1. The Riemann-Roch Theorem

Last time we discussed:

Proposition 1.1. Let D, D^{\prime} be divisors on C. We have
(1) If $D \leq D^{\prime}$ then $L(D) \subseteq L\left(D^{\prime}\right)$ and

$$
\operatorname{dim}_{\kappa} \frac{L\left(D^{\prime}\right)}{L(D)} \leq \operatorname{deg}\left(D^{\prime}-D\right) .
$$

(2) $L(0)=\kappa$ and $L(D)=0$ if $\operatorname{deg}(D)<0$.
(3) If $\operatorname{deg}(D) \geq 0$ then $L(D)$ is finite dimensional and $l(D) \leq \operatorname{deg}(D)+1$.
(4) If $D \equiv D^{\prime}$ then $l(D)=l\left(D^{\prime}\right)$.

On the homework: You studied $l(D)$ when $D=r \operatorname{Div}_{0}(f)$ in the following cases:
(1) $C=\mathbb{P}^{1}=\{[X: Y]\}, f=Y / X$. You showed

$$
\operatorname{Div}_{0}(f)=[1: 0], \quad l\left(r \operatorname{Div}_{0}(f)\right)=r+1 .
$$

Note that $\operatorname{deg}\left(r \operatorname{Div}_{0}(f)\right)=r$.
(2) $C=E=V\left(Y^{2} Z-X(X-Z)(X-\lambda Z)\right) \subset \mathbb{P}^{2}$ is an elliptic curve, $f=Z / X$. You showed

$$
\operatorname{Div}_{0}(f)=2[0: 1: 0], \quad l\left(r \operatorname{Div}_{0}(f)\right)=2 r .
$$

Note that $\operatorname{deg}\left(r \operatorname{Div}_{0}(f)\right)=2 r$.
Today, our goal is to study further the invariant $l(D)$.
Theorem 1.2 (Riemann). There exists a constant g such that for all divisors D on C we have

$$
\begin{equation*}
l(D) \geq \operatorname{deg}(D)+1-g . \tag{1.1}
\end{equation*}
$$

The smallest such g is called the genus of the curve C and is a non-negative integer.
It can be shown (for instance using sheaf cohomology) that the genus of a curve C is encoded by its Hilbert polynomial $\mathrm{HP}_{C}(z)$ via the formula

$$
g=1-\mathrm{HP}_{C}(0),
$$

which shows that the genus of a non-singular plane curve of degree d is given by

$$
1+\frac{d(d-3)}{2}=\frac{(d-1)(d-2)}{2},
$$

and in particular a plane cubic has genus 1.
Before proving Theorem 1.2 we need to establish the following technical result:

Lemma 1.3. Let $f \in K(C) \backslash \kappa$ denote a non-constant rational function, and let D be any divisor on C. For $r \gg 0$ the divisor $r \cdot \operatorname{Div}_{0}(f)-D$ is linearly equivalent to an effective divisor.

Proof. Let $\mathcal{Z}(f) \subset C$ denote the set of zeroes of f, and write $D=\sum_{P} a_{P} \cdot P$. We consider the rational function \tilde{f} defined by

$$
\tilde{f}=\prod_{a_{P}>0, P \notin \mathcal{Z}(f)}\left(\frac{1}{f}-\frac{1}{f(P)}\right)^{a_{P}}
$$

By definition, the poles of \tilde{f} are precisely the zeroes of f, and for every $P \notin \mathcal{Z}(f)$ for which $a_{P}>0$ we have $\operatorname{ord}_{P}(\tilde{f}) \geq a_{P}$. We thus get

$$
\operatorname{Div}(\tilde{f})-D=\operatorname{Div}_{0}(\tilde{f})-\operatorname{Div}_{\infty}(\tilde{f})-D=\sum_{P} b_{P} \cdot P
$$

where a negative coefficient $b_{P}<0$ can only occur when $P \in \mathcal{Z}(f)$. This means that

$$
r \cdot \operatorname{Div}_{0}(f)+\sum_{P} b_{P} \cdot P \geq 0 \text { for } r \gg 0,
$$

and therefore

$$
r \cdot \operatorname{Div}_{0}(f)-D \equiv r \cdot \operatorname{Div}_{0}(f)+\operatorname{Div}(\tilde{f})-D=r \cdot \operatorname{Div}_{0}(f)+\sum_{P} b_{P} \cdot P \text { is effective when } r \gg 0
$$

Proof of Theorem 1.2. Since $l(0)=1$ and $\operatorname{deg}(D)=0$, we conclude that $g \geq 0$ if it exists. We define

$$
s(D)=\operatorname{deg}(D)+1-l(D)
$$

and note that the existence of g is equivalent to the fact that $s(D)$ is bounded above, in which case g is the maximum value of $s(D)$ as D varies among divisors on C.

