
1. The Riemann-Roch Theorem

Last time we discussed:

Proposition 1.1. Let D,D′ be divisors on C. We have

(1) If D ≤ D′ then L(D) ⊆ L(D′) and

dimκ
L(D′)

L(D)
≤ deg(D′ −D).

(2) L(0) = κ and L(D) = 0 if deg(D) < 0.

(3) If deg(D) ≥ 0 then L(D) is finite dimensional and l(D) ≤ deg(D) + 1.

(4) If D ≡ D′ then l(D) = l(D′).

On the homework: You studied l(D) when D = rDiv0(f) in the following cases:

(1) C = P1 = {[X : Y ]}, f = Y/X. You showed

Div0(f) = [1 : 0], l(rDiv0(f)) = r + 1.

Note that deg(rDiv0(f)) = r.

(2) C = E = V (Y 2Z −X(X − Z)(X − λZ)) ⊂ P2 is an elliptic curve, f = Z/X. You showed

Div0(f) = 2[0 : 1 : 0], l(rDiv0(f)) = 2r.

Note that deg(rDiv0(f)) = 2r.

Today, our goal is to study further the invariant l(D).

Theorem 1.2 (Riemann). There exists a constant g such that for all divisors D on C we have

l(D) ≥ deg(D) + 1− g. (1.1)

The smallest such g is called the genus of the curve C and is a non-negative integer.

It can be shown (for instance using sheaf cohomology) that the genus of a curve C is encoded by its

Hilbert polynomial HPC(z) via the formula

g = 1−HPC(0),

which shows that the genus of a non-singular plane curve of degree d is given by

1 +
d(d− 3)

2
=

(d− 1)(d− 2)

2
,

and in particular a plane cubic has genus 1.

Before proving Theorem 1.2 we need to establish the following technical result:
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Lemma 1.3. Let f ∈ K(C) \ κ denote a non-constant rational function, and let D be any divisor on C.

For r � 0 the divisor r ·Div0(f)−D is linearly equivalent to an effective divisor.

Proof. Let Z(f) ⊂ C denote the set of zeroes of f , and write D =
∑

P aP · P . We consider the rational

function f̃ defined by

f̃ =
∏

aP>0, P /∈Z(f)

(
1

f
− 1

f(P )

)aP
.

By definition, the poles of f̃ are precisely the zeroes of f , and for every P /∈ Z(f) for which aP > 0 we

have ordP (f̃) ≥ aP . We thus get

Div(f̃)−D = Div0(f̃)−Div∞(f̃)−D =
∑
P

bP · P,

where a negative coefficient bP < 0 can only occur when P ∈ Z(f). This means that

r ·Div0(f) +
∑
P

bP · P ≥ 0 for r � 0,

and therefore

r ·Div0(f)−D ≡ r ·Div0(f) + Div(f̃)−D = r ·Div0(f) +
∑
P

bP · P is effective when r � 0. �

Proof of Theorem 1.2. Since l(0) = 1 and deg(D) = 0, we conclude that g ≥ 0 if it exists. We define

s(D) = deg(D) + 1− l(D)

and note that the existence of g is equivalent to the fact that s(D) is bounded above, in which case g is

the maximum value of s(D) as D varies among divisors on C.

Note that we have s(D) = s(D′) when D ≡ D′ by Proposition 1.1(4), and it follows from yesterday’s

Exercises that s(D) ≤ s(D′) if D ≤ D′. In light of Lemma 1.3, it is enough to show that s(r ·Div0(f)) is

bounded above when f is some non-constant rational function: indeed, consider a nonconstant rational

function f ∈ K(C) and a positive integer r for which r ·Div0(f)−D ≡ E for some effective divisor E; it

follows that

D ≡ r ·Div0(f)− E ≤ r ·Div0(f)

and therefore

s(D) = s(r ·Div0(f)− E) ≤ s(r ·Div0(f)).

The fact that s(r ·Div0(f)) is bounded above follows from Proposition 1.6 in yesterday’s notes: we have

s(r ·Div0(f)) ≤ τ + 1 for all r, concluding the proof. �
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Corollary 1.4. If C is a curve of genus g and if D0 is a divisor satisfying l(D0) = deg(D0) + 1− g, then

for every divisor D which is linearly equivalent to some D′ ≥ D0 we have

l(D) = deg(D) + 1− g.

Proof. Using Proposition 1.1(4) we get that l(D) = l(D′), so we may assume D ≥ D0. It follows that

l(D) ≤ l(D0) + deg(D −D0) = deg(D) + 1− g.

If the inequality is strict then we get a contradiction with (1.1), so we must have l(D) = deg(D)+1−g. �

Corollary 1.5 (Asymptotic Riemann-Roch). There exists a positive integer N such that for all divisors D

with deg(D) > N we have

l(D) = deg(D) + 1− g.

Proof. Choose any D0 such that l(D0) = deg(D0) + 1 − g, and let N = g + deg(D0). If D is a divisor

with deg(D) ≥ N then

l(D −D0)
(1.1)

≥ deg(D −D0) + 1− g ≥ N − deg(D0) + 1− g = 1,

so that there exists 0 6= f ∈ L(D −D0). By definition, this means that

D −D0 + Div(f) ≥ 0, i.e. D + Div(f) ≥ D0.

