1. THE RIEMANN-ROCH THEOREM

Last time we discussed:

Proposition 1.1. Let D, D’ be divisors on C. We have
(1) If D < D' then L(D) C L(D') and

. LD /
dim, ) < deg(D"— D).

(2) L(0) =k and L(D) = 0 if deg(D) < 0.
(3) If deg(D) > 0 then L(D) is finite dimensional and (D) < deg(D) + 1.
(4) If D = D' then I(D) = I(D").

On the homework: You studied [(D) when D = r Divy(f) in the following cases:
(1) C =P ={[X:Y]}, f=Y/X. You showed
Divo(f) =1[1:0], (rDivg(f)) =r+1.

Note that deg(r Divo(f)) = 7.
(2) C=E=V(Y?Z - X(X - Z)(X —\Z)) C P? is an elliptic curve, f = Z/X. You showed

Divo(f) =2[0:1:0], I(rDivo(f))=2r.

Note that deg(r Divo(f)) = 2r.
Today, our goal is to study further the invariant {(D).

Theorem 1.2 (Riemann). There exists a constant g such that for all divisors D on C' we have

I(D) > deg(D) +1—g. (1.1)
The smallest such g is called the genus of the curve C and is a non-negative integer.
It can be shown (for instance using sheaf cohomology) that the genus of a curve C is encoded by its
Hilbert polynomial HP¢(z) via the formula

g=1-HP¢(0),

which shows that the genus of a non-singular plane curve of degree d is given by

did—-3) (d—1)(d-2)

1 —
+ 2 2 ’

and in particular a plane cubic has genus 1.

Before proving Theorem we need to establish the following technical result:
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Lemma 1.3. Let f € K(C)\ k denote a non-constant rational function, and let D be any divisor on C.

For r > 0 the divisor r - Divo(f) — D is linearly equivalent to an effective divisor.

Proof. Let Z(f) C C denote the set of zeroes of f, and write D = ), ap - P. We consider the rational

function f defined by
= 1 1\
- 11 (_> |
7T

ap>0, P¢Z
By definition, the poles of f are precisely the zeroes of f, and for every P ¢ Z(f) for which ap > 0 we

have ordp(f) > ap. We thus get

Div(f) — D = Divo(f) = Divao(f) =D => bp- P,
P

where a negative coefficient bp < 0 can only occur when P € Z(f). This means that
T-Divo(f)—i—pr-PZOforr>>0,
P
and therefore
r-Divo(f) = D = r - Divo(f) + Div(f) — D =r-Divo(f) + > _bp - P is effective when r > 0. O
P
Proof of Theorem[1.3. Since 1(0) =1 and deg(D) = 0, we conclude that g > 0 if it exists. We define

s(D) = deg(D) +1—1(D)

and note that the existence of g is equivalent to the fact that s(D) is bounded above, in which case g is
the maximum value of s(D) as D varies among divisors on C'.

Note that we have s(D) = s(D') when D = D’ by Proposition [L.1[4), and it follows from yesterday’s
Exercises that s(D) < s(D’) if D < D'. In light of Lemma[1.3] it is enough to show that s(r - Divo(f)) is
bounded above when f is some non-constant rational function: indeed, consider a nonconstant rational
function f € K(C) and a positive integer r for which r - Divg(f) — D = E for some effective divisor Ej it
follows that

D =r-Divg(f) — E <r-Divo(f)
and therefore
s(D) = s(r-Divo(f) — E) < s(r - Divg(f)).

The fact that s(r - Divg(f)) is bounded above follows from Proposition 1.6 in yesterday’s notes: we have
s(r - Divo(f)) < 7+ 1 for all r, concluding the proof. O
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Corollary 1.4. If C is a curve of genus g and if Dy is a divisor satisfying [(Dg) = deg(Dy) +1—g, then

for every divisor D which is linearly equivalent to some D' > Dy we have
I(D) =deg(D)+1—g.
Proof. Using Proposition 4) we get that (D) = I(D’), so we may assume D > Dy. It follows that
I(D) <U(Dyg) + deg(D — Dgy) = deg(D) +1—g.
If the inequality is strict then we get a contradiction with (L.1]), so we must have [(D) = deg(D)+1—g. O

Corollary 1.5 (Asymptotic Riemann-Roch). There exists a positive integer N such that for all divisors D
with deg(D) > N we have
[(D) =deg(D)+1—g.

Proof. Choose any Dy such that [(Dy) = deg(Dg) + 1 — g, and let N = g + deg(Dyp). If D is a divisor
with deg(D) > N then

I(D—Dgy) = deg(D—Dy)+1—g>N —deg(Dg)+1—g=1,
so that there exists 0 # f € L(D — Dy). By definition, this means that
D — Dy + Div(f) > 0, i.e. D+ Div(f) > Dy.