Note that we have $s(D)=s\left(D^{\prime}\right)$ when $D \equiv D^{\prime}$ by Proposition 1.1(4), and it follows from yesterday's Exercises that $s(D) \leq s\left(D^{\prime}\right)$ if $D \leq D^{\prime}$. In light of Lemma 1.3, it is enough to show that $s\left(r \cdot \operatorname{Div}_{0}(f)\right)$ is bounded above when f is some non-constant rational function: indeed, consider a nonconstant rational function $f \in K(C)$ and a positive integer r for which $r \cdot \operatorname{Div}_{0}(f)-D \equiv E$ for some effective divisor E; it follows that

$$
D \equiv r \cdot \operatorname{Div}_{0}(f)-E \leq r \cdot \operatorname{Div}_{0}(f)
$$

and therefore

$$
s(D)=s\left(r \cdot \operatorname{Div}_{0}(f)-E\right) \leq s\left(r \cdot \operatorname{Div}_{0}(f)\right) .
$$

The fact that $s\left(r \cdot \operatorname{Div}_{0}(f)\right)$ is bounded above follows from Proposition 1.6 in yesterday's notes: we have $s\left(r \cdot \operatorname{Div}_{0}(f)\right) \leq \tau+1$ for all r, concluding the proof.

Corollary 1.4. If C is a curve of genus g and if D_{0} is a divisor satisfying $l\left(D_{0}\right)=\operatorname{deg}\left(D_{0}\right)+1-g$, then for every divisor D which is linearly equivalent to some $D^{\prime} \geq D_{0}$ we have

$$
l(D)=\operatorname{deg}(D)+1-g .
$$

Proof. Using Proposition 1.1(4) we get that $l(D)=l\left(D^{\prime}\right)$, so we may assume $D \geq D_{0}$. It follows that

$$
l(D) \leq l\left(D_{0}\right)+\operatorname{deg}\left(D-D_{0}\right)=\operatorname{deg}(D)+1-g .
$$

If the inequality is strict then we get a contradiction with (1.1), so we must have $l(D)=\operatorname{deg}(D)+1-g$.
Corollary 1.5 (Asymptotic Riemann-Roch). There exists a positive integer N such that for all divisors D with $\operatorname{deg}(D)>N$ we have

$$
l(D)=\operatorname{deg}(D)+1-g
$$

Proof. Choose any D_{0} such that $l\left(D_{0}\right)=\operatorname{deg}\left(D_{0}\right)+1-g$, and let $N=g+\operatorname{deg}\left(D_{0}\right)$. If D is a divisor with $\operatorname{deg}(D) \geq N$ then

$$
l\left(D-D_{0}\right) \stackrel{|1.1|}{\geq} \operatorname{deg}\left(D-D_{0}\right)+1-g \geq N-\operatorname{deg}\left(D_{0}\right)+1-g=1,
$$

so that there exists $0 \neq f \in L\left(D-D_{0}\right)$. By definition, this means that

$$
D-D_{0}+\operatorname{Div}(f) \geq 0 \text {, i.e. } D+\operatorname{Div}(f) \geq D_{0}
$$

Set $D^{\prime}=D+\operatorname{Div}(f)$ and note that $D \equiv D^{\prime}$, hence by Corollary 1.4 we get $l(D)=\operatorname{deg}(D)+1-g$, as desired.

Theorem 1.6 (Riemann-Roch). Let C be a non-singular projective curve. There exists a divisor W (which is called a canonical divisor) with the property that for any divisor D on C we have

$$
l(D)-l(W-D)=\operatorname{deg}(D)+1-g .
$$

Corollary 1.7. If W is a canonical divisor on a curve C of genus g then

$$
\operatorname{deg}(W)=2 g-2 \text { and } l(W)=g
$$

As a consequence, we can take $N=2 g-2$ in Corollary 1.5.
Proof. Replacing D by $W-D$ in the Riemann-Roch formula yields

$$
l(W-D)-l(D)=\operatorname{deg}(W-D)+1-g
$$

and therefore

$$
\operatorname{deg}(D)+1-g=-\operatorname{deg}(W-D)-1+g=\operatorname{deg}(D)-\operatorname{deg}(W)-1+g
$$

which proves $\operatorname{deg}(W)=2 g-2$.
We can now set $D=W$ in the Riemann-Roch formula and use the fact that $l(0)=1$ to conclude that

$$
l(W)=l(0)+\operatorname{deg}(W)+1-g=1+2 g-2+1-g=g .
$$

To prove the last statement, consider a divisor D with $\operatorname{deg}(D)>2 g-2$. We get that $\operatorname{deg}(W-D)<0$ which by Proposition 1.1(2) yields $l(W-D)=0$. The Riemann-Roch formula gives then the conclusion of Corollary 1.5 .

