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Exercise sets

Andrei Jorza Evan O’Dorney Claudiu Raicu

1 Exercises for Monday

These problems are designed to give you hands-on familiarity with the material in the lectures. Some of them
are easier with a computer. Don’t worry if you don’t have the background to solve a few of the problems;
just move on.

Most of the elliptic curve problems are drawn from a handout by Bjorn Poonen at the Berkeley Math
Circle.

1.1 Algebraic Curves

1. • Show that the set
C = {(t2, t3) : t ∈ k}

is the same as the affine algebraic set
V (y2 − x3).

• Show then that
I(C) = 〈y2 − x3〉 ⊂ k[x, y],

and conclude that C is an affine algebraic variety.

• Show that dim(C) = 1 (C is called the cuspidal cubic curve).

2. If X,Y are affine algebraic sets in kn and I, J are ideals in A, show that

• If X ⊆ Y then I(X) ⊇ I(Y ).

• If I ⊆ J then V (I) ⊇ V (J).

• If we let
√
I = {a ∈ A : ar ∈ I for some r > 0} denote the radical of the ideal I then

V (I) = V (
√
I).

• Using the fact that √
I =

⋂
P⊇I

P prime ideal

P

and Theorem 1.1 (see notes) show that for every ideal I ⊂ A we have

I(V (I)) =
√
I.
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3. Show that for any two ideals I, J ⊆ A we have

V (I · J) = V (I ∩ J) = V (I) ∪ V (J).

Prove that if X is an algebraic set then we have an equivalence

X is irreducible ⇐⇒ I(X) is a prime ideal.

4. State and prove the analogous statements in Exercises 2 and 3 for homogeneous ideals and projective
algebraic sets/varieties.

5. Verify that if X = {[a0 : · · · : an]} consists of a single point in Pn then the homogeneous ideal of X is

I(X) = 〈aixj − ajxi : 0 ≤ i < j ≤ n〉 ⊂ S = k[x0, · · · , xn],

and that the homogeneous coordinate ring of X is isomorphic to a polynomial ring in one variable.

By looking at specific points in Pn, n = 1, 2, 3, · · · , convince yourself that in general I(X) can be
generated by only n linear homogeneous polynomials (so the

(
n+1

2

)
polynomials that I wrote down give

in general a reduntant set of generators for I(X)).

6. Verify that you can decompose
Pn = An t Pn−1,

where An ∼= {[1 : a1 : · · · : an]} and Pn−1 ∼= {[0 : a1 : · · · : an]}. We call Pn−1 the hyperplane at
infinity, parametrizing the directions of the lines through the origin in An.

In fact, if we let

Ui = {[a0 : · · · : ai−1 : 1 : ai+1 : · · · : an]} ⊂ Pn, i = 0, · · · , n,

then we can naturally identify Ui with An, and its complement Hi = Pn \ Ui with Pn−1.

7. Consider the subset

X = {[s3 : st2 : t3] : s, t ∈ k, not both s, t are 0} ⊂ P2 = {[w : x : y]}.

Show that
I(X) = 〈y2w − x3〉 ⊂ k[w, x, y],

and conclude that X is a projective variety. Using the notation in Exercise 6, show that X ∩ U0 is
naturally identified with the cuspidal curve C in A2 = U0, and that

X = C ∪ {[0 : 0 : 1]},

where you can think of [0 : 0 : 1] as the point at infinity on the cuspidal curve. Note also that y2w−x3

is the homogenization of the equation y2 − x3 of C, with respect to the variable w.

1.2 Elliptic Curves

1. How many constants are needed in the general equation of a plane curve of degree n? (Check that
your formula gives the right answer, 10, for the case n = 3.)

2. Let f(x) = x3 +Ax+B where A and B are real numbers. Let ∆ = −(4A3 + 27B2). Prove that

(a) f(x) has a multiple root if and only if ∆ = 0.

(b) f(x) has three distinct real roots if and only if ∆ > 0.

