prove (2), note that every constant function is in L(0). Moreover, if $f \in L(0)$ then $\text{Div}(f) \ge 0$ so f has no poles, which by Theorem 1.1 means that f has to be constant. If $\deg(D) < 0$ and $f \in L(D)$ then $\deg(\operatorname{div}(f) + D) \ge 0$, but since $\deg(\operatorname{Div}(f)) = 0$ this implies $\deg(D) \ge 0$ which is a contradiction.

4

Conclusion (4) follows from an explicit isomorphism between L(D) and L(D') for D' - D = Div(h), namely:

$$\psi: L(D) \longrightarrow L(D'), \quad \psi(f) = f \cdot h.$$

Finally, to prove (3) it suffices to replace D by a linearly equivalent divisor (since both sides of the inequality are unchanged in view of (4) and Theorem 1.1). If l(D) = 0 then the inequality is trivial. Otherwise, let $0 \neq f \in L(D)$ and define $D' = D + \text{Div}(f) \geq 0$. Using (1) and (2) yields

$$l(D') - 1 = \dim_{\kappa} \frac{L(D')}{L(D)} \le \deg(D' - 0) = \deg(D'),$$

and since $D' \equiv D$ the conclusion follows.

Proposition 1.4. Let $P_1, \dots, P_m \in C$ and let $a_1, \dots, a_m \in \mathbb{Z}$. There exists a rational function $f \in K(C)$ with

$$\operatorname{ord}_{P_i}(f) = a_i \text{ for all } i = 1, \cdots, m.$$

Proof. It is enough to consider the case when $a_i = 1$ and $a_j = 0$ for $j \neq i$. Indeed, if we can find f_i with $\operatorname{ord}_{P_i}(f_i) = 1$ and $\operatorname{ord}_{P_j}(f_j) = 0$ for $j \neq i$ then for arbitrary $a_1, \cdots, a_m \in \mathbb{Z}$ we can take $f = f_1^{a_1} \cdots f_m^{a_m}$.

Up to a change of coordinates, we may assume that all the points P_i lie in the affine space $\kappa^n = U_0 = (x_0 \neq 0)$ and restrict our attention to the affine curve $C_0 = C \cap U_0$. We let $R = A(C_0)$ denote the affine coordinate ring of C_0 , and let $I_i = I(P_i) = \{f \in R : \operatorname{ord}_{P_i}(f) \geq 1\}$ denote the maximal ideals of R corresponding to the points P_i .

Note that every element $f \in R \subset K(C)$ satisfies $\operatorname{ord}_P(f) \geq 0$ for all $P \in C_0$ and consider the ideal

$$I_{2P_i} = \{ f \in R : \operatorname{ord}_{P_i}(f) \ge 2 \}.$$

It follows that the elements f in R with the property that $\operatorname{ord}_{P_i}(f) = 1$ and $\operatorname{ord}_{P_j}(f) = 0$ for $j \neq i$ are precisely the elements in

$$I_{P_i} \setminus (I_1 \cup \cdots \cup I_{i-1} \cup I_{2P_i} \cup I_{i+1} \cup \cdots \cup I_r)$$

If no such element exists then by Exercise 5 and the fact that $I_i \not\subset I_j$ for $j \neq i$, we must have $I_i \subseteq I_{2P_i}$, but this is not the case: choose π_i an uniformizer at P_i and write it as $\pi_i = f_i/g_i$ with $f_i, g_i \in R$ and $g_i(P_i) \neq 0$. It follows that $\operatorname{ord}_{P_i}(g_i) = 0$ and

$$\operatorname{ord}_{P_i}(f_i) = \operatorname{ord}_{P_i}(\pi_i) = 1.$$

This means $f_i \in I_{P_i} \setminus I_{2P_i}$, so the inclusion $I_{P_i} \subseteq I_{2P_i}$ cannot be true.

It will be useful to define the following variation of the vector space L(D) in (1.4). Let $S \subseteq C$ be any subset and for $D = \sum a_P \cdot P$ define

$$L^{\mathcal{S}}(D) = \{ f \in K(C) : \operatorname{ord}_{P}(f) \ge -a_{P} \text{ for all } P \in \mathcal{S} \},$$
(1.5)

and let $l^{\mathcal{S}}(D) = \dim_{\kappa} L^{\mathcal{S}}(D)$, and $\deg^{\mathcal{S}}(D) = \sum_{P \in \mathcal{S}} a_P$. Note that when $\mathcal{S} = C$ we recover the previous definition: $L^{C}(D) = L(D)$ and $l^{C}(D) = l(D)$. In Exercise 6 you will prove the following version of Proposition 1.3(1).

Lemma 1.5. If $D \leq D'$ and $S \subseteq C$ is any subset then $L^{S}(D) \subseteq L^{S}(D')$. If S is finite then

$$\dim_{\kappa} \frac{L^{\mathcal{S}}(D')}{L^{\mathcal{S}}(D)} = \deg^{\mathcal{S}}(D' - D).$$
(1.6)

The next result will be essential in the proof of Riemann's theorem next time.

Proposition 1.6. Let $f \in K(C) \setminus \kappa$ be a non-constant rational function, and let $n = [K(C) : \kappa(f)]$ denote the degree of the finite field extension $\kappa(f) \subseteq K(C)$. We have

- (1) $\text{Div}_0(f)$ is an effective divisor of degree n.
- (2) There exists a constant τ such that

$$l(r \cdot \operatorname{Div}_0(f)) \ge r \cdot n - \tau$$
 for all r.