When $C=E$ is an elliptic curve we can in fact take $W=0$ (see Exercise 2), but Corollary 1.7 only guarantees that $\operatorname{deg}(W)=0$, since $g=1$. Nevertheless, this suffices to give a proof of the following.

Theorem 1.8. Suppose that $E \subseteq \mathbb{P}^{2}$ is a non-singular cubic curve and fix a point $O \in E$. We have a bijection

$$
\phi: E \longrightarrow \mathrm{Cl}^{0}(E), \quad \phi(P)=P-O .
$$

Proof. We first show that the map ϕ is surjective. Consider a divisor D with $\operatorname{deg}(D)=0$ and let $D^{\prime}=D+O$. Since $\operatorname{deg}(W)=0$ and $\operatorname{deg}\left(D^{\prime}\right)=1$ it follows that $l\left(W-D^{\prime}\right)=0$ and therefore by Riemann-Roch

$$
l\left(D^{\prime}\right)=1 .
$$

It follows that there exists an effective divisor $D^{\prime \prime}$ linearly equivalent to D^{\prime}, and since $\operatorname{deg}\left(D^{\prime \prime}\right)=1$ it must be that $D^{\prime \prime}=P$ for some point $P \in E$. This shows that $D+O \equiv P$, or equivalently that $D \equiv P-O=\phi(P)$ proving surjectivity.

To see that ϕ is injective, assume that $\phi(P)=\phi(Q)$ for distinct points $P, Q \in E$. This means that $P-Q \equiv 0$ and therefore $l(P-Q)=1$. We can thus find a rational function $f \in K(E)$ with $\operatorname{Div}(f)=Q-P$, which in particular is non-constant. This implies that $1, f \in L(P)$ are linearly independent over κ, thus $l(P) \geq 2$. However, Riemann-Roch implies that $l(P)=1$, which is a contradiction.

1.1. Exercises.

(1) Let $C=\mathbb{P}^{1}$ (genus $g=0$). Explain why you can take the canonical divisor W to be any divisor of degree -2 in the Riemann-Roch theorem.
(2) (a) Show that in the Riemann-Roch theorem, you can replace W with any linearly equivalent divisor $W^{\prime} \equiv W$.
(b) Suppose that E is an elliptic curve (genus $g=1$). Use the fact that $l(W)=g$ to show that W is linearly equivalent to an effective divisor, and determine this divisor using $\operatorname{deg}(W)=2 g-2$.
(c) Conclude that for an elliptic curve, you can take $W=0$ in the Riemann-Roch theorem.
(3) Let E be an elliptic curve, and fix $O \in E$. The goal of this exercise is to show (see also the notes) that we have a bijection

$$
\phi: E \longrightarrow \mathrm{Cl}^{0}(E), \quad \phi(P)=P-O .
$$

- Surjectivity: every element of $\mathrm{Cl}^{0}(E)$ is the equivalence class of a divisor D with $\operatorname{deg}(D)=0$. Use Riemann-Roch to conclude that $l(D+O)=1$, and conclude that $D+O$ is equivalent to an effective divisor of degree 1 (what does such a divisor look like?).
- Injectivity: show that if $P-O \equiv Q-O, P \neq Q$, then $L(P-Q)$ contains a non-constant rational function f. Explain why this implies $1, f \in L(P)$, and $l(P) \geq 2$. Show that this contradicts Riemann-Roch, so ϕ is in fact injective.
(4) Let C be a curve of genus g and let $P \in C$. Show that for every $a \geq 2 g$ there exists a rational function $f \in K(C)$ with

$$
\operatorname{Div}_{\infty}(f)=a \cdot P
$$

Prove that the above conclusion fails when a is small (for instance when $a=1$ and C is any curve of genus $g \geq 1$).
(5) Let C be a curve of genus g, let $P \in C$, and define

$$
N_{r}=l(r P) \text { for } r \geq 0
$$

(a) Show that $1=N_{0} \leq N_{1} \leq \cdots \leq N_{2 g-1}=g$ and conclude that there are precisely g numbers

$$
0<a_{1}<a_{2}<\cdots<a_{g}<2 g
$$

with the property that there is no rational function $f \in K(C)$ with $\operatorname{Div}_{\infty}(f)=a_{i} \cdot P$.
The numbers a_{1}, \cdots, a_{g} are called Weierstrass gaps, and $\left(a_{1}, \cdots, a_{g}\right)$ is the gap sequence at P. We say that P is a Weierstrass point if the gap sequence is different from $(1,2, \cdots, g)$.
(b) Show that the following are equivalent

- P is a Weierstrass point.
- $l(g P)>1$.
- $l(W-g P)>0$.
(c) Show that if a and b are not gaps then $a+b$ is not a gap. Conclude that if 2 is not a gap then the gap sequence is necessarily $(1,3, \cdots, 2 g-1)$. The curve C is called hyperelliptic in this case.