(c) f(x) has one real root and two non-real roots if and only if ∆ < 0.
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(Hint: f(x) factors completely into linear factors over the complex numbers. Since there is no x2 term
in f(x), the sum of the zeros of f(x) is 0, and the factorization has the form

f(x) = (x− r)(x− s)(x+ r + s)

for some complex numbers r and s. Calculate ∆ in terms of r and s and factor it.)

The number ∆ is called the discriminant ; it plays a role analogous to that of b2 − 4ac for quadratic
polynomials.

3. It turns out that the real points on the elliptic curve y2 = x3 +Ax+B form two connected components
if ∆ > 0 and only one connected component if ∆ < 0. (Loosely speaking, a connected component
is a piece you can draw without lifting your pencil from the paper.) Can you explain this, using the
previous problem?

4. (a) Parametrize the rational points on the hyperbola x2 − 2y2 = 1.

(b) Find some integer points on this hyperbola. (In general, an equation of the form x2 − ky2 = ±1,
where we seek integer solutions (x, y), is called a Pell equation.)

(c) Prove that there are infinitely many integer points on this hyperbola. (Hint: Show that if (x1, y1)
and (x2, y2) are solutions, so is (x1x2 + 2y1y2, x1y2 +y1x2). Where does this formula come from?)

1.3 Modular Forms

The Bernoulli numbers Bn are defined by the Taylor expansion
x

ex − 1
=
∑

Bn
xn

n!
= 1− 1

2
x+

1

12
x2 −

1

720
x4 + · · · .

1. Show that Bn = 0 for all odd n > 1, and that Bn ∈ Q for all n.

2. Show that

z cot(z) = 1 +

∞∑
n=1

(−4)nB2n
z2n

(2n)!

[Hint: Plug in x = 2iz.]

3. A beautiful result from complex analysis implies that

π cot(πz) =
1

z
+
∑
n≥1

(
1

z + n
+

1

z − n

)
=
∑
n∈Z

1

z + n
. (1.1)

(Same zeros and same poles!) Show that

z cot(z) = 1 + 2

∞∑
n=1

z2

z2 − n2π2

and expand into geometric series each
z2

z2 − n2π2
to show that

ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)!
.

4. Let q = e2πiz.
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(a) Show directly from the definition of cot z that

π cot(πz) = πi
q + 1

q − 1
= πi− 2πi

∞∑
n=0

qn

(b) Differentiate equation (1.1) k − 1 times to show that

∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞∑
n=1

nk−1qn.
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2 Exercises for Tuesday

2.1 Algebraic Curves

1. Let S = k[x0, x1, x2] and consider irreducible homogeneous polynomials F1 ∈ Sd1 , F2 ∈ Sd2 , which
are not scalar multiples of each other. Consider the corresponding curves Ci = V (Fi), and the ideal
I = 〈F1, F2〉. The goal of this exercise is to compute the Hilbert function of S/I, defined by

HFS/I(m) = dimk(S/I)m, m ≥ 0.

• Consider first the homogeneous coordinate ring S(C1) = S/〈F1〉, and verify the calculation in
Example 1.3 (see notes):

HFC1
(m) = dim(S(C1)m) =

{(
m+2

2

)
if m < d1;

d1·(2m+3−d1)
2 if m ≥ d1.

.

• Explain why multiplication by F2 is injective on S(C1), more precisely, why it gives injective
k-linear maps

S(C1)m−d2
·F2−→ S(C1)m for all m.

• Use the identification S/I ∼= S(C1)/〈F2〉 to conclude that

HFS/I(m) = HFC1
(m)−HFC1

(m− d2) for all m,

and write down an explicit formula for each m (observe the symmetry between d1 and d2).

• Verify that HFS/I(m) = d1d2 for m� 0, which is another formulation of Bézout’s theorem.

2. (a) If X is an affine variety and P ∈ X, check that OP ⊂ Kaff (X) has a unique maximal ideal, namely

mP = {f/g : f(P ) = 0, g(P ) 6= 0}.