Set D' = D + Div(f) and note that D = D', hence by Corollary we get [(D) = deg(D) + 1 — g, as
desired. g

Theorem 1.6 (Riemann-Roch). Let C be a non-singular projective curve. There exists a divisor W

(which is called a canonical divisor) with the property that for any divisor D on C' we have
(D)= 1l(W —D)=deg(D)+1—g.
Corollary 1.7. If W is a canonical divisor on a curve C' of genus g then
deg(W) =29 —2 and I(W) = g.
As a consequence, we can take N = 2g — 2 in Corollary[1.5
Proof. Replacing D by W — D in the Riemann-Roch formula yields
I(W—=D)—1l(D)=deg(W —-D)+1—g
and therefore

deg(D)+1—g=—deg(W —D)—1+4+g=deg(D) —deg(W)—-1+g
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which proves deg(W) = 2g — 2.
We can now set D = W in the Riemann-Roch formula and use the fact that [(0) = 1 to conclude that

I(W)=10)+degW)+1—-g=1+2g—2+1—g=g.

To prove the last statement, consider a divisor D with deg(D) > 2g — 2. We get that deg(WW — D) <0
which by Proposition [L.1[2) yields {(W — D) = 0. The Riemann-Roch formula gives then the conclusion

of Corollary O

When C' = F is an elliptic curve we can in fact take W = 0 (see Exercise , but Corollary only
guarantees that deg(WW) = 0, since g = 1. Nevertheless, this suffices to give a proof of the following.

Theorem 1.8. Suppose that E C P? is a non-singular cubic curve and fiz a point O € E. We have a
bijection
¢: E— CI%E), #(P)=P-O0.

Proof. We first show that the map ¢ is surjective. Consider a divisor D with deg(D) = 0 and let
D" = D+ O. Since deg(W) = 0 and deg(D’) = 1 it follows that (W — D’) = 0 and therefore by
Riemann-Roch

(D) = 1.
It follows that there exists an effective divisor D” linearly equivalent to D', and since deg(D”) = 1
it must be that D” = P for some point P € E. This shows that D + O = P, or equivalently that
D = P — O = ¢(P) proving surjectivity.

To see that ¢ is injective, assume that ¢(P) = ¢(Q) for distinct points P,Q € E. This means that
P—@Q = 0 and therefore [(P—@Q) = 1. We can thus find a rational function f € K(FE) with Div(f) = Q—P,
which in particular is non-constant. This implies that 1, f € L(P) are linearly independent over «, thus
[(P) > 2. However, Riemann-Roch implies that [(P) = 1, which is a contradiction. O



1.1. Exercises.

(1)

(2)

Let C = P! (genus g = 0). Explain why you can take the canonical divisor W to be any divisor
of degree —2 in the Riemann—Roch theorem.

(a) Show that in the Riemann—Roch theorem, you can replace W with any linearly equivalent
divisor W/ = W.

(b) Suppose that E is an elliptic curve (genus g = 1). Use the fact that [(W) = ¢ to show that W
is linearly equivalent to an effective divisor, and determine this divisor using deg(WW) = 2g — 2.
(c) Conclude that for an elliptic curve, you can take W = 0 in the Riemann-Roch theorem.

Let E be an elliptic curve, and fix O € E. The goal of this exercise is to show (see also the notes)

that we have a bijection
¢: E— CI°(E), ¢(P)=P-0.

e Surjectivity: every element of C1°(E) is the equivalence class of a divisor D with deg(D) = 0.
Use Riemann-Roch to conclude that [(D 4+ O) = 1, and conclude that D + O is equivalent
to an effective divisor of degree 1 (what does such a divisor look like?).

e Injectivity: show that if P — O = Q — O, P # Q, then L(P — @) contains a non-constant
rational function f. Explain why this implies 1, f € L(P), and [(P) > 2. Show that this
contradicts Riemann—Roch, so ¢ is in fact injective.

Let C be a curve of genus g and let P € C. Show that for every a > 2g there exists a rational
function f € K(C) with
Diveo(f) =a- P.

Prove that the above conclusion fails when a is small (for instance when a = 1 and C'is any curve
of genus g > 1).
Let C be a curve of genus g, let P € ', and define

N, =[(rP) for r > 0.
(a) Show that 1 = Ny < Ny <--- < Nyy_1 = g and conclude that there are precisely g numbers
0<a1<a2<~-<a9<29

with the property that there is no rational function f € K(C') with Diveo(f) = a; - P.

The numbers aq,- - , a4 are called Weierstrass gaps, and (a1, -- ,a,4) is the gap sequence at
P. We say that P is a Weierstrass point if the gap sequence is different from (1,2,---,g).
(b) Show that the following are equivalent



e P is a Weierstrass point.
e [(gP) > 1.
o [(W—gP)>0.
(c) Show that if @ and b are not gaps then a + b is not a gap. Conclude that if 2 is not a gap then

the gap sequence is necessarily (1,3,---,2g — 1). The curve C is called hyperelliptic in this case.
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