Set D′ = D + Div(f) and note that D ≡ D′, hence by Corollary 1.4 we get l(D) = deg(D) + 1 − g, as

desired. �

Theorem 1.6 (Riemann-Roch). Let C be a non-singular projective curve. There exists a divisor W

(which is called a canonical divisor) with the property that for any divisor D on C we have

l(D)− l(W −D) = deg(D) + 1− g.

Corollary 1.7. If W is a canonical divisor on a curve C of genus g then

deg(W ) = 2g − 2 and l(W ) = g.

As a consequence, we can take N = 2g − 2 in Corollary 1.5.

Proof. Replacing D by W −D in the Riemann-Roch formula yields

l(W −D)− l(D) = deg(W −D) + 1− g

and therefore

deg(D) + 1− g = −deg(W −D)− 1 + g = deg(D)− deg(W )− 1 + g
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which proves deg(W ) = 2g − 2.

We can now set D = W in the Riemann-Roch formula and use the fact that l(0) = 1 to conclude that

l(W ) = l(0) + deg(W ) + 1− g = 1 + 2g − 2 + 1− g = g.

To prove the last statement, consider a divisor D with deg(D) > 2g− 2. We get that deg(W −D) < 0

which by Proposition 1.1(2) yields l(W −D) = 0. The Riemann-Roch formula gives then the conclusion

of Corollary 1.5. �

When C = E is an elliptic curve we can in fact take W = 0 (see Exercise 2), but Corollary 1.7 only

guarantees that deg(W ) = 0, since g = 1. Nevertheless, this suffices to give a proof of the following.

Theorem 1.8. Suppose that E ⊆ P2 is a non-singular cubic curve and fix a point O ∈ E. We have a

bijection

φ : E −→ Cl0(E), φ(P ) = P −O.

Proof. We first show that the map φ is surjective. Consider a divisor D with deg(D) = 0 and let

D′ = D + O. Since deg(W ) = 0 and deg(D′) = 1 it follows that l(W − D′) = 0 and therefore by

Riemann-Roch

l(D′) = 1.

It follows that there exists an effective divisor D′′ linearly equivalent to D′, and since deg(D′′) = 1

it must be that D′′ = P for some point P ∈ E. This shows that D + O ≡ P , or equivalently that

D ≡ P −O = φ(P ) proving surjectivity.

To see that φ is injective, assume that φ(P ) = φ(Q) for distinct points P,Q ∈ E. This means that

P−Q ≡ 0 and therefore l(P−Q) = 1. We can thus find a rational function f ∈ K(E) with Div(f) = Q−P ,

which in particular is non-constant. This implies that 1, f ∈ L(P ) are linearly independent over κ, thus

l(P ) ≥ 2. However, Riemann-Roch implies that l(P ) = 1, which is a contradiction. �
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1.1. Exercises.

(1) Let C = P1 (genus g = 0). Explain why you can take the canonical divisor W to be any divisor

of degree −2 in the Riemann–Roch theorem.

(2) (a) Show that in the Riemann–Roch theorem, you can replace W with any linearly equivalent

divisor W ′ ≡W .

(b) Suppose that E is an elliptic curve (genus g = 1). Use the fact that l(W ) = g to show that W

is linearly equivalent to an effective divisor, and determine this divisor using deg(W ) = 2g − 2.

(c) Conclude that for an elliptic curve, you can take W = 0 in the Riemann–Roch theorem.

(3) Let E be an elliptic curve, and fix O ∈ E. The goal of this exercise is to show (see also the notes)

that we have a bijection

φ : E −→ Cl0(E), φ(P ) = P −O.

• Surjectivity: every element of Cl0(E) is the equivalence class of a divisor D with deg(D) = 0.

Use Riemann–Roch to conclude that l(D + O) = 1, and conclude that D + O is equivalent

to an effective divisor of degree 1 (what does such a divisor look like?).

• Injectivity: show that if P − O ≡ Q − O, P 6= Q, then L(P − Q) contains a non-constant

rational function f . Explain why this implies 1, f ∈ L(P ), and l(P ) ≥ 2. Show that this

contradicts Riemann–Roch, so φ is in fact injective.

(4) Let C be a curve of genus g and let P ∈ C. Show that for every a ≥ 2g there exists a rational

function f ∈ K(C) with

Div∞(f) = a · P.

Prove that the above conclusion fails when a is small (for instance when a = 1 and C is any curve

of genus g ≥ 1).

(5) Let C be a curve of genus g, let P ∈ C, and define

Nr = l(rP ) for r ≥ 0.

(a) Show that 1 = N0 ≤ N1 ≤ · · · ≤ N2g−1 = g and conclude that there are precisely g numbers

0 < a1 < a2 < · · · < ag < 2g

with the property that there is no rational function f ∈ K(C) with Div∞(f) = ai · P .

The numbers a1, · · · , ag are called Weierstrass gaps, and (a1, · · · , ag) is the gap sequence at

P . We say that P is a Weierstrass point if the gap sequence is different from (1, 2, · · · , g).

(b) Show that the following are equivalent
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• P is a Weierstrass point.

• l(gP ) > 1.

• l(W − gP ) > 0.

(c) Show that if a and b are not gaps then a+ b is not a gap. Conclude that if 2 is not a gap then

the gap sequence is necessarily (1, 3, · · · , 2g− 1). The curve C is called hyperelliptic in this case.
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