(b) If X ⊆ Pn is a projective variety, check that the set Kproj(X) defined in Section 2 (see notes) is
indeed a field. Prove that the subring OP ⊂ K(X) has a unique maximal ideal, namely

mP = {F/G : F (P ) = 0, G(P ) 6= 0}.

(c) Using Hilbert’s Nullstellensatz, check that for both affine and projective varieties, if P ∈ X and
OP is the corresponding local ring with maximal ideal mP , then the natural inclusion k ⊂ OP induces
an isomorphism k ' OP /mP .

(d) Prove (2.1). (See notes.)
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3. Consider the projective plane curves C1, C2 ⊂ P2,

C1 = V (X2 + Y 2 − Z2) and C2 = V (X3 −X2Z −XZ2 + Z3 − Y 2Z).

Determine the set C1 ∩ C2 and find the intersection multiplicity at each of these points. Verify that
Bézout’s theorem holds in this example.

4. For a homogeneous polynomial F of degree d prove the Euler identity

n∑
i=0

Xi ·
∂F

∂Xi
= d · F.

5. Consider the cuspidal cubic C = V (y2 − x3) ⊂ A2.

• Show that P = (1, 1) belongs to C, and that the maximal ideal mP of OP is principal, that
is, it can be generated by a single element. More precisely, show that mP = 〈x − 1〉 and also
mP = 〈y − 1〉.

• By contrast, convince yourself that for P = (0, 0), the ideal mP is NOT principal.

2.2 Elliptic Curves

1. Parametrize the rational points on the sphere x2 + y2 + z2 = 1.

2. (a) Prove that the circle x2 + y2 = 3 has no rational points. (Hint: show that a rational point would
give rise to a triple of integers (a, b, c) not all divisible by 3, such that a2 + b2 = 3c2. Examine the
possibilities for a, b, c modulo 3.)

(b) Find some other integers n > 0 such that x2 + y2 = n has no rational points.

3. Let X be the curve y2 = x3 + x2.

(a) Is X an elliptic curve?

(b) Draw a sketch of the curve X. The point P = (0, 0), where two “branches” cross, is called a node,
which is the simplest kind of singularity.

(c) Show that using lines of rational slope through the special point P yields a parametrization of
the rational points on X. (You might need to exclude P and/or exclude certain slopes.)

4. Let E be the elliptic curve y2 = x(x+ 6)(x− 6). Find some rational points on E, and then calculate
P +Q for some pairs of these to find more.

5. Let E be an elliptic curve, and let P be a point on E other than O. Show that P + P = O if and
only if the y-coordinate of P is zero. (This shows that in an elliptic curve, P + P = O does not imply
P = O. One cannot divide equations through by 2!)

2.3 Modular Forms

1. Show that the group SL(2,Z) = {g ∈ M2×2(Z) | det g = 1} is generated by the matrices T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
. [Hint: Suppose g =

(
a b
c d

)
∈ SL(2,Z). Compute S2, Sg, T−qg and argue by

induction.]

2. For a matrix g =

(
a b
c d

)
∈ GL(2,R) and z ∈ C define

g · z =
az + b

cz + d
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(a) Show that for any two matrices g, h ∈ GL(2,R), (gh) · z = g · (h · z).

(b) Show that Im(g · z) =
det(g) Im(z)

|cz + d|2
.

(c) Deduce that g · z defines an action of the group GL(2,R)+ of positive determinant matrices on
the upper half plane H = {z ∈ C | Im z > 0}.

(d) Using calculus we may define g · ∞ =
a

c
. Show that the orbit of ∞ under SL(2,Z) is all of

Q ∪ {∞} = P1Q.

3. Show that if k is odd Mk = 0. [Hint: Write the functional equation for the matrix

(
−1 0
0 −1

)
∈

SL2(Z).]

4. A modular form f ∈M2k of weight1 2k with q-expansion

f(z) = a0 + a1q + a2q
2 + · · ·

is said to be a cusp form if a0 = 0. Denote by S2k ⊂M2k the sub-vector space of cusp forms.

Show that
M2k = C · E2k ⊕ S2k.