Proof of part (1). Let $Z = \text{Div}_0(f) = \sum a_P \cdot P$ and let m = deg(f): we first show that $m \leq n$. Consider

$$\mathcal{S} = \{P : a_P > 0\}$$

and choose $f_1, \dots, f_m \in L^{\mathcal{S}}(0)$ with the property that their residues $\overline{f_i}$ in the quotient

$$\frac{L^{\mathcal{S}}(0)}{L^{\mathcal{S}}(-Z)}$$

form a basis. To prove $m \leq n$ we need to check that f_1, \dots, f_m are linearly independent over $\kappa(f)$: if not then there exist polynomials $g_i(T) \in \kappa[T]$ with the property that

$$\sum_{i} g_i(f) \cdot f_i = 0$$

and we may assume that some g_i has a non-zero constant term. If we write $g_i(T) = c_i + T \cdot h_i(T)$, where $c_i \in \kappa$ then we get

$$\sum_{i} c_i \cdot f_i = -f \cdot \sum_{i} h_i(f) \cdot f_i \in L^{\mathcal{S}}(-Z)$$

Working in the quotient $\frac{L^{S}(0)}{L^{S}(-Z)}$ the above relation implies that $\overline{f_{i}}$ are linearly dependent, which is a contradiction. Note that the inequality $m \ge n$ follows from (2):

$$r \cdot m + 1 = r \cdot \deg(\operatorname{Div}_0(f)) + 1 \overset{\operatorname{Proposition}}{\geq} {}^{1.3} l(r \cdot \operatorname{Div}_0(f)) \geq r \cdot n - \tau$$

so by taking $r \gg 0$ we get $m \ge n$.

Part (2) is more technical, but you can see some examples in the exercises.

1.1. Exercises.

(1) Let $C = \mathbb{P}^1$ with projective coordinates [X : Y], and consider the rational function

$$t = Y/X \in K(\mathbb{P}^1).$$

(a) Show that $K(\mathbb{P}^1) = \kappa(t)$, and compute the principal divisor Div(t).

(b) Show that if $E = \sum_{P} a_{P} \cdot P$ is an effective divisor on \mathbb{P}^{1} of degree d, then there exists a homogeneous polynomial F of degree d with Div(F) = E.

- (c) Explain how to compute the divisor of an arbitrary rational function on \mathbb{P}^1 .
- (d) Show that $\operatorname{Cl}(\mathbb{P}^1) = \mathbb{Z}$ and $\operatorname{Cl}^0(\mathbb{P}^1) = 0$.
- (e) For the rational function t = Y/X, determine $l(r \cdot \text{Div}_0(t))$ for all $r \ge 0$.
- (f) Verify that Proposition 1.6 holds for $C = \mathbb{P}^1$.
- (2) Fix a constant $\lambda \in \kappa$ with $\lambda \neq 0, 1$ and consider the cubic $E \subset \mathbb{P}^2$ defined by the equation

$$Y^2 Z = X \cdot (X - Z) \cdot (X - \lambda Z).$$

Consider the rational functions x = X/Z and y = Y/Z.

- (a) Show that $K(C) = \kappa(x, y)$ (where x, y satisfy the relation $y^2 = x(x-1)(x-\lambda)$).
- (b) Determine Div(x) and Div(y).
- (c) Show that if you let $z = x^{-1}$ then $L(\text{Div}_0(z)) \subset \kappa[x, y]$ and prove that

$$l(r \cdot \operatorname{Div}_0(z)) = 2r$$
 for all $r > 0$.

- (3) We say (see the notes) that D and D' are **linearly equivalent** if D' D = Div(h) is a principal divisor, and write $D \equiv D'$. Show the following:
 - $l(D) > 0 \iff D$ is linearly equivalent to an effective divisor.
 - $\deg(D) = 0$ and $l(D) > 0 \iff D \equiv 0 \iff D$ is a principal divisor.
- (4) In this exercise you will prove (you can also look at the notes to see the details) that if $D \leq D'$ are divisors on a curve C then

$$l(D') \le l(D) + \deg(D' - D).$$

- Explain why you can reduce to the case when D' D = P consists of a single point.
- Let a be the coefficient of P in D (so that (a + 1) is the coefficient of P in D'), and let π denote the uniformizer at P (so that $\mathfrak{m}_P = \langle \pi \rangle$). Explain why the map

$$\phi: L(D') \longrightarrow \kappa, \quad \phi(f) = (f \cdot \pi^{a+1})(P)$$

defined by multiplication by π^{a+1} followed by evaluation at P, is κ -linear and is well-defined.

- Show that L(D) is contained in ker (ϕ) and deduce that $l(D') \leq l(D) + 1$.
- (5) (**Prime avoidance**) Suppose that J, Q_0, Q_1, \dots, Q_r are ideals in a ring R, and assume further that Q_1, \dots, Q_r are prime ideals (Q_0 may not be prime). Show that if we have

$$J \subseteq Q_0 \cup Q_1 \cup \dots \cup Q_r$$

then $J \subseteq Q_i$ for some *i*. You can follow the strategy below:

(a) Verify the assertion in the case r = 0, 1.

(b) Do induction on r. If $J \subset \bigcup_{j \neq i} Q_j$ then conclude by induction that $J \subset Q_j$ for some j. Otherwise, for each $i = 0, \dots, n$ choose an element $z_i \in J \setminus \bigcup_{j \neq i} Q_j$. Show that the element $z = z_0 z_1 \cdots z_{r-1} + z_r$ belongs to J but not to any of Q_i .

(6) Prove Lemma 1.5 using Proposition 1.4.