Minicourse on Modular Forms

Andrei Jorza

2022

Lecture 1

Monday
Motivation The Dedekind delta function is the formal power series in the variable q :

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-\cdots=\sum_{n=1}^{\infty} \tau(n) q^{n} .
$$

Ramanujan observed (dreamed?) that

$$
\tau(n) \equiv \sum_{d \mid n} d^{11} \quad(\bmod 691)
$$

Out story begins, like many things in modern number theory, with the Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Some special values $\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}$, and in general $\zeta(2 k)$ is a rational multiple of $\pi^{2 k}$ (see exercise set). I say that our story begins here because 691 is, in fact, the numerator of the rational number in $\zeta(12)$. In general, these rational scalars contain a lot of number theoretic properties, but they are just constants.

The connection between Δ and divisor sums, it turns out, goes via complex analysis by reinterpreting the formal variable q as a complex function $q=e^{2 \pi i z}$, and extending the sum defining $\zeta(s)$ to a sum that also contains z.

1 Special complex functions

Suppose $z \in \mathbb{C}$ and $k \geq 2$ is an integer. Define

$$
G_{2 k}(z)=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{2 k}}
$$

Question 1. What kinds of z can we plug in? And what kinds of k ? And what does it mean to have a converging double series?

The sum converges absolutely when $2 k \geq 4$ and $\operatorname{Im} z>0$ and can be expressed as a (Fourier) power series in $q=e^{2 \pi i z}$.

Proposition 2.

$$
G_{2 k}(z)=2 \zeta(2 k)+\frac{2(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{2 k-1}\right) q^{n}
$$

This expression is very transcendental, but if we rescale we get

$$
E_{2 k}=\frac{(2 k-1)!}{2(-2 \pi i)^{2 k}} G_{2 k}=\frac{(2 k-1)!\zeta(2 k)}{(-1)^{k}(2 \pi)^{2 k}}+\sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{2 k-1}\right) q^{n} .
$$

Amazingly, these power series (called Eisenstein series) in q have rational coefficients

$$
E_{2 k} \in \mathbb{Q} \llbracket q \rrbracket,
$$

as $\zeta(2 k)$ is a rational multiple of $\pi^{2 k}$ (see today's exercise set).

Application

How will this help us at all to show Ramanujan's congruence? Looking at the first few Eisenstein series

$$
\begin{aligned}
E_{4} & =\frac{1}{240}+q+9 q^{2}+28 q^{3}+73 q^{4}+126 q^{5}+\cdots \\
E_{6} & =-\frac{1}{504}+q+33 q^{2}+244 q^{3}+1057 q^{4}+3126 q^{5}+\cdots \\
E_{12} & =\frac{691}{65520}+q+2049 q^{2}+177148 q^{3}+4196353 q^{4}+48828126 q^{5}+\cdots
\end{aligned}
$$

we'll be able to show the following stunning identity:

$$
\begin{equation*}
\Delta=E_{12}-\frac{691}{13}\left(1600 E_{4}^{3}+21 E_{6}^{2}\right) \tag{1.1}
\end{equation*}
$$

of rational power series in q. Comparing the coefficients of $q^{n} \bmod 691$ is precisely the Ramanujan identity.

How on earth will we prove identity (1.1)? It turns out that $\Delta, E_{12}, E_{4}^{3}$, and E_{6}^{2} are special functions called modular forms, which are part of a vector space of dimension 2.

Proof of Proposition 2

Lemma 3 (See exercise set). If $z \in \mathbb{C}$ then

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\frac{(-2 \pi i)^{k}}{(2 k-1)!} \sum_{n=1}^{\infty} n^{k-1} e^{2 \pi i n z}
$$

We'll separate the double sum defining $G_{2 k}$ into a part where $m=0$ and a part where $m \neq 1$:

$$
\begin{aligned}
G_{2 k} & =\sum_{n \neq 0} \frac{1}{n^{2 k}}+\sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(m z+n)^{2 k}} \\
& =2 \zeta(2 k)+2 \sum_{m=1}^{\infty} \frac{(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty} n^{2 k-1} e^{2 \pi i n m z} \\
& =2 \zeta(2 k)+2 \frac{(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{m, n \geq 1} n^{2 k-1} q^{m n} \\
& =2 \zeta(2 k)+2 \frac{(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{N=1}^{\infty}\left(\sum_{n \mid N} n^{2 k-1}\right) q^{N} .
\end{aligned}
$$

2 Modular Forms

Let $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$. This is the natural domain for the functions $G_{2 k}$.
Definition 4. A modular form of weight $2 k$ is a function $f: \mathcal{H} \rightarrow \mathbb{C}$ which satisfies the following important conditions:

1. $f(z)$ is analytic ("power series in z "),
2. $f(z)$ can be expressed as a power series in $q=e^{2 \pi i z}$, and
3. $f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} f(z)$ for all $z \in \mathcal{H}$ and all matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.

On the exercise set we'll see that $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by the matrices $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. We'll see an exercise that if the functional equation is satisfied for $g_{1}, g_{2} \in \mathrm{SL}_{2}(\mathbb{Z})$ then the same is true for $g_{1} g_{2}$. This means that to check the functional equation condition, we only need to check it for T and S. The condition is automatic for T because $q(z+1)=q(z)$ and f is a power series in q, and for S we need to check that

$$
f\left(-\frac{1}{z}\right)=z^{2 k} f(z)
$$

Therefore, the last condition can be replaced with

$$
f\left(-\frac{1}{z}\right)=z^{2 k} f(z)
$$