This means that each modular form of weight 2k can be written uniquely as

f = αE2k + g

where α ∈ C and g ∈ S2k.

5. The functional equation for weight 2k modular forms can be rewritten as f(g · z) = (cz + d)2kf(z) for

all g =

(
a b
c d

)
∈ SL2(Z). If the functional equation is true for g1 and for g2 show that it is also true

for g1g2.

6. Check that G2(− 1
z ) = z2G2(z)− 2πiz. Taken from Serre’s A Course in Arithmetic. This is quite long,

your time is better spent on something else during problem-solving. Write

G2(z) =
∑
m

(∑
n

′ 1

(mz + n)2

)

G2(z) =
∑
n

(∑
m

′ 1

(mz + n)2

)

H2(z) =
∑
m

(∑
n

′ 1

(mz + n− 1)(mz + n)

)

H2(z) =
∑
n

(∑
m

′ 1

(mz + n− 1)(mz + n)

)

where
∑′

means over all indices where the terms in the sum don’t have a 0 in the denominator.

(a) Show that H2(z) = 2 and H2(z) = 2− 2πi
z .

(b) Show that G2 −H2 and G2 −H2 converge absolutely, and therefore they must equal each other.

(c) Conclude that G2(− 1
z ) = z2G2(z)− 2πiz.

1The previous exercise shows that there are no odd weight modular forms
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3 Exercises for Wednesday

3.1 Elliptic Curves

1. Find an elliptic curve with a rational point P 6= O satisfying P +P +P = O. Hint: if a line L intersects
E only at a single point P , and in particular does not pass through O (i.e., it is not vertical and is not
the line at infinity), then by Bezout’s Theorem, L∩E must be P with multiplicity 3, so P +P +P = 0.

2. Let C be the curve y2 + y = x3 − x2.

(a) Is C an elliptic curve? (Hint: Try to change coordinates so that the y term disappears.)

(b) Find some integral points P on C.

(c) Prove that the points you found are torsion points, that is, there is an integer n such that nP = 0.

3. Let p 6= 2 be a prime number. Consider the problem of finding the number of solutions to the quadratic
congruence x2 − y2 ≡ 1 mod p, for integers x, y modulo p.

(a) Compute some examples and conjecture the answer.

(b) How does a rational parametrization for the curve C : x2 − y2 = 1 help?

(c) If you are familiar with algebra in the finite field Fp = Z/pZ, prove your conjecture.

4. Compute the points on the curve y2 ≡ x(x+ 5)(x−5) mod p, for a prime p of your choosing (p 6= 2, 5),
and write the group structure on them in the form Z/a1Z⊕ · · · ⊕ Z/arZ.
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4 Exercises for Thursday

4.1 Algebraic Curves

1. Let C = P1 with projective coordinates [X : Y ], and consider the rational function

t = Y/X ∈ K(P1).

(a) Show that K(P1) = k(t), and compute the principal divisor Div(t).

(b) Show that if E =
∑
P aP ·P is an effective divisor on P1 of degree d, then there exists a homogeneous

polynomial F of degree d with Div(F ) = E.

(c) Explain how to compute the divisor of an arbitrary rational function on P1.

(d) Show that Cl(P1) = Z and Cl0(P1) = 0.

(e) For the rational function t = Y/X, determine l(r ·Div0(t)) for all r ≥ 0.

(f) Verify that Proposition 1.6 holds for C = P1.

2. Fix a constant λ ∈ k with λ 6= 0, 1 and consider the cubic E ⊂ P2 defined by the equation

Y 2Z = X · (X − Z) · (X − λZ).

Consider the rational functions x = X/Z and y = Y/Z.

(a) Show that K(C) = k(x, y) (where x, y satisfy the relation y2 = x(x− 1)(x− λ)).

(b) Determine Div(x) and Div(y).

(c) Show that if you let z = x−1 then L(Div0(z)) ⊂ k[x, y] and prove that

l(r ·Div0(z)) = 2r for all r > 0.

