Lecture 2	
Tuesday	

We denote M_{2k} the complex vector space of modular forms of weight 2k.

Example 5. The function $G_{2k}(z)$ is a modular forms of weight 2k.

Aside on analytic functions

Why are power series so important? And what do we mean by "power series"? Let's remind ourselves the statement of Green's theorem:

$$\oint_C (Pdx + Qdy) = \iint_D (Q_x - P_y) dxdy,$$

for any simple closed curve C oriented to have its interior D on the left, and any P and Q with partial derivatives defined in D.

Suppose now we have a function f(z) of a complex variable z. We'd like to be able to define derivatives of f(z) and to compute integrals of the form $\int f(z)dz$, by which we mean integrals of the form $\int f(x+iy)(dx+idy)$. Let's try to do this for $f(z) = z^n$ over an oriented simple closed curve C. Then $\int_C z^n dz = \oint_C (x+iy)^n (dx+idy)$, which is precisely of the kind that shows up in Green's theorem with $P(x,y) = z^n$ and $Q(x,y) = iz^n$:

$$\int_C z^n dz = \oint_C z^n dx + iz^n dy$$
$$= \iint_D (Q_x - P_y) dx dy.$$

Compute Q_x and P_y , and you see that you get

$$P_y = \frac{\partial z^n}{\partial y} = inz^{n-1}$$
$$Q_x = i\frac{\partial z^n}{\partial x} = inz^{n-1}$$

are equal, which means that the integral above vanishes!

By adding monomials we also get that if $f(z) = \sum a_n z^n$ then $\int f(z) dz = 0$ over any oriented simple closed curve because

$$f_y = i f_x$$

In complex analysis this relation, which remember captures that we integrate the 0 function in Green's theorem, has a fancy name: the **Cauchy-Riemann equation**. It's a fundamental result in complex analysis that if f(z) is a function defined on an open set $U \subset \mathbb{C}$ with no holes and f(z) satisfies this equation (in other words integrating over oriented simple closed curves we get 0) then

- 1. $f'(z) = f_x(z) = i^{-1} f_y(z)$ makes sense, and
- 2. for any $u \in U$, f(z) is a power series in z u around u.

Back to Example 5

Why is G_{2k} a modular form of weight 2k?

- Analyticity on \mathcal{H} : Check the partials! (And convergence.)
- Analyticity at $i\infty$ comes for free from Proposition 2.
- Functional equations.

An example which is not Eisenstein

Example 6. The Delta function $\Delta(z)$ is a modular form of weight 12.

We learn in calculus that log differentiation is a powerful way of dealing with products. Let's do that

$$\frac{d\log\Delta(z)}{dz} = \frac{d\Delta(z)}{\Delta(z)}$$
$$= \frac{dq}{dz} + 24\sum_{n=1}^{\infty} \frac{d\log(1-q^n)}{dz}$$
$$= 2\pi i z - 24\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{dq^{mn}}{mdz}$$
$$= 2\pi i z - 24\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} nq^{mn}$$
$$= 2\pi i z - 24\sum_{n=1}^{\infty} \left(\sum_{d|n} d\right) q^n.$$

This formula is reminiscent of the non-constant part of G_{2k} but if 2k were 2. We only made sense of G_{2k} when $2k \ge 4$ because of absolute convergence, but it turns out one can define

$$G_2(z) = \sum_{m \in \mathbb{Z}} \left(\sum_{n \in \mathbb{Z}}' \frac{1}{(mz+n)^2} \right),$$

and this converges when Im z > 0. Here \sum' means that m and n cannot both be 0. Because the series converges, but not absolutely, we cannot change the order of summation!

In fact, the proof of Proposition 2 still works and we get

$$G_2 = \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) q^m,$$

so $\frac{d\log\Delta(z)}{dz} = \frac{6i}{\pi}G_2(z).$

The function $G_2(z)$ is NOT modular (the order of summation matters!) but check that $G_2(-\frac{1}{z}) = z^2 G_2(z) - 2\pi i z$. (See exercise set.) This gives

$$\frac{d\log\Delta(-\frac{1}{z})}{dz} = \frac{6i}{\pi} \left(z^2 G_2(z) - 2\pi i z \right) \cdot \frac{1}{z^2} = \frac{d\log\Delta(z)}{dz} + \frac{12}{z},$$

which gives $\Delta(-\frac{1}{z}) = z^{12}\Delta(z)$ up to a constant. How do you find the constant? Plug in z = i!