3. We say (see the notes) that D and D′ are linearly equivalent if D′−D = Div(h) is a principal divisor,
and write D ≡ D′. Show the following:

• l(D) > 0 ⇐⇒ D is linearly equivalent to an effective divisor.

• deg(D) = 0 and l(D) > 0 ⇐⇒ D ≡ 0 ⇐⇒ D is a principal divisor.

4. In this exercise you will prove (you can also look at the notes to see the details) that if D ≤ D′ are
divisors on a curve C then

l(D′) ≤ l(D) + deg(D′ −D).
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• Explain why you can reduce to the case when D′ −D = P consists of a single point.

• Let a be the coefficient of P in D (so that (a+ 1) is the coefficient of P in D′), and let π denote
the uniformizer at P (so that mP = 〈π〉). Explain why the map

φ : L(D′) −→ k, φ(f) = (f · πa+1)(P ),

defined by multiplication by πa+1 followed by evaluation at P , is k-linear and is well-defined.

• Show that L(D) is contained in ker(φ) and deduce that l(D′) ≤ l(D) + 1.

5. (Prime avoidance) Suppose that J,Q0, Q1, · · · , Qr are ideals in a ring R, and assume further that
Q1, · · · , Qr are prime ideals (Q0 may not be prime). Show that if we have

J ⊆ Q0 ∪Q1 ∪ · · · ∪Qr

then J ⊆ Qi for some i. You can follow the strategy below:

(a) Verify the assertion in the case r = 0, 1.

(b) Do induction on r. If J ⊂
⋃
j 6=iQj then conclude by induction that J ⊂ Qj for some j. Otherwise,

for each i = 0, · · · , n choose an element zi ∈ J \
⋃
j 6=iQj . Show that the element z = z0z1 · · · zr−1 + zr

belongs to J but not to any of Qi.

6. Prove Lemma 1.5 using Proposition 1.4.

4.2 Modular Forms

1. Show that if f ∈M2k and g ∈M2` are modular forms then fg ∈M2k+2` is also a modular form. (Pay
attention to the weights.)

2. Show that ∆, E12, E
3
4 , E

2
6 ∈M12. We showed that M12 has dimension at most 2.

(a) From lectures, and some computations, we know that

19200E3
4 =

1

720
+ q + 249q2 + · · ·

252E2
6 =

1

1008
− q + 219q2 + · · ·

∆ = q − 24q2 + · · ·

E12 =
691

65520
+ q + 2049q2 + · · ·

Show that E3
4 and E2

6 are linearly independent, and therefore form a basis of M12.

(b) Find two constants a, b ∈ C (you can do this by hand) such that

∆− E12 = 19200E3
4 · a+ 252E2

6 · b.

(c) Conclude the beautiful relation, from lecture, that

∆ = E12 −
691

13
(1600E3

4 + 21E2
6),

which led us to a proof of Ramanujan’s congruence mod 691.

3. Consider the modular form ∆ = q
∏
n≥1

(1− qn)24 of weight 12.
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(a) Show that ∆ has no zeros in H. [Hint: Recall that d log ∆(z)
dz = 6i

π G2(z). Any root of ∆(z) would
have to be a pole of this log derivative. Does G2(z) ever not converge in H?]

(b) Suppose f ∈ S2k is a modular form with constant term 0 (a cusp form, as in the previous set).

Show that
f

∆
is analytic in H and at ∞.

(c) Deduce that Mk
·∆−→ Sk+12 is a bijection.

(d) Conclude that

dimM2k =

{
b2k/12c+ 1 2k 6≡ 2 (mod 12)

b2k/12c 2k ≡ 2 (mod 12)
.
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5 Exercises for Friday

5.1 Algebraic Curves

1. Let C = P1 (genus g = 0). Explain why you can take the canonical divisor W to be any divisor of
degree −2 in the Riemann–Roch theorem.

2. (a) Show that in the Riemann–Roch theorem, you can replace W with any linearly equivalent divisor
W ′ ≡W .

(b) Suppose that E is an elliptic curve (genus g = 1). Use the fact that l(W ) = g to show that W is
linearly equivalent to an effective divisor, and determine this divisor using deg(W ) = 2g − 2.

(c) Conclude that for an elliptic curve, you can take W = 0 in the Riemann–Roch theorem.

3. Let E be an elliptic curve, and fix O ∈ E. The goal of this exercise is to show (see also the notes) that
we have a bijection

φ : E −→ Cl0(E), φ(P ) = P −O.

• Surjectivity: every element of Cl0(E) is the equivalence class of a divisor D with deg(D) = 0.
Use Riemann–Roch to conclude that l(D +O) = 1, and conclude that D +O is equivalent to an
effective divisor of degree 1 (what does such a divisor look like?).

• Injectivity: show that if P −O ≡ Q−O, P 6= Q, then L(P −Q) contains a non-constant rational
function f . Explain why this implies 1, f ∈ L(P ), and l(P ) ≥ 2. Show that this contradicts
Riemann–Roch, so φ is in fact injective.

4. Let C be a curve of genus g and let P ∈ C. Show that for every a ≥ 2g there exists a rational function
f ∈ K(C) with

Div∞(f) = a · P.

Prove that the above conclusion fails when a is small (for instance when a = 1 and C is any curve of
genus g ≥ 1).

5. Let C be a curve of genus g, let P ∈ C, and define

Nr = l(rP ) for r ≥ 0.

(a) Show that 1 = N0 ≤ N1 ≤ · · · ≤ N2g−1 = g and conclude that there are precisely g numbers

0 < a1 < a2 < · · · < ag < 2g

with the property that there is no rational function f ∈ K(C) with Div∞(f) = ai · P .
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The numbers a1, · · · , ag are called Weierstrass gaps, and (a1, · · · , ag) is the gap sequence at P . We
say that P is a Weierstrass point if the gap sequence is different from (1, 2, · · · , g).

(b) Show that the following are equivalent

• P is a Weierstrass point.

• l(gP ) > 1.

• l(W − gP ) > 0.

(c) Show that if a and b are not gaps then a+ b is not a gap. Conclude that if 2 is not a gap then the
gap sequence is necessarily (1, 3, · · · , 2g − 1). The curve C is called hyperelliptic in this case.

5.2 Modular Forms

1. A little more computation, you can skip this if you are tired of computations, but the whole reason
for this exercise is to apply the result to the next one, which is a really wonderful arithmetic identity.

Recall that σk(n) =
∑
d|n

dk.

240E4 = 1 + 240(q + 9q2 + · · · ) = 1 + 240

∞∑
n=1

σ3(n)qn

(240E4)2 = 1 + 480q + 61920q2 + · · ·
(240E4)3 = 1 + 720q + 179280q2 + · · ·

−504E6 = 1− 504(q + 33q2 + · · · ) = 1− 504

∞∑
n=1

σ5(n)qn

(−504E6)2 = 1− 1008q + 220752q2 + · · ·

480E8 = 1 + 480(q + 129q2 + · · · ) = 1 + 480

∞∑
n=1

σ7(n)qn

−264E10 = 1− 264(q + 513q2 + · · · ) = 1− 264

∞∑
n=1

σ9(n)qn

Show that

480E8 = (240E4)2

−264E10 = (240E4) · (−504E6)

2. Use the previous exercise to show that

σ7(n) = σ3(n) + 120

n−1∑
k=1

σ3(k)σ3(n− k)

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−1∑
k=1

σ3(k)σ5(n− k)

(Think about how surprising this is: σ7(2) = 1 + 27, σ3(2) = 1 + 23 so we are saying that 1 + 27 =
1 + 23 + 120 · 1.)

3. Show that every modular form (of weight ≥ 4 and level 1) can be written as a polynomial in E4 and
E6. [Hint: Remember that cusp forms are multiples of ∆ so you can argue by induction.]

4. Suppose f(z) ∈M2k(N). If M is a positive integer, show that g(z) = f(Mz) ∈M2k(MN